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Preface

The 7th International Conference on Information Security and Cryptology was
organized by the Korea Institute of Information Security and Cryptology
(KIISC) and was sponsored by the Ministry of Information and Communica-
tion of Korea.

The conference received 194 submissions, and the Program Committee se-
lected 34 of these for presentation. The conference program included two invited
lectures. Mike Reiter spoke on “Security by, and for, Converged Mobile Devices.”
And Frank Stajano spoke on “Security for Ubiquitous Computing.” We would
like to first thank the many researchers from all over the world who submit-
ted their work to this conference. An electronic submission process was avail-
able. The submission review process had two phases. In the first phase, Program
Committee members compiled reports (assisted at their discretion by subreferees
of their choice, but without interaction with other Program Committee mem-
bers) and entered them, via a Web interface, into the Web Review software.
We would like to thank the developers, Bart Preneel, Wim Moreau, and Joris
Claessens. Without the Web Review system, the whole review process would
not have been possible. In the second phase, Program Committee members used
the software to browse each other’s reports, and discuss and update their own
reports. We are extremely grateful to the Program Committee members for their
enormous investment of time, effort, and adrenaline in the difficult and delicate
process of review and selection.

We are most grateful to Dr. Jin Hong and Dr. Aaram Yun from NSRI
(National Security Research Institute, Korea). Skillfully and patiently, they car-
ried the main load of background work of the Program Co-chairs, in particular
in setting up the submission and review servers, providing technical help to the
authors and committee members, and in the preparation of this proceedings.

February 2005 Choonsik Park and Seongtaek Chee
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David Pointcheval École Normale Supérieure, France
Vincent Rijmen IAIK, Graz University of Technology, Austria,

and Cryptomathic



VIII Organization

Matt Robshaw Royal Holloway, University of London, UK
Jae-Cheol Ryou Chungnam National University, Korea
Kouichi Sakurai Kyushu University, Japan
Palash Sarkar Indian Statistical Institute, India
William Whyte NTRU Cryptosystems, USA
Sung-Ming Yen National Central University, Taiwan, ROC
Moti Yung Columbia University, USA
Yuliang Zheng University of North Carolina at Charlotte, USA

Organizing Committee Chair

Ji Hong Kim Semyung University, Korea

Organizing Committee

Young Sub Koo Ministry of Information and Communication,
Korea

Jae Sung Kim KISA, Korea
Jeong Nyeo Kim Electronics and Telecommunications Research

Institute, Korea
Gwang Soo Rhee Sookmyung Women’s University, Korea
Kye Sang Lee Dongeui University, Korea
Young Ho Park Sejong Cyber University, Korea
Heekuck Oh Hanyang University, Korea
Chang Han Kim Semyung University, Korea
Kang Bin Yim Soonchunhyang University, Korea
Jae Cheol Ha Korea Nazarene University, Korea

External Reviewers

Michel Abdalla
Seigo Arita
Roberto Avanzi
Yoo-Jin Baek
Claude Barral
Olivier Benôıt
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Security by, and for, Converged Mobile Devices

Mike Reiter

CyLab. Electrical & Computer Engineering,
Carnegie Mellon University, USA

reiter@cmu.edu

Abstract. Inheriting the vast mobile phone market, converged mobile
devices (“smartphones”) are poised to become the first ubiquitous per-
sonal computing platform. In this talk we detail our vision of the smart-
phone as a universal access control device—replacing physical keys, ac-
cess tokens, etc.—and describe our efforts to address some of the tech-
nical challenges that stand in the way of this vision. Our discussion will
focus on: techniques to prevent the misuse of a stolen device; novel user
interfaces that aid in the secure use of such a device; and the design of an
access control framework for the variety of authorization scenarios that
such a device must accommodate. We also describe our efforts to deploy
this technology in a testbed on the Carnegie Mellon campus.

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Security for Ubiquitous Computing

Frank Stajano

Computer Laboratory, University of Cambridge, UK
fms27@cam.ac.uk

Abstract. Ubiquitous computing, over a decade in the making, has
finally graduated from whacky buzzword through fashionable research
topic to something that is definitely and inevitably happening. This will
mean revolutionary changes in the way computing affects our society:
changes of the same magnitude and scope as those brought about by the
World Wide Web. When throw-away computing capabilities are embed-
ded in shoes, drink cans and postage stamps, security and privacy take
on entirely new meanings. Programmers, engineers and system designers
will have to learn to think in new ways. Ubiquitous computing is not just
a wireless version of the Internet with a thousand times more computers,
and it would be a naive mistake to imagine that the traditional security
solutions for distributed systems will scale to the new scenario. Authen-
tication, authorization, and even concepts as fundamental as ownership
require thorough rethinking. At a higher level still, even goals and policies
must be revised. One question we should keep asking is simply “Security
for whom?” The owner of a device, for example, is no longer necessarily
the party whose interests the device will attempt to safeguard. Ubiqui-
tous computing is happening and will affect everyone. By itself it will
never be “secure” (whatever this means) if not for the dedicated efforts
of people like us who actually do the work. We are the ones who can
make the difference. So, before focusing on the implementation details,
let’s have a serious look at the big picture.

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, p. 2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Algebraic Attacks on Combiners
with Memory and Several Outputs�

Nicolas T. Courtois

Axalto Cryptographic Research & Advanced Security, 36-38 rue de la Princesse,
BP 45, F-78430 Louveciennes Cedex, France

courtois@minrank.org

Abstract. Algebraic attacks on stream ciphers [14] recover the key by
solving an overdefined system of multivariate equations. Such attacks
can break many LFSR-based stream ciphers, when the output is ob-
tained by a Boolean function, see [14, 15, 16]. Recently this approach has
been successfully extended also to combiners with memory, provided the
number of memory bits is small, see [1, 16, 2]. In [2] it is shown that, for
ciphers built with LFSRs and an arbitrary combiner using a subset of
k LFSR state bits, and with l inner state/memory bits, a polynomial
attack always do exist when k and l are fixed. Yet this attack becomes
very quickly impractical: already when k and l exceed about 4.

In this paper we give a simpler proof of this result from [2], and prove
a more general theorem. We show that much faster algebraic attacks
exist for any cipher that (in order to be fast) outputs several bits at a
time. In practice our result substantially reduces the complexity of the
best attack known on four well known constructions of stream ciphers
when the number of outputs is increased. We present interesting attacks
on modified versions of Snow, E0, LILI-128 and Turing ciphers.

Keywords: algebraic cryptanalysis, LFSR-based stream ciphers,
Boolean functions, combiners with memory, LILI-128, Turing cipher,
Snow, E0.

Note: An extended version is available at eprint.iacr.org/2003/125/.

1 Introduction

In this paper we study LFSR-based stream ciphers. In such ciphers there is an
inner state updated by an iterated linear function, and a stateful or stateless
nonlinear combiner that produces the output, given the inner state of the first
(linear) part. Our goal is to extend the recent very powerful and very general
algebraic attacks on stream ciphers to the case of combiners with several outputs.
Such constructions appear naturally if we want to construct ciphers being fast
in practice.

� Work supported by the French Ministry of Research RNRT Project “X-CRYPT”.

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 3–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



4 N.T. Courtois

Up till recently, for stateless combiners - using a Boolean function - most
general attacks known were so called correlation attacks, see for example [29,
23, 11, 8]. In order to resist such attacks, many authors focused on proposing
Boolean functions that will have no good linear approximation and that will
be correlation immune with regard to a subset of several input bits, see for
example [11]. Unfortunately there is a tradeoff between these two properties.
One of the proposed remedies is to use a stateful combiner. This idea is used in
the Bluetooth wireless protocol cipher E0 [6]. Yet the simplicity of E0 made it
vulnerable to advanced correlation attacks [25] and other attacks [2, 1, 16].

Recently the scope of application of the correlation attacks have been ex-
tended to consider higher degree correlation attacks with respect to non-linear
low degree multivariate functions, or in other words, allowing to exploit low de-
gree approximations [14]. The paper [14], proposes an algebraic approach to the
cryptanalysis of stream ciphers. It will reduce the problem of key recovery, to
solving an overdefined system of algebraic equations. Following [14] and [15],
all LFSR-based stream ciphers are (potentially) vulnerable to algebraic attacks.
The argument says that, if by some method, we are able to deduce from the
output bit(s), only one multivariate equation of low degree in the LFSR state
bits, then the same can (probably) be done for many other states. Each equa-
tion remains also linear with respect to any other LFSR state, and given many
keystream bits, we inevitably obtain a very overdefined system of equations (i.e.
many equations). Then we may apply the XL algorithm from Eurocrypt 2000
[35], adapted for this purpose in [14], or the simple linearization as in [15, 5], to
efficiently solve the system.

In the paper [15], the scope of algebraic attacks is substantially extended, by
showing new non-trivial methods to obtain low degree equations, that are not
low degree approximations. This gives attacks that are not correlation attacks
anymore, and are purely algebraic attacks on stream ciphers. The key ingredient
is a simple but very powerful method to reduce the degree of the equations:
instead of considering outputs as functions of inputs, one should rather study
algebraic relations between the input and output bits. They turn out to have
a substantially lower degree. The general idea of using multivariate algebraic re-
lations in cryptanalysis of various public and secret key cryptosystems is not new
and have been proposed (for very different purposes) by Patarin’95 [33], Jakob-
sen’98 [26], Courtois [13, 17, 18], and recently by Courtois-Pieprzyk in attempt
to break AES [19].

In stream ciphers, this type of attacks have been proposed first in [15] and
turn out to be quite powerful. In most cases, as already explained, due to the
recursive structure of the cipher, finding just one such multivariate relation will
give a polynomial attack on a stream cipher. Very surprisingly, this ”multivariate
relation” attack [15], extends also to combiners with memory, in particular when
the number of possible inner states is small. This can be seen as an algebraic
counterpart of previous results by Meier, Staffelbach and Golic on correlation at-
tacks on combiners with one or a few memory bits [30, 24]. For algebraic attacks,
the possibility of eliminating memory bits has been first suggested by Courtois
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and Meier in [15]. The heuristics of [15] only says that such attacks may exist,
and exhibits also a counter-example for which the current method will fail to find
a useful multivariate relation that would lead to an attack (cf. Section 7 of [15]).
Yet, considering relations that imply potentially many output bits, seems very
promising, except that finding useful relations becomes a hard problem (how
to know which outputs will be used in the relation ?). The first attack of this
type for a realistic cipher E0, has been found by careful elimination by hand,
done by Armknecht [1]. A substantial speed-up is achieved with “Fast Algebraic
Attacks” [16, 3, 28].

Even more surprisingly, Krause and Armknecht have recently proven a The-
orem, to the effect that for any combiner with k inputs and l bits of memory, an
algebraic attack of this type will always exist [2]. More precisely, they show that
required multivariate relations do always exist with degree at most �k(l+1)/2�.
It generalises an earlier theorem due to Courtois and Meier, giving degree �k/2�
for l = 0, published in [15].

With this bound on the degree from [2], starting from about l = 4 memory
bits algebraic attacks will quickly become quite impractical. In this paper we
will give a new, much simpler proof of this theorem, and we will present a
much more general theorem, for combiners that use several outputs instead
of one. For correlation attacks, this issue has been studied in [38, 8]. For algebraic
attacks, we will show that having several outputs allows to substantially lower the
degree of the relations, which in turn will dramatically decrease the complexity
of an algebraic attack on most LFSR-based stream ciphers. Our new theorem
will also give new results for combiners without memory (i.e. using just Boolean
functions).

2 Notation

We consider stream ciphers in which there is a state with a linear feedback func-
tion (for example composed of one or several LFSRs). Let K = (K0, . . . ,Kn−1)
be an n-bit secret key. Let s = K be the initial state of the LFSR or the linear
part of the cipher. At each clock t = 0, 1, 2, . . ., the new state of the linear part
is computed as s← L(s), with L being some multivariate linear transformation,
for example corresponding to the connection polynomial of an LFSR, a combi-
nation of several parallel LFSRs, or a linear cellular automaton. We assume that
L is public.

Only k out of n bits of the linear part of the cipher are used in the next part
of the cipher called the combiner. The combiner has k inputs, m outputs and
l internal memory bits. At each clock t = 0, 1, 2, . . ., the combiner outputs m

bits y(t)
0 , . . . , y

(t)
m−1, for t = 0, 1, 2, . . .. These output bits depend deterministically

on the k input bits x
(t)
0 , . . . , x

(t)
k−1 and on internal memory bits that before and

at the time t are a
(t−1)
0 , . . . , a

(t−1)
l−1 . In all generality, the second component is

described as a pair of functions F = (F1, F2) : GF (2)n+l → GF (2)m+l, that
given the current state and the input, compute the next state and the output:
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F :

{
(y(t)

0 , . . . , y
(t)
m−1) = F1(x

(t)
0 , . . . , x

(t)
k−1, a

(t−1)
0 , . . . , a

(t−1)
l−1 )

(a(t)
0 , . . . , a

(t)
l−1) = F2(x

(t)
0 , . . . , x

(t)
k−1, a

(t−1)
0 , . . . , a

(t−1)
l−1 )

The initial inner state is a(−1), exists before t = 0, and can be anything
(it is and remains unknown, the goal of the attacks being to eliminate all the
monomials in the ai).

3 Algebraic Attacks on Stream Ciphers

This Section summarizes the general idea of algebraic attacks on stream ciphers
from [14], greatly extended and developed in [15].

We recall that the linear part of our cipher (a combination of one or several
binary LFSRs) is composed of n bits s0, . . . , sn−1. At the beginning s = K (the
initial LFSR state) and at each clock of the cipher, it is updated as s← L(s), with
L being some known multivariate linear transformation. The general algebraic
attack on such stream ciphers, following closely [15] or [16], works as follows:

• Find (by some method that is very different for each cipher) one (at least,
but one is enough) multivariate relation Q of low degree d between the LFSR
state bits and some M following outputs, for example:

Q(s0, s1, . . . , sn−1, y(0), . . . , y(M−1)) = 0

• The same equation will apply to all consecutive windows of M states

Q([Lt(K)]0, [Lt(K)]1, . . . , [Lt(K)]n−1, y(t), . . . , y(t+M−1)) = 0

• The y(t), . . . , y(t+M−1) are replaced by their values known from the observed
output of the cipher.

• For each keystream bit, we get a multivariate equation of degree k in the xi.
• Due to the linearity of L, for any t, the degree of these equations is still d.
• Given many keystream bits, we inevitably obtain a very overdefined system

of equations (i.e. great many multivariate equations of degree d in the Ki).
• Then we may apply the XL algorithm from Eurocrypt 2000 [35], adapted to

equations of degree higher than 2 in [14]. Better results should be obtained
with modern Gröbner bases techniques, such as the F5 algorithm [22].

• If we dispose of a sufficient amount of keystream, (which is frequently not
very big, see [15]), the XL algorithm is not necessary and may be replaced
by the so called linearization method that is particularly simple. There are
about T ≈

(
n
d

)
monomials of degree ≤ d in the n variables Ki (assuming

d ≤ n/2). We consider each of these monomials as a new variable Vj . Given
about

(
n
d

)
+M keystream bits, and therefore R =

(
n
d

)
equations on successive

windows of M bits, we get a system of R ≥ T linear equations with T =
(
n
d

)
variables Vi that can be easily solved by Gaussian elimination on a linear
system of size T .
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• In theory, the Gaussian elimination takes time Tω with ω ≤ 2.376 [12]. How-
ever the fastest practical algorithm we are aware of, is Strassen’s algorithm
[37] that requires about 7 · T log27 operations. Since our basic operations are
over GF (2), we expect that a careful bitslice implementation of this algo-
rithm on a modern CPU can handle 64 such operations in one single CPU
clock. Thus, in all numerical complexity results given in this paper we will
give 7/64 ·T log27 as an estimation of the number of CPU clocks necessary in
the attack.

4 The Proof Method

Our general Theorem 5.1, given later, considers arbitrary combiners with k input
bits, l memory bits, and m output bits and shows the existence of equations of
some degree that lead to an algebraic attack. It generalises the main result
of [2] for arbitrary combiners with one output, i.e. with m = 1, which in turn
generalises a result obtained in [15] for memoryless combiners with single output,
i.e. for m = 1 and l = 0. Our proof technique is very different than in [2] and is
very similar to one used in [15].

In this section, in order to illustrate the simplicity of our proof technique, we
will first prove the following theorem for combiners with m = 1 and l = 1, that
is in fact a special case of both our general Theorem 5.1 given later, and of the
main theorem of [2].

Theorem 4.1 (Special Case of Krause-Armknecht Theorem).
Let F be an arbitrary fixed circuit/component with k binary inputs xi, one bit
of memory a, and one output y. (The output and the next state of the memory
bit a, depend in an arbitrary way (but deterministically) on the k inputs and
the previous memory bit.)

Then, given M = 2 consecutive states (t, t+ 1), there is a multivariate equa-
tion R of degree k in the x

(i)
j , that relates only the input and the output bits,

without any of the inner state/memory bits a(t−1), a(t), as follows:

R
(
x

(t)
0 , . . . , x

(t)
k−1; x

(t+1)
0 , . . . , x

(t+1)
k−1 ; y(t), y(t+1)

)
= 0.

Remark: In this and later theorems, we will only limit the degree of the equa-
tions in the x

(i)
j . The degree in the y

(i)
j is not important, as in an attack these

values will be fixed.

Proof: We consider 2k variables as follows: x(t)
0 , . . . , x

(t)
k−1, x

(t+1)
0 , . . . , x

(t+1)
k−1 . We

know that the following two memory bits a(t) and a(t+1) and the two out-
puts y(t), y(t+1), do depend only on these 2k variables, plus additionally on
the bit a(t−1) present in memory at the beginning. Thus, the four values a(t),
a(t+1), y(t) and y(t+1), do depend deterministically only on the 2k + 1 variables
x

(t)
0 , . . . , x

(t+1)
k−1 and a(t−1). This is summarised on the following picture:
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1�a(t−1)

� �

x
(t)
0 · · ·x(t)

k−1

�
y(t)

2�a(t)

� �

x
(t+1)
0 · · ·x(t+1)

k−1

�
y(t+1)

�a(t+1)

Fig. 1. Two successive applications of a combiner with k inputs, 1 output and 1 memory
bit

We define the following set of monomials A: we consider all the monomials of
degree up to k in the following 2k variables: the x(t)

i together with the x(t+1)
j . The

size ofA is exactly
∑k

i=0

(
2k
i

)
= 22k−1+ 1

2

(
2k
k

)
,which is strictly greater than 22k−1.

Now we will create the following matrix:

– Lines are all the possible values for x
(t)
0 , . . . , x

(t)
k−1, x

(t+1)
0 , . . . , x

(t+1)
k−1 and for

the memory bit a(t−1). There are 22k+1 lines.
– The columns correspond to products of successive monomials of A, multiplied

by any out of the 4 possible monomials in the two variables y(t), y(t+1). There
are 4 · |A| = 22k+1 + 2

(
2k
k

)
> 22k+1 columns.

– Each entry in the matrix is the value ∈ {0, 1} of the column monomial in
the case corresponding to the current line.

The number of columns is strictly greater than the number of lines. Therefore
one column must be a linear combination of other columns. Since columns are
products of monomials, and all the cases are treated, this gives a multivariate
equation, true with probability 1, for all possible entries and whatever is the
initial value of a(t−1). By construction, it does not involve memory bits a(i).
This ends the proof of Theorem 4.1. 
�
Remark 1: It can be seen that there are at least 2

(
2k
k

)
−1 such equations, which

could greatly reduce the keystream requirements of some attacks. For simplicity
we do not exploit this in the present paper.

Remark 2: In the extended version of this paper, we give another proof of
this Theorem, in which the result is stronger and there is much less monomials
present.

5 New General Result on Combiners with Memory

Similarly we prove our main result that extends the main theorem of [2].

Theorem 5.1 (Our Key Theorem).
Let F be an arbitrary fixed circuit/component with k binary inputs xi, l bits of
memory ai, and m outputs yi. Let d and M be two integers such that:
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2Mm ·
d∑

i=0

(
Mk

i

)
> 2Mk+l (KE)

Then, considering M consecutive steps/states (t, . . . t + M − 1), there is a
multivariate equation (and relation) R of degree d in the x

(i)
j , relating1 the

input and the output bits for these states

R
(
x

(t)
0 , . . . , x

(t)
k−1, . . . , x

(t+M−1)
0 , . . . , x

(t+M−1)
k−1 ;

y
(t)
0 , . . . , y

(t)
m−1, . . . y

(t+M−1)
0 , . . . , y

(t+M−1)
m−1

)
= 0.

Proof: Our proof is very similar as in the special case above(Theorem 4.1),
and also gives a new, much simpler proof of the original (but less general) result
of [2].

1
�

�

a
(t−1)
0

...

a
(t−1)
l−1

� �

x
(t)
0 · · ·x(t)

k−1

� �
y
(t)
0 · · · y(t)

m−1

2
�

�

a
(t)
0

...

a
(t)
l−1

� �

x
(t+1)
0 · · ·x(t+1)

k−1

� �
y
(t+1)
0 · · · y(t+1)

m−1

�

�

a
(t+1)
0

...

a
(t+1)
l−1

· · · · · ·

· · · · · ·

M
�

�

a
(t+M−2)
0

...

a
(t+M−2)
l−1

� �

x
(t+M−1)
0 · · ·x(t+M−1)

k−1

� �
y
(t+M−1)
0 · · · y(t+M−1)

m−1

Fig. 2. M successive applications of a combiner with k inputs, m outputs and l bits of
memory

We start with the following (cf. Fig. 2):

– We have M ·m output bits: y(t)
0 , . . . , y

(t)
m−1; . . . ; y

(t+M−1)
0 , . . . , y

(t+M−1)
m−1

– The total of M · k input bits, x(t)
0 , . . . , x

(t)
k−1; . . . ;x

(t+M−1)
0 , . . . , x

(t+M−1)
k−1 .

– We have l initial memory bits, a(t−1)
0 , . . . , a

(t−1)
l−1 .

– In all we have l + Mk input variables. The memory bits for second and
following inner states, a(t+i)

j , 0 < i < M do depend only on these l + Mk
variables.

– Thus, for our M consecutive steps/states t, . . . , t + M − 1, all the outputs
y
(t+i)
j , i < M do depend deterministically only on the l+Mk variables listed

above.

1 Again, without any of the inner state/memory bits a
(i)
j .
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We define the following set of monomials A: we consider all the monomials of
degree up to d in all the Mk variables x(t+i)

i . The size of A is exactly
∑d

i=0

(
Mk

i

)
.

Now we will create the following matrix:

– Lines are all the possibilities for the l+Mk input variables. There are 2Mk+l

lines.
– The columns are all products of monomials of A, multiplied by any of the

possible monomials in the y
(t+i)
j . There are 2Mm · |A| = 2Mm ·

∑d
i=0

(
Mk

i

)
columns.

– Each entry in the matrix is the value ∈ {0, 1} of the column monomial in
the case corresponding to the current line.

The key argument is the same as before. The number of columns in our
matrix should be strictly greater than the number of lines, and the requirement
to achieve this, is precisely our previous assumption:

2Mm · |A| = 2Mm ·
d∑

i=0

(
Mk

i

)
> 2Mk+l

Therefore we get at least one non-trivial linear combination of columns (i.e.
monomials) that is zero, for all possible entries and all possible initial (memory)
states. This multivariate equation is (with the monomials we have chosen) ex-
actly of the form required by our Theorem 5.1, and this ends the proof. 
�

6 Application of Theorem 5.1 to Stream Cipher
Cryptanalysis

Theorem 5.1 and other results of this paper, allow to find equations and execute
the algebraic attack described in Section 3. In some cases this Theorem would
work even when d = 0, when other variables are such that (KE) holds, but
the equations of degree 0 in the x

(i)
j will only contain the y

(i)
j , and cannot be

used to recover the secret key of a cipher (though can probably be exploited to
predict the future keystream). For simplicity, in this paper we will always apply
Theorem 5.1 for d ≥ 1.

6.1 The Complexity of the Attacks Based on Theorem 5.1

Our algebraic attack on stream ciphers has two main steps:

Step 1. Find the equations by Gaussian reduction on the matrix given in
the proof of the Theorem. This step requires about 2ω(Mk+l) computations.

Step 2. From the Step 1. for each keystream bit, we get one equation of
degree d in the x

(i)
j (with d ≥ 1). The x

(i)
j are known linear combinations of

the key bits Ki and these equations are also of degree d in the key bits. When
the x

(i)
j are replaced by their actual values obtained from the keystream, we
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get multivariate equations that only contain monomials of degree d in the key
bits Ki. Then, given about T =

(
n
d

)
keystream bits, we solve these equations

by linearization in about Tω ≈ 2ωd log n computations.

In some cases (when M is small), the complexity of the first step may be negli-
gible compared to the second step (cf. Section 7.5 and examples in Table 2). In
some cases the complexity of the first step may always be very large (examples
in Table 3). In other cases there will be a tradeoff between the complexity of the
two steps, see Section 7.6.

Remark: The complexity of replacing the x
(i)
j in the equations of Step 1., by

the relevant (known) linear combinations of the key bits Ki (cf. Section 3) has
been neglected for simplicity (it can be seen to be smaller than the maximum of
complexities given above).

6.2 Important Remark

It is important to understand that, in general, this Theorem 5.1 does not show
that the algebraic attack will always work. There are some (very special) cases
in which it will not work as well as expected from our Theorem 5.1. We will see
this on an example.

Assume that we have a component that has m = 10 outputs, and we artifi-
cially add 10 more outputs computed as some 10 Boolean functions of the ”real”
outputs:

(y10, . . . , y19) = (F10(y0, . . . , y9), . . . , F19(y0, . . . , y9)) .

Now we have (in theory) l = 20, and from the formula (KE) we see easily that
in most cases our Theorem 5.1 will give for m = 20 equations of substantially
lower degree than for m = 10. These equations are real (their existence is proven).
Yet these equations will not be useful in an attack. For example there will be
equations such as y10 = F10(y0, . . . , y9), and a great many of derived equations:
different linear combinations of these equations multiplied by many different
monomials. All these equations are in a sense ”artificial” and unfortunately they
will all reduce to 0 later in the attack, after when the y0, . . . , y19 are replaced by
their values obtained from the output of the cipher.

This example shows that in some very special cases, the algebraic attack
will probably not work for the degree given by our Theorem 5.1. Yet, it will
probably work perfectly well for the degree corresponding to the ”real” value of
l = 10. It is conjectured that when the output bits are fully independent and
not related by some algebraic relation, and if the output takes all the possible
2m values, the attack should always work, for every equation obtained from the
above Theorem 5.1. Moreover, in practice, the difference between the number
of lines and the number of columns, in the matrix (the one we generated to
prove the theorem) will be big, and there will be not only one but, (for example)
thousands of equations obtained. The chances that the attack would not work
for all of them, are negligible.
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7 How to Choose Parameters in Theorem 5.1

In the previous Section 6 we showed that it is straightforward to use Theorem
5.1 to design an algebraic attack on stream ciphers following Section 3. Another
question is to choose parameters in such a way that the complexity of the attack
will be optimal. For this we need to study the behaviour of the key inequality
(KE): 2Mm ·

∑d
i=0

(
Mk

i

)
> 2Mk+l.

In order to minimise the complexity of Step 2. of the attack (cf. Section 6.1)
we simply need to choose M that gives the smallest possible d. Yet, as we will
see later (in particular when m ≥ k, cf. Section 7.6) things are not always as
simple to optimise the Step 1.

7.1 Asymptotic Behaviour of (KE) and Theorem 5.1

In order choose (M,d) that satisfy (KE): 2Mm ·
∑d

i=0

(
Mk

i

)
> 2Mk+l we have

two cases:

A. If m < k, when M →∞ we have no hope to satisfy the key inequality (KE).
In this case we conjecture that the best attack (and the smallest degree d)
will be achieved taking M as small as possible (or close to it). This case is
studied in Section 7.5.

B. If m ≥ k then when M →∞ we can always satisfy the key inequality (KE).
In this case we should take M as big as possible, but not too big because the
complexity to find the equations required by the attack (Step 1. cf. Section
6.1) could become bigger than the complexity of the attack itself (Step 2.).
This case is studied in Section 7.6.

Remark: For the (less general) theorem from [2], there is only the case A., because
m = 1.

7.2 Necessary Condition for (KE) and Theorem 5.1

We want to solve (KE) given the values m and l. Since one always has∑d
i=0

(
Mk

i

)
≤ 2Mk, we cannot have Mm ≤ l, and this gives a necessary con-

dition Mm > l, hence Mm ≥ l + 1 which gives

M ≥ �(l + 1)/m�. (C)

7.3 Sufficient Conditions for (KE) and Theorem 5.1

Conversely, it is easy to see that, each time M ≥ �(l+1)/m�, we have Mm ≥ l+1,
and the formula (KE) will be satisfied for some d ≤Mk.

Sufficient Condition 1: For any given values m and l, and for any M ≥
�(l+1)/m�, the formula (KE) will be satisfied by some d being at most d ≤Mk.

When the minimum M = �(l+1)/m� is chosen, we can use d = k ·�(l+1)/m�,
but in fact one can do better. A smaller d can be achieved for this same (minimal)
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M . Indeed, since M is an integer, the minimal value of M does not imply that we
need to take a maximal value for d. From (KE) we get the following condition:

d∑
i=0

(
Mk

i

)
> 2Mk · 2l−m·�(l+1)/m�

It can be seen that d = �kM/2� = �k�(l + 1)/m�/2� is always sufficient.
Indeed we always have:

d∑
i=0

(
Mk

i

)
> 2Mk/2.

And we also always have:

1
2
≥ 2l−m·�(l+1)/m�.

Sufficient Condition 2: From the above, we get immediately the following
Theorem:

Theorem 7.4 (Generalised Krause-Armknecht Theorem).
Let F be an arbitrary fixed circuit/component with k binary inputs, l bits
of memory, and m outputs. Then, considering M = �(l + 1)/m� consecutive
steps/states (t, . . . t+M − 1), there is a multivariate relation, involving only the
input bits (the x

(i)
j ) and the output bits (the y

(i)
j ) for these states, and with

degree �kM/2� = �k�(l + 1)/m�/2� in the x
(i)
j .

Remark: If we put m = 1 in this Theorem 7.4 (1 output bit), we obtain exactly
the main result of [2]. This in turn generalises the theorem given in [15], which is
exactly the above result with m = 1 and l = 0, i.e. the case of Boolean functions
that are memoryless combiners with 1 output bit.

7.5 How to Use Theorem 5.1 When m < k

All the remarks above are true both for m < k and for m ≥ k, however we expect
that (cf. Section 7.1) choosing the smallest possible M should be optimal (or close
to optimal) only when m < k. In some cases, the choice of Theorem 7.4 above:
M = �(l + 1)/m� and d = �kM/2� will be optimal for Theorem 5.1. However
in most cases, there will be a non-zero difference between M = �(l + 1)/m� = 1
and (l + 1)/m that will imply that 1

2  2l−m·�(l+1)/m� in the derivation of
Theorem 7.4 above. In such cases, it seems that the best method2 is to take still
M = �(l+1)/m� (or very close to this) and try to the lowest d that satisfies the
key requirement of Theorem 5.1 which is 2Mm

∑d
i=0

(
Mk

i

)
> 2Mk+l.

2 Again when m < k, if in similar case m ≥ k, it could be even better to increase M ,
cf. Section 7.6.
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The Complexity of the Attacks Based on Theorem 7.4

Let d = �k�(l + 1)/m�/2� be the degree obtained in Theorem 7.4. Following
Section 6.1, the complexity of the first step of the attack (to find the equations)
will be about 2ω(Mk+l) = 2ω(k�(l+1)/m�+l) and this is roughly

(
2ω(d/2+l)

)
. For the

second step the complexity will be about
(
n
d

)ω ≈ ndω (see Section 3). Though
this d is not always the best degree we will get and use in an attack, we expect
that when m < k the complexity of the first step of the attack will frequently
be substantially smaller than for the second step (cf. examples in Table 2).

7.6 How to Use Theorem 5.1 When m ≥ k

If m ≥ k, then when M →∞ we can always satisfy the key inequality (KE).

2Mm ·
d∑

i=0

(
Mk

i

)
> 2Mk+l (KE)

This fact is obvious when m > k and still true when m = k, because then
it is sufficient to take M = �(l + 1)/k� and d = Mk. (Remark: here M cannot
be smaller than �(l + 1)/k� because following Section 7.2, M ≥ �(l + 1)/m� and
here it is equal to �(l + 1)/k�.)

It can be seen that in all cases when m ≥ k, when M → ∞, then d may be
an arbitrarily small integer > 0 (i.e. we will even get d = 1 when M is large
enough).

In practice, we should take M as big as possible, but not too big because the
complexity to find the equations (Step 1 of the attack) will become too big: it
is following Section 6.1 about 2ω(Mk+l) computations. (While Step 2. requires
about

(
n
d

)ω ≈ 2ω log2 nd/d! )
In order to get the best attack, we need to minimise 2ω(Mk+l) + 2ω log2 nd/d!

under the condition
(
Mk
d

)
> 2M(k−m)+l. The behaviour of these complexities is

not simple, because M ≥ �(l + 1)/m� and must be an integer. Our experience
shows that sometimes M = �(l+1)/m� is optimal, sometimes it isn’t. Sometimes
the best attack will be when both complexities are about equal, sometimes the
first step will always take much more time than the second step (even for the
minimal M = �(l + 1)/m�). Some relevant examples are given in Table 3 and
Table 2.

7.7 Summary or How to Design the Best Algebraic Attack

In order to find the fastest attack with Theorem 5.1, we recommend to proceed
as follows:

– First we try to apply Theorem 7.4, and get a (working) solution (M,d).
– Then with same M , take the lowest d such that the key condition (KE) still

holds.
– In addition, when m ≥ k, as long as the complexity of the first step of the

attack is less than the complexity of the second step, we may try to increase
M , compute the lower possible d, and see if we get a better result (Cf. Section
7.6).
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8 Application to Some Known Stream Cipher
Constructions

8.1 Application to Modified LILI-128

Our attack can be applied to the second component of LILI-128 cipher [36]: we
have an LFSR with n = 89 bits, and a Boolean function with k = 10 inputs.
There is no memory bits (m = 0). In [15], a generic attack on LILI-128 is given,
that requires n5ω computations, (whatever is the Boolean function used). From
our Theorem 5.1 we see that if in LILI we use simultaneously several Boolean
functions, the complexity of the generic attack will substantially decrease. It will
be

(
n
d

)ω with d given by Theorem 5.1. The resulting degree d quickly decreases
with m:

m 1 2 3 5 7
d 5 4 3 2 1

Following closely [15], each of these attacks on the second component of
LILI-128 can be transformed into an attack on the whole LILI-128 cipher in
two possible ways. Either (A:) the complexity is multiplied by 239 (one needs to
guess the 39-bit state of LFSR in the clocking component), or (B:) the keystream
requirements are multiplied by about 239 (at each step the first component is
clocked 239− 1 times). See [15] for more details. This gives the following generic
attack on modified LILI-128 with several outputs:

Table 1. Generic attacks on modified LILI-128 with m outputs

m 1 2 3 5 7

M 1 1 1 1 1

d 5 4 3 2 1

keystream 225 264 221 260 217 256 212 251 26 245

time(Step 1.) 225 225 225 225 225 225 225 225 225 225

time(Step 2.) 2107 268 295 256 283 244 269 230 254 215

We see that for ciphers that combine LFSR and Boolean functions, such
as LILI-128, if we replace a Boolean function by a component that outputs a
few bits at a time, the security will be dramatically reduced, and this for any
component (worst case).

Note: There are attacks on LILI-128 itself, that are faster than the generic
attack given here for m = 1, see [15, 16]. However for some of the modified
versions of LILI-128 with many outputs, our attack will probably be the fastest
general attack known on such ciphers.

8.2 Application to Modified E0

For the basic component of the stream cipher E0, we have n = 128, k = 4, l = 4,
m = 1. The Krause-Armknecht theorem gives d = 10, see [2]. With our Theorem
5.1 we get the following results:
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Table 2. Generic attacks on modified E0 with m outputs

m

M

d

keystream

time(Step 1.)

time(Step 2.)

1 2 3 4 5 6

5 3 2 3 1 1

10 5 3 2 2 1

248 228 218 213 213 27

264 242 230 230 219 219

2131 276 249 233 233 216

We see that for ciphers that combine LFSRs and a combiner with 4 inputs,
and 4 memory bits, such as E0, if one outputs several bits at a time (computed
in an arbitrary way), the complexity of the attack and the keystream amount
required dramatically decreases.

Note: Here we treat the worst case by a generic method, for E0 itself there
are attacks faster than what we get for m = 1, see [2, 1, 16]. However most of
modified versions of E0 with many outputs, our attack is probably the fastest
attack known.

8.3 Application to Snow and Modified Versions of Snow

We consider both Snow and Snow 2.0. that have an LFSR with n = 512 bits
that is connected to a stateful combiner that outputs m = 32 bits at a time. We
obtain:

1. In Snow 1.0. we have k = 64, l = 64 and m = 32. With Theorem 7.4 we get
M = �(l + 1)/m� = 3 and d = �kM/2� = 96 that can be lowered to d = 54
and still satisfies the requirements of the Theorem 5.1 (for reasons explained
in Section 7.5).

2. Similarly, in Snow 2.0. we have k = 96, l = 64 and m = 32. With Theorem
7.4 we get M = �(l+1)/m� = 3 and d = �kM/2� = 144 that can be lowered
to d = 92.

These degrees are by far too large to hope for practical attacks on Snow.

Algebraic Attacks on Modified Snow
We will look how the complexity of the attack on Snow 1.0. and 2.0. when
the number of output bits increases. This could arise if, in order to build a
faster cipher, we add to Snow some arbitrary S-boxes or Boolean functions
that derive some additional output bits, from the k inputs and the l memory
bits of Snow combiner. Since the size of LFSR is 512 bits, an attack will be
considered significant if it takes less than 2512. (We study academic attacks on
modified Snow, and do not claim to break the actual Snow in which the key is
expanded from a shorter key of 128 or 256 bits.)

We see that when the number of outputs increases, the security of the cipher
collapses. The complexity of the first step of the attack may be < 2512 but
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Table 3. Generic attacks on modified Snow ciphers with m outputs

Snow 1.0.
n = 512, l = 64, k = 64

m 32 64 65 80 100 120

M 3 2 1 1 1 1

d 54 16 32 16 7 2

keystream 2245 299 2169 299 251 217

time(Step 1.) 2715 2536 2356 2356 2356 2356

time(Step 2.) 2684 2276 2471 2276 2139 245

Snow 2.0.
n = 512, l = 64, k = 96

m 32 64 65 120 150

M 3 2 1 1 1

d 92 35 48 9 2

keystream 2344 2352 2226 262 217

time(Step 1.) 2985 2715 2446 2446 2446

time(Step 2.) 2962 2503 2631 2172 245

remains very high. However, one should not think that Snow with added outputs
will be very secure: we only gave here the complexity of the generic method to
find a useful equation. For a specific cipher, in many cases, there could be a
much faster method that exploits the description of the cipher.

Note: Our attacks are very general. For the original cipher Snow 1.0. itself,
much faster attacks are known, see [10, 7, 27].

8.4 Application to a Modified Turing Cipher

Turing is a stream cipher proposed in 2003 by Rose and Hawkes [34]. It is a
new kind of stream cipher which outputs many bits at a time, and in which the
combiner is key-dependent. We have n = 17 ∗ 32 = 544, m = 5 ∗ 32 = 160, l = 0
(no memory), k = 9∗32 = 288. These values are very large and any attack faster
than the exhaustive search of all possible states 2n = 2544 should be considered
as interesting.

We will study a modified version of Turing, in which the combiner is NOT
key-dependent. Then with Theorem 7.4 we get M = �(l + 1)/m� = 1 and d =
�kM/2� = 160 that can be lowered to d = 37 and still satisfies the requirements
of the Theorem 5.1 (for reasons explained in Section 7.5). This degree d = 37 is
still by far too large to give any hope for practical attacks on Turing. We get an
attack on modified Turing with time(Step 1.) = 2805 and time(Step 2.) = 2534.
The second step is faster then the exhaustive search which would be in 2544. The
first step can also probably be improved to be faster than 2544.

9 Extension to Ciphers with Unknown or Key
Dependent Combiners

The results of this paper can be also applied to ciphers in which the combiner is
only partially known (or key dependent). For example, at some place inside the
combiner we XOR the data with the secret key. Or, we use Boolean functions
with some coefficients being unknown or key-dependent. Let l′ be the total num-
ber of unknown bits in the combiner with parameters (k, l,m). Then we may just
consider this cipher as a cipher in which the combiner is known with parameters
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(k, l + l′,m): we just have l′ additional memory bits that are not updated, they
remain the same all the time. All the attacks described in the present paper will
apply and when l′ is not too big, or when m ≥ k, they should be (relatively)
efficient general attacks on stream ciphers.

10 Conclusion

In this paper we studied generic algebraic attacks on stream ciphers built with
an LFSR and a combiner having a small number of memory bits. Our main result
is that the complexity of algebraic attacks on stream ciphers will substantially
decrease if the cipher outputs more bits at a time. We substantially extended and
gave a much simpler proof of the important Theorem of [2]. Our new Theorem
can be applied to substantially decrease the complexity of the best worse-case
(generic) algebraic attack (whatever is the internal structure of the combiner
component) for modified versions of four well known stream ciphers E0, LILI-
128, Snow and Turing.

Acknowledgements. Many thanks to the reviewers of Crypto 2004, SAC 2004
and ICISC 2004 for careful reading and valuable comments.
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Abstract. By considering the number of independent variables, we
present a new method for finding an upper bound on the maximum dif-
ferential probability (MDP) for r(r ≥ 2)-round substitution-permutation
networks (SPNs). It first finds an upper bound for 2-round SPNs and then
uses a recursive technique for r(r ≥ 3)-round SPNs. Our result extends
and sharpens known results in that it is more effective for calculating
MDP for r(r ≥ 3)-round SPNs and applicable to all SPNs. By applying
our method to ARIA, we get an estimated bound of 1.5× 2−98 on MDP
for 6-round ARIA.

Keywords: Cryptography, Differential cryptanalysis, Linear cryptanal-
ysis, Substitution-permutation networks, Branch number, Independent
variables, AES, ARIA.

1 Introduction

The substitution-permutation network (SPN) is one of the most widely used
structures in block ciphers. The Advanced Encryption Standard (AES) [6] and
ARIA [12] have the SPN structure. The security of SPNs against differential
cryptanalysis (DC) [2] and linear cryptanalysis (LC) [13] depends on the max-
imum differential probability (MDP) and the maximum linear hull probability
(MLHP), respectively.

Many researchers obtained upper bounds on the MDP and MLHP for SPNs
(for 2-round SPNs, see Hong et al. [7], Kang et al. [8], and Chun et al. [3], for
r(r ≥ 2)-round SPNs, see Keliher et al. [9, 10] and Park et al. [15, 16]). Keliher

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 21–32, 2005.
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et al. [9, 10] proposed an algorithm for finding an upper bound on the MLHP for
SPNs. They applied the algorithm to AES, and obtained an upper bound of 2−92

when 9 or more rounds are approximated. The running time is 200,000 hours on
a single Sun Ultra 5. Park et al. [15, 16] proposed a method for upper bounding
on the MDP and MLHP for AES-like structures. By applying the method to
AES, they obtained that the MDP and MLHP for 4-round AES are bounded
by 1.144× 2−111 and 1.075× 2−106, respectively. Although the method of Park
et al. [15, 16] produces good upper bounds for AES-like structures, it does not
apply to other SPNs (for example ARIA).

To find upper bounds on the MDP and MLHP for SPNs, one first finds upper
bounds for 2-round and then use a recursive technique for 3 or more rounds.
Thus it is very important to find effective upper bounds for 2-round SPNs. The
effective upper bounds mean that they can be used to find good upper bounds
for r(r ≥ 3)-round SPNs. It seems that the upper bounds of Chun et al. [3]
are the best known upper bounds on the MDP and MLHP for 2-round SPNs.
Although the upper bounds of Chun et al. [3] were used to find good upper
bound for 4-round AES by Park et al. [16], the upper bounds are not effective
for general SPNs (see Theorem 6).

In this paper, we obtain a new method for finding upper bounds by consider-
ing the number of independent variables. We present only the method for finding
an upper bound on the MDP because the method for finding an upper bound on
the MLHP can be obtained similarly. Our results consist of three parts. Firstly,
we improves the upper bounds of Chun et al. [3] on the MDP for 2-round SPNs
by the factor of pα where p is the MDP for s-boxes and α is a nonnegative
integer depending on input/output differences, the number of independent vari-
ables. Secondly, we present an efficient recursive formula for the upper bound
of the MDP for r(r ≥ 3)-round SPNs using the number of independent vari-
ables. Finally, by applying our method to ARIA, we get an estimated bound of
1.5× 2−98 on MDP for 6-round ARIA. It is expected that the full running time
will be about 256 days on a single 2.6 GHz PC.

2 Preliminaries

Let S : Zm
2 → Zm

2 be a bijective mapping. For any given a, b, Γa, Γb ∈ Zm
2 , the

differential probability and linear (hull) probability for the S are defined as

DPS(a, b) =
#{x ∈ Zm

2 |S(x)⊕ S(x⊕ a) = b}
2m

and

LPS(Γa, Γb) =
(#{x ∈ Zm

2 |Γa • x = Γb • S(x)}
2m−1

− 1
)2

,

respectively, where x • y denotes the parity (0 or 1) of bitwise product of x and
y. The a and b are called the input difference and output difference, respectively,
for the S. Also, the Γa and Γb are called the input mask and output mask,
respectively, for the S.
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One round of SPNs consists of three layers of key addition, substitution,
and linear transformation, see Fig. 1. Substitution layer is made up of n small
nonlinear substitutions referred to s-boxes. In r(r ≥ 2)-round SPNs, the linear
transformation of the last round is omitted because it has no cryptographic
significance. Thus a 2-round SPN can be described as in Fig. 2.

Linear Transformaion (L)

S1 S2 Sn

…

…

… Key

Fig. 1. One Round of SPN

Linear Transformaion (L)

S1 S2 Sn

…

…

… Key

S1 S2 Sn
…

Key

Fig. 2. 2-Round SPN

The s-boxes and linear transformation (denoted by L) should be invertible
in order to decipher. Therefore we assume that all s-boxes are bijective map-
pings defined on Zm

2 . We also assume that the round keys are independent and
uniformly distributed.

A differentially active s-box is defined as an s-box given a non-zero input
(and output) difference, and a linearly active s-box is defined as an s-box given
a non-zero output (and input) mask.

The MDP and MLHP for s-boxes are denoted by p and q, respectively, i.e.,

p = max
1≤i≤n

max
a�=0,b

DPSi(a, b), q = max
1≤i≤n

max
Γa,Γb �=0

LPSi(Γa, Γb).

The linear transformation L : (Zm
2 )n → (Zm

2 )n can be represented by an
n× n matrix M = (mij)n×n, where mij ∈ Zm

2 , i.e., L(x) = Mx = (
∑n

j=1 m1j ◦
xj ,

∑n
j=1 m2j ◦xj , · · · ,

∑n
j=1 mnj ◦xj) where x = (x1, · · · , xn) ∈ (Zm

2 )n and ◦ is
a multiplication in the finite field Zm

2 .
The branch number of the linear transformation L on the DC is defined as

βd = min
x�=0

{wt(x) + wt(L(x))},

where, for x = (x1, · · · , xn) ∈ (Zm
2 )n, wt(x) = #{i|1 ≤ i ≤ n, xi �= 0}. When

x = (x1, · · · , xn) ∈ (Z2)n, wt(x) is equal to the Hamming weight of x.
If a is the input difference of L, then the output difference is L(a) [4]. Thus

the branch number βd is also defined as the minimum number of differentially
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active s-boxes in the 2-round SPN [5]. Similarly, the branch number βl of L
on the LC is defined as the minimum number of linearly active s-boxes in the
2-round SPN [5]. The branch numbers βd, βl are used for finding upper bounds
on MDP and MLHP for r(r ≥ 2)-round SPNs, respectively.

The following are used to reduce the computation time of MDP, MLDP for
r(r ≥ 2)-round SPNs and are important ingredients of our new method. For
x = (x1, · · · , xn), the pattern of x, γx, is defined as γx = (γ1, · · · , γn) ∈ (Z2)n,
where γi = 0 if xi = 0, and γi = 1 if xi �= 0. For δ, ρ ∈ (Z2)n, we define BL(δ, ρ)
as

BL(δ, ρ) = {x = (x1, · · · , xn)|γx = δ, γL(x) = ρ}.

Since wt(x) = wt(a) for x ∈ BL(γa, γb), BL(γa, γb) has wt(a) variables when
BL(γa, γb) �= ∅. Due to the condition γL(x) = ρ, there are some linear depen-
dencies among these variables. The number t(δ, ρ) is defined as the size of the
maximal set of variables in BL(δ, ρ) without linear dependencies and is called
the number of independent variables.

Example 1. Let the linear transformation L : (Zm
2 )4 → (Zm

2 )4 be defined by

L(x) = L(x1, x2, x3, x4) =

⎛⎝0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎠⎛⎝x1
x2
x3
x4

⎞⎠ .

Then BL(δ, ρ) = ∅ if wt(δ) + wt(ρ) < βd = 4. When δ = ρ = (0, 0, 1, 1) = 3x,
BL(δ, ρ) = {(0, 0, x3, x4)|x3 = x4, x3 �= 0} and so t(δ, ρ) is 1.

3 New Upper Bound for r-Round SPNs

In this section, we give a new method for finding an upper bound on the MDP
for r-round SPNs.

The r-round differential probability with input difference a = (a1, · · · , an)
and output difference b = (b1, · · · , bn) is denoted by DPr(a, b). In particu-
lar, DP1(a, b) denotes the differential probability for 1-round without the lin-
ear transformation. Therefore DP1(a, b) =

∏n
i=1 DPSi(ai, bi). The maximum

r-round differential probability with input difference pattern δ and output dif-
ference pattern ρ is denoted by dpr(δ, ρ). Namely,

dpr(δ, ρ) = max
γa=δ,γb=ρ

DPr(a, b).

We first find an upper bound for 2-round SPNs. The differential probability
DP2(a, b) is given as

DP2(a, b) =
∑

x

( n∏
i=1

DPSi(ai, xi)
)( n∏

j=1

DPSj (yj , bj)
)
,
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where y = L(x), x = (x1, · · · , xn), and y = (y1, · · · , yn). Since the s-boxes are
bijective, DPSi(u, v) = 0 if u = 0 and v �= 0, or u �= 0 and v = 0. Therefore the
DP2(a, b) can be written by

DP2(a, b) =
∑

x∈BL(γa,γb)

( ∏
i∈χ(γa)

DPSi(ai, xi)
)( ∏

j∈χ(γb)

DPSj (yj , bj)
)
,

where, for δ = (δ1, · · · , δn) ∈ (Z2)n, χ(δ) = {i|1 ≤ i ≤ n, δi = 1}. To find an
upper bound of dp2(γa, γb), we need the following lemma which is proved in
Chun et al. [3].

Lemma 2. Let {x(j)
i }n

i=1, 1 ≤ j ≤ m, be sequences of real numbers. Then the
following inequality is satisfied.

n∑
i=1

|x(1)
i · · ·x(m)

i | ≤ max
{ n∑

i=1

|x(1)
i |m, · · · ,

n∑
i=1

|x(m)
i |m

}
.

Theorem 3. Let L : (Zm
2 )n → (Zm

2 )n be the linear transformation used in the
2-round SPN. Then dp2(γa, γb) is bounded by pwt(a)+wt(b)−βd−t+1Q, where t is
the number of independent variables in BL(γa, γb), and Q is defined by

Q = max

⎧⎨⎩ max
1≤i≤n

1≤u≤2m−1

2m−1∑
j=1

{DPSi(u, j)}βd , max
1≤i≤n

1≤u≤2m−1

2m−1∑
j=1

{DPSi(j, u)}βd

⎫⎬⎭ .

Proof. Let wt(a) = k and wt(b) = l. Without loss of generality, we assume that
a1 �= 0, · · · , ak �= 0, ak+1 = 0, · · · , an = 0, b1 �= 0, · · · , bl �= 0, bl+1 = 0, · · · , bn =
0. Then BL(γa, γb) is the set of solutions of the following system.

x1 �= 0, · · · , xk �= 0, xk+1 = 0, · · · , xn = 0,
y1 �= 0, · · · , yl �= 0, yl+1 = 0, · · · , yn = 0,

where y = L(x). Then DP2(a, b) can be written by

DP2(a, b) =
∑

(x1,··· ,xk,0,··· ,0)∈BL(γa,γb)

( k∏
i=1

DPSi(ai, xi)
)( l∏

j=1

DPSj (yj , bj)
)
.

For convenience of notation, we assume that x1, · · · , xt are independent variables
in BL(γa, γb). Then the other k − t variables are generated by these indepen-
dent variables. That is, xt+1, · · · , xk in BL(γa, γb) are generated by x1, · · · , xt.
Also y1, · · · , yl are generated by x1, · · · , xt. When t − 1 independent variables
x1, · · · , xt−1 are fixed, there exist many variables depending xt. To specify such
variables, we define U, V as

U = {i|1 ≤ i ≤ k, xi depends on xt},
V = {j|1 ≤ j ≤ l, yj depends on xt}.
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Let α = #U + #V. Note that α ≥ βd by the definition of the branch number.
By defining U c = {1, · · · , k} − U, V c = {1, · · · , l} − V, we have that

∑
(x1,··· ,xk,0,··· ,0)∈BL(γa,γb)

( k∏
i=1

DPSi(ai, xi)
)( l∏

j=1

DPSj (yj , bj)
)

≤
∑

x1,··· ,xt−1

(
∏

i∈Uc

DPSi(ai, xi))(
∏

j∈V c

DPSj (yj , bj))Φt.

where Φt =
∑

xt
(
∏

i∈U DPSi(ai, xi))(
∏

j∈V DPSj (yj , bj)). From Lemma 2, we
obtain that∑

xt

(
∏
i∈U

DPSi(ai, xi))(
∏
j∈V

DPSj (yj , bj))

≤ max
{

max
1≤i≤n

1≤u≤2m−1

2m−1∑
j=1

{DPSi(u, j)}α, max
1≤i≤n

1≤u≤2m−1

2m−1∑
j=1

{DPSi(j, u)}α
}

≤ pα−βdQ.

Therefore

DP2(a, b) ≤ pα−βdQ
∑

x1,··· ,xt−1

(
∏

i∈Uc

DPSi(ai, xi))(
∏

j∈V c

DPSj (yj , bj))

≤ pα−βdQp
Uc−(t−1)+
V c ∑
x1,··· ,xt−1

(
t−1∏
i=1

DPSi(ai, xi))

= pk+l−βd−t+1Q.

Since the upper bound pk+l−βd−t+1Q depends only on γa and γb, it is also an
upper bound of dp2(γa, γb). 
�

The following theorem gives an upper bound on the number of independent
variables in BL(γa, γb).

Theorem 4. Let L : (Zm
2 )n → (Zm

2 )n be a linear transformation with its as-
sociated matrix A = (aij)n×n. Then the number t of independent variables in
BL(δ, ρ) is less than or equal to wt(δ) + wt(ρ)− βd + 1.

Proof. Assume BL(δ, ρ) is generated by x1, · · · , xt. Consider the input difference
a ∈ BL(δ, ρ) which is generated only by x1. Then wt(a) ≤ wt(δ) − (t − 1) and
wt(L(a)) ≤ wt(ρ). Since wt(a) + wt(L(a)) ≥ βd, we have

βd ≤ wt(a) + wt(L(a)) ≤ wt(δ)− (t− 1) + wt(ρ).


�

By using Theorems 3 and 4, we can obtain the following corollary which is
proved by Chun et al. [3]. So our upper bound for the 2-round SPNs in Theorem 3
improves and generalizes the upper bound of Chun et al. [3].
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Corollary 5. Let L : (Zm
2 )n → (Zm

2 )n be the linear transformation used in the
2-round SPN. Then dp2(γa, γb) is bounded by Q.

An upper bound of dpr(γa, γb) can be easily obtained by the following theo-
rem. The maximum of upper bounds of dpr(γa, γb), 0 < γa, γb < 2n, is an upper
bound on the MDP for the r-round.

Theorem 6. Let L : (Zm
2 )n → (Zm

2 )n be the linear transformation used in the
SPN. Then an upper bound of dpr(γa, γb) is obtained recursively as follows.

dpr(γa, γb) ≤
{
pwt(a)+wt(b)−βd−t(γa,γb)+1Q, if r = 2,∑

δ∈(Z2)n dpr−1(γa, δ)pwt(b)−t(δ,γb), if r ≥ 3,

where t(δ, ρ) is the number of independent variables in BL(δ, ρ).

Proof. When r = 2, the result follows from Theorem 3. Now let r ≥ 3. Then

DPr(a, b) =
∑

x

DPr−1(a, x)DP1(y, b)

=
∑

δ∈(Z2)n

∑
x:γx=δ

DPr−1(a, x)DP1(y, b)

≤
∑

δ∈(Z2)n

dpr−1(γa, δ)
∑

x:γx=δ

DP1(y, b)

=
∑

δ∈(Z2)n

dpr−1(γa, δ)
∑

x∈BL(δ,γb)

DP1(y, b)

where y = L(x), x = (x1, · · · , xn) and y = (y1, · · · , yn). Note that L(BL(δ, ρ)) =
{y|γy = ρ, γL−1(y) = δ}. It is easy to see that the number of independent variables
in BL(δ, ρ) is equal to the number of independent variables in L(BL(δ, ρ)). Let
yj1 , · · · , yjt

be the independent variables in L(BL(δ, γb)). Then we have that∑
x∈BL(δ,γb)

DP1(y, b) =
∑

y∈L(BL(δ,γb))

DP1(y, b)

=
∑

y∈L(BL(δ,γb))

∏
i∈χ(γb)

DPSi(yi, bi)

≤ pwt(b)−t
∑

yj1 ,··· ,yjt

DPSj1 (yj1 , bj1) · · ·DPSjt (yjt
, bjt

)

= pwt(b)−t.

It follows that DPr(a, b) ≤
∑

δ∈(Z2)n dpr−1(γa, δ)pwt(b)−t(δ,γb). Since the upper
bound of DPr(a, b) depends only on γa and γb, it is also an upper bound of
dpr(γa, γb). 
�
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4 Application of Our Upper Bound to ARIA

In this section, we compute an upper bound on the MDP for r-round ARIA.
ARIA [12] is a SPN block cipher with parameters n = 16,m = 8, βd = 8, p = 2−6.
The linear transformation L of ARIA is a 16× 16 binary matrix. To describe it
more simple, we denote column vector M i by hexadecimal.

M1 = 1ac6x, M2 = 25c9x, M3 = 4a39x, M4 = 8536x,

M5 = a493x, M6 = 5863x, M7 = a16cx, M8 = 529cx,

M9 = c925x, M10 = c61ax, M11 = 3685x, M12 = 394ax,

M13 = 6358x, M14 = 93a4x, M15 = 9c52x, M16 = 6ca1x.

ARIA has two s-boxes (S1, S2) and their inverses (S−1
1 , S−1

2 ). The layer of sub-
stitution in the odd number of rounds is composed of 16 s-boxes as follows.

S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 .

Similarly, the layer of substitution in the even number of rounds is composed of
16 s-boxes as follows.

S−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2, S
−1
1 , S−1

2 , S1, S2.

If nonzero u ∈ Z8
2 is fixed, and v varies over Z8

2, then the distribution of dif-
ferential probability values DPSi(u, v) is independent of u and i (1 ≤ i ≤ 16),
and is given in Table 1. Here ρ1

i is the differential probability value, and φ1
i is

the number of occurrences of ρ1
i . If nonzero v ∈ Z8

2 is fixed, and u varies over
Z8

2, then the same distribution is obtained. From Table 1 and Theorem 3, we

Table 1. The distribution of differential probability values for ARIA s-box

ρ1
i 2−6 2−7 0

φ1
i 1 126 129

obtain that

Q =
255∑
j=1

{DPS1(1, j)}8 =
97, 792
(28)8

∼ 1.49× 2−48.

We now compute an upper bound of dp2(γa, γb). For example, let γa = 3x =
(0, · · · , 0, 1, 1), γb = f0f3x = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1). Then it is
easy to see that BL(γa, γb) = {(0, · · · , 0, u, u)|u = 1, · · · , 255}, and so the num-
ber of independent variables in BL(γa, γb) is 1. Thus we have from Theorem 3
that the dp2(γa, γb) is bounded by

pwt(a)+wt(b)−βd−t+1Q ∼ p4 × 1.49× 2−48 ∼ 1.49× 2−72.

Since the number of possible cases of (γa, γb) is 216×216, by using a computer
program, we can obtain all upper bounds of dp2(γa, γb), γa ∈ (Z2)16, γb ∈ (Z2)16.
The MDP for 2-round ARIA is bounded by Q ∼ 1.49× 2−48.
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We next compute an upper bound of dp3(γa, γb). For example, let γa = γb =
1x = (0, · · · , 0, 1). From Theorem 6, we obtain that

dp3(γa, γb) ≤
∑

δ∈(Z2)16

dp2(γa, δ)pwt(b)−t(δ,γb).

In the above summation, it is enough to consider only δ satisfying BL(γa, δ) �= ∅
and BL(δ, γb) �= ∅. Such δ is only 6ca1x. The numbers of independent variables
in BL(γa, 6ca1x) and BL(6ca1x, γb) are all 1. Thus we have from Theorem 6 that

dp3(γa, γb) ≤ dp2(γa, 6ca1x)pwt(b)−t(6ca1x,γb)

≤ pwt(a)+wt(6ca1x)−βd−t(γa,6ca1x)+1Qpwt(b)−t(6ca1x,γb)

= Q ∼ 1.49× 2−48.

Note that the differential probabilities for 3-round are smaller than or equal to
the MDP for 2-round. Since maxγa �=0,γb

dp3(γa, γb) ≤ Q and dp3(1x, 1x) ≤ Q, it
follows that the MDP for 3-round ARIA is bounded by Q ∼ 1.49× 2−48.

When 4 or more rounds are approximated, we can not use Theorem 6 di-
rectly, because the computation time of the numbers of independent variables
is very much. When r-round is approximated, for each (γa, γb), the numbers of
independent variables are computed about 216(r−2)+1 times. To decrease such
times, we need the following theorem.

Theorem 7. For any ε > 0, the following inequality holds.

dpr(γa, γb) ≤ ε +
∑

δ∈(Z2)n,dpr−1(γa,δ)>ε

dpr−1(γa, δ)pwt(b)−t(δ,γb).

Proof. Observe that

DPr(a, b) =
∑

x

DPr−1(a, x)DP1(y, b)

=
∑

δ∈(Z2)n

∑
x:γx=δ

DPr−1(a, x)DP1(y, b)

≤
∑

δ∈(Z2)n

dpr−1(γa, δ)
∑

x∈B(δ,γb)

DP1(y, b)

and ∑
δ∈(Z2)n

dpr−1(γa, δ)
∑

x∈B(δ,γb)

DP1(y, b)

=
∑

δ∈(Z2)n,dpr−1(γa,δ)≤ε

dpr−1(γa, δ)
∑

x∈B(δ,γb)

DP1(y, b)

+
∑

δ∈(Z2)n,dpr−1(γa,δ)>ε

dpr−1(γa, δ)
∑

x∈B(δ,γb)

DP1(y, b)

=: I + II.
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I is bounded by

ε
∑

δ∈(Z2)n,dpr−1(γa,δ)≤ε

∑
x∈B(δ,γb)

DP1(y, b) ≤ ε
∑

x

DP1(y, b) = ε,

where y = L(x), x = (x1, · · · , xn) and y = (y1, · · · , yn). From the proof of
Theorem 6,

∑
x∈B(δ,γb)

DP1(y, b) ≤ pwt(b)−t(δ,γb), which implies that

II ≤
∑

δ∈(Z2)n,dpr−1(γa,δ)>ε

dpr−1(γa, δ)pwt(b)−t(δ,γb).

Therefore dpr(γa, γb) is bounded by

ε +
∑

δ∈(Z2)n,dpr−1(γa,δ)>ε

dpr−1(γa, δ)pwt(b)−t(δ,γb).


�

To find upper bounds for 4, 5, 6-round ARIA, we use the following algorithm.
Note that denominators (26−i in Step 3, 2 in Step 5) are selected by trial-and-
error so that so they may not be optimal. In the algorithm, udpi(γa, γb) denotes
an upper bound of dpi(γa, γb).

Algorithm 1. Find an upper bound on the MDP for r-round ARIA, where
4 ≤ r ≤ 6.

Step 0. Select an integer T such that 2−T ∼ 2−128.
Step 1. Ur ← 2−T

Step 2. For each (γa, γb), udp2(γa, γb) ← pwt(a)+wt(b)−βd−t(γa,γb)+1Q
Step 3. For i from 3 to r − 1,

udpi(γa, γb) ←
Ur

26−i
+

∑
δ∈(Z2)16,udpi−1(γa,δ)> Ur

26−i

udpi−1(γa, δ)pwt(b)−t(δ,γb)

Step 4. Compute

udpr(γa, γb) ← Ur +
∑

δ∈(Z2)16,udpr−1(γa,δ)>Ur

udpr−1(γa, δ)pwt(b)−t(δ,γb)

Step 5. If max
γa �=0,γb

udpr(γa, γb) ≤ Ur(1+
1
2
), then an upper bound is max

γa �=0,γb

udpr

(γa, γb) and STOP the program.
Else T ← T − 1, and go to Step 1.

For 4,5,6-round ARIA, Algorithm 1 gives upper bounds with running time as
given in Table 2 on a single 2.6 GHz PC. The estimated value of the upper bound
for 6-round ARIA is obtained after performing about 50% of computation.

On the other hand, Keliher [11] proposed an algorithm for finding an upper
bound on the MLHP for AES. They obtained an upper bound of 1.778× 2−107

when 8 or more rounds are approximated.
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Table 2. Upper bounds on the MDP for r-round ARIA

Rounds Upper bounds Running Time

4 1.5 × 2−78 4 days

5 1.5 × 2−84 16 days

6 1.5 × 2−98 256 days (estimated)

5 Conclusion

In this paper, we have given a new method for finding an upper bound on the
MDP for r-round SPNs by using the number of independent variables. Our
method consists of two steps. In the first step, we find an upper bound on the
MDP for 2-round SPNs and in the second step, we use a recursive formula for
finding an upper bound on the MDP for r(r ≥ 3)-round SPNs. The result in
the first step is better than known results in the sense that it can be used to
find good upper bounds for r(r ≥ 3)-round SPNs. The result in the second
step is an efficient recursive formula for finding an upper bound on the MDP
for r(r ≥ 3)-round SPNs. Both results use the number of independent variables
which is newly introduced in this paper. Finally, by applying our method to
ARIA, we get an estimated bound of 1.5× 2−98 on MDP for 6-round ARIA.
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Abstract. This paper presents Dragon, a new stream cipher constructed
using a single word based non-linear feedback shift register and a non-
linear filter function with memory. Dragon uses a variable length key and
initialisation vector of 128 or 256 bits, and produces 64 bits of keystream
per iteration. At the heart of Dragon are two highly optimised 8 × 32
s-boxes. Dragon uses simple operations on 32-bit words to provide a high
degree of efficiency in a wide variety of environments, making it highly
competitive when compared with other word based stream ciphers. The
components of Dragon are designed to resist all known attacks.

Keywords: word based stream cipher, nonlinear feedback shift register,
nonlinear filter.

1 Introduction

Traditionally stream cipher design has focussed on bit based linear feedback shift
registers (LFSRs), as these are well studied and produce sequences which satisfy
common statistical criteria. In these ciphers, non-linearity is introduced into the
keystream either by some type of non-linear combining function or filter function,
or by irregular clocking, or both. However, bit based LFSRs are notoriously slow
in software. Each iteration of the cipher’s update function produces only one bit
of keystream. Sparse LFSR feedback functions may be exploited in an attack,
but increasing the number of feedback taps results in a decrease in efficiency.
Also, the security of some LFSR based stream ciphers is threatened by algebraic
attacks [6].
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Word based stream ciphers may provide a solution to the security-efficiency
tradeoff. These produce many times the amount of keystream per iteration than
do bit-based LFSRs, depending on the word size. The word size used for current
word based stream cipher proposals range from 8-bit words for RC4 to 32-bit
words for Turing [16]. Many of these ciphers are very fast in software, outper-
forming even fast block ciphers like the Advanced Encryption Standard [15].
Although it is easy to assess the speed of these word based stream ciphers, it is
difficult to quantify their security precisely.

This paper presents Dragon, a new word based stream cipher designed with
both security and efficiency in mind. Dragon uses a word based non-linear feed-
back shift register (NLFSR), in conjunction with a non-linear filter to produce
keystream as 64-bit words. Dragon has a throughput of gigabits per second in
both modern software and hardware, and requires little more than four kilobytes
of memory, so is suitable for use in constrained environments. Not only is Dragon
fast for keystream generation, it is also very efficient when rekeying. This makes
Dragon especially suitable for applications that require frequent rekeying, such
as mobile and wireless communications.

Dragon can be considered an evolution of the output feedback mode (OFB)
of block ciphers. The modifications overcome a shortcoming of block ciphers in
OFB mode: the output keystream is also the feedback to the internal state. We
have analysed the security of Dragon using modern cryptanalytic techniques,
and believe it is suitable for use as a secure cryptographic primitive. Collision
attacks based on the birthday paradox can exploit this knowledge of the feed-
back. These attacks are prevented in the Dragon cipher by producing separate
output and feedback words from the update function. Also, ciphers with small
internal states are easily attacked by time/memory/data tradeoff attacks [3]. A
minimum requirement to overcome these type of attacks is to have an internal
state size at least twice the designed security. Time/memory/data tradeoff at-
tacks are prevented in the Dragon cipher by having a large internal state. To
increase the difficulty of guess and determine attacks [10], Dragon selects taps
from the NLFSR according to a Full Positive Difference Set (FPDS).

Section 2 presents the specification of the cipher. Section 3 describes the de-
sign decisions behind the Dragon algorithm. Section 4 and 5 includes a security
analysis of Dragon using modern cryptanalytic techniques. Section 6 discusses
the performance of Dragon in software and hardware, and associated implemen-
tation issues.

2 Specification of Dragon

Dragon is a stream cipher constructed using a single word based NLFSR. Dragon
has a large NLFSR of 1024 bits, an update function, denoted F , and a 64-
bit memory, denoted M . Dragon-256 uses a secret master key of 256 bits, and
a publicly known initialisation vector (IV), also of 256 bits to accommodate
rekeying scenarios, while Dragon-128 uses 128-bit key and IV. The F function,
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which is called once per round, manipulates the internal state to generate 64
bits of pseudo-random keystream. The cipher’s key setup converts the master
key and initialisation vector for use in Dragon’s large internal state.

Table 1. Dragon’s F Function

Input = { a, b, c, d, e, f }
Pre-mixing Layer:

1. b = b ⊕ a; d = d ⊕ c; f = f ⊕ e;
2. c = c � b; e = e � d; a = a � f ;

S-box Layer:
3. d = d ⊕ G1(a); f = f ⊕ G2(c); b = b ⊕ G3(e);
4. a = a ⊕ H1(b); c = c ⊕ H2(d); e = e ⊕ H3(f);

Post-mixing Layer:
5. d′ = d � a; f ′ = f � c; b′ = b � e;
6. c′ = c ⊕ b; e′ = e ⊕ d; a′ = a ⊕ f ;

Output = { a′, b′, c′, d′, e′, f ′ }

2.1 Dragon’s State Update Function (F Function)

The F function is used in both key setup and keystream generation. The F
function is a reversible mapping of 192 bits (six 32-bit words) to 192 bits. It takes
six 32-bit words as input and produces six 32-bit words as output. In Table 1 the
input words are denoted a, b, c, d, e, f and the output words a′, b′, c′, d′, e′, f ′. The
F function has six component functions denoted G1, G2, G3, H1, H2 and H3,
as described below. The G and H functions provide algebraic completeness [11]
and high non-linearity. A network of modular and binary additions are used
for diffusion in the F function. It can be divided to three parts: pre-mixing,
substitution, and post-mixing. Each step is designed to allow for parallelisation,
giving Dragon its speed. The F function is shown in Table 1 where ⊕ denotes
XOR and � denotes addition modulo 232.

G and H Functions. The G and H functions are constructed from two 8×32-
bit s-boxes, S1 and S2 to form virtual 32× 32 s-boxes. The G functions contains
three S1s and one S2, while the H functions have three S2s and one S1. S1

and S2 are included in Appendix B. The 32-bit input is broken into four bytes
(x = x0‖x1‖x2‖x3. Each byte is passed through an 8 × 32 s-box and the four
32-bit outputs combined using binary addition.

G and H functions are defined as

G1(x) = S1(x0)⊕ S1(x1)⊕ S1(x2)⊕ S2(x3)

G2(x) = S1(x0)⊕ S1(x1)⊕ S2(x2)⊕ S1(x3)

G3(x) = S1(x0)⊕ S2(x1)⊕ S1(x2)⊕ S1(x3)
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Fig. 2. Initialisation

H1(x) = S2(x0)⊕ S2(x1)⊕ S2(x2)⊕ S1(x3)

H2(x) = S2(x0)⊕ S2(x1)⊕ S1(x2)⊕ S2(x3)

H3(x) = S2(x0)⊕ S1(x1)⊕ S2(x2)⊕ S2(x3)

2.2 Initialisation

Dragon can be used with two different key and initialisation vector lengths: 128-
bit and 256-bit. We denote the 256-bit key and initialisation vector K and IV
respectively. The 128-bit key and initialisation vector are denoted k and iv.

Dragon has a simple keying (and rekeying) strategy using the key and the
publicly known initialisation vector. The 1024-bit internal state is divided into
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Table 2. Dragon’s Key Initialisation function

Input = { K, IV } (256-bit) Input = { k, iv } (128-bit)

1. W0 ‖ ... ‖ W7 = K ‖ K ⊕ IV ‖ K ⊕ IV ‖ IV (256-bit)
W0 ‖ ... ‖ W7 = k ‖ k′ ⊕ iv′ ‖ iv ‖ k ⊕ iv′ ‖ k′ ‖ k ⊕ iv ‖ iv′ ‖ k′ ⊕ iv (128-bit)

2. M = 0x0000447261676F6E
Perform steps 3-8 16 times

3. a ‖ b ‖ c ‖ d = (W0 ⊕ W6 ⊕ W7)
4. e ‖ f = M

5. {a′, b′, c′, d′, e′, f ′} = F (a, b, c, d, e, f)

6. W0 = (a′ ‖ b′ ‖ c′ ‖ d′ ) ⊕ W4

7. Wi = Wi−1, for i = 7 down to 1 (shifting the state by one word)
8. M = e′ ‖ f ′

Output = { W0 ‖ ... ‖ W7 }

Table 3. Dragon’s Keystream Generation Function

Input = { B0 ‖ ... ‖ B31, M }
1. (ML ‖ MR) = M
2. a = B0, b = B9, c = B16, d = B19, e = B30⊕ML, f = B31⊕MR

3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f)
4. B0 = b′, B1 = c′

5. Bi = Bi−2, 2 ≤ i ≤ 31
6. M = M + 1
7. k = a′ ‖e′

Output = { k, B0 ‖ ... ‖ B31, M }

eight 128-bit words, labelled W0 to W7. The internal state is initially filled by con-
catenating the key and the initialisation vector. The state initialisation process
makes extensive use of the F function. The initialisation involves 16 iterations
of the F function as shown in Table 2 where x denotes the complement of x and
x′ denotes the swapping of the upper half and the lower half of x. To protect
against unknown future attacks, and against attacks that require large amounts
of keystream, the cipher should be rekeyed at least once for every 264 bits of
keystream generated. The use of existing components for both initialisation and
keystream generation simplifies analysis and increases implementation efficiency.

2.3 Keystream Generation

Dragon has a large NLFSR of 1024 bits divided into thirty two 32-bit words
Bi, 0 ≤ i ≤ 31. During each round, six words from the internal state are used as
inputs to the F function. The indices to these words are 0, 9, 16, 19, 30, 31, and
form a Full Positive Difference Set (FPDS). Additionally, a 64-bit memory com-
ponent, M , acts as a counter in keystream generation, with the initial value for
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keystream generation being the final value of M defined by the key initialisation
process. Each round of the keystream generation results in the output of a 64-bit
word k. Table 3 shows one round of keystream generation. Note the output of
the process is a keystream word k, and an updated state B and memory M .

3 Design Principles of Dragon

3.1 Design of F Function

All the keystream words and feedback words are dependent on all input words,
both at the bit level and word level. A single bit change in any of the six input
words results in completely different keystream and feedback words.

3.2 Design of S-Boxes

Dragon uses two 8× 32 S-boxes that have been designed heuristically to satisfy
a range of important security related properties. They are used to create two
nonlinear 32 × 32 mappings G and H. The simple construction (shown in Sec-
tion 2.1) allows the non-linearity properties of the output bits of G and H to be
calculated exactly from the known properties of the components of the under-
lying 8 × 32 S-boxes, S1 and S2. Both s-boxes were designed to have balanced
component Boolean functions with:

– best known non-linearity of 116,
– optimum algebraic degree 6 or 7 according to Siegenthaler’s tradeoff [18],
– low autocorrelation,
– distinct equivalence classes,
– all XOR pairs satisfying:

• better than random non-linearity with 102 minimum,
• almost balanced (the imbalance is not more than 16),
• distinct equivalence classes,
• same optimal degree as the components.

We adopt a standard notation (n, t, d, x, y) to describe Boolean function prop-
erties where n is the number of variables, t is the order of resiliency (where t = 0
indicates a balanced function), d is the algebraic degree, x is the non-linearity
and y is the largest magnitude in the autocorrelation function. All the compo-
nents of S1 are (8, 1, 6, 116, y) where 32 ≤ y ≤ 48 which is considered sufficiently
low. S1 functions achieve the highest non-linearity possible for resilient functions.
All the components of S2 are (8, 0, 7, 116, 24), where we note that the achieved
autocorrelation of 24 is the lowest known for balanced functions of this size.

These s-boxes were created one output bit at a time using heuristic tech-
niques. Existing methods [14] were adopted to generate the individual functions,
then they were compared to the existing s-box functions to check the above-listed
requirements for the XOR pairs. When the candidate function was acceptable it
was appended to the s-box, else another function was tested. We found it was
possible to generate 32 functions for each s-box while satisfying the stringent
requirements outlined above.
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Finally we remark that the output functions of resulting Dragon virtual s-
boxes G and H have higher non-linearity (at 116) than other popular 32 ×
32 cryptographic mappings, such as the SBOX/MIXCOL operation from AES [15]
and Mugi[19], which use only 112 non-linearity functions. Also Dragon’s s-boxes
avoid the linear redundancy weakness that is intrinsic to finite field operation
based s-boxes [9] which are used in the international standard ciphers AES [15],
Camellia [2].

3.3 Design of Key Initialisation

The key setup and keystream generation of Dragon both use the F function,
for ease of implementation and efficiency. However, the key setup of Dragon
is deliberately designed to be different to keystream generation, so that the
mapping of internal state to the feedback is different.

There are three differences between the key setup and the keystream gener-
ation: the use of the 64-bit memory M , the size of the feedback and the FPDS
selection used.

From Section 3.1, F is a reversible mapping, and the design of the key setup
network uses this property of F to produce a bijective process. For any unique
pair of K and IV , the key setup procedure initialises the internal state and M
to unique values. Note that M is used as memory in key setup, but as a counter
in keystream generation.

The feedback of Dragon consists of four words of the F function outputs,
totalling 128 bits in key setup (the feedback size is 64 bits in keystream genera-
tion). This means that F can mix K and IV effectively in a minimum number
of rounds. A smaller number of rounds in key setup translate directly into high
rekeying performance. This makes Dragon very competitive in practical applica-
tions that require frequent rekeying, such as mobile and wireless transmissions
that usually use the frame number as the IV .

A different FPDS is chosen for the key setup because of the change in the size
of the feedback. The taps from the internal state, {0,4,6,7}, form a FPDS both in
the forward and reverse direction. This is designed to frustrate the cryptanalysis
of key setup by guess and determine techniques.

Dragon-128 and Dragon-256 are designed to have very similar initialisation
process so that the speed is identical. However, another important design con-
sideration is the use 128-bit and 256-bit key and initialisation vector pairs. We
ensured that no pair of 256-bit K and IV can initialise Dragon to the same state
as any arbitrary pair of 128-bit k and iv. This avoids the cryptanalyst reducing
the search space in a brute force attack from 256-bit to 128-bit.

4 Analysis of Cipher

4.1 Statistical Tests

Statistical tests provided by the CRYPT-X [8] package were performed on
keystream produced by the Dragon cipher. The frequency, binary derivative,
change point, subblock and runs tests were executed with 30 streams of Dragon
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output, each eight megabits in length. The sequence and linear complexity tests
were executed for the 30 streams with two hundred kilobits each. Dragon passed
all pertinent statistical tests.

4.2 Period Length

Given that Dragon has a 1024-bit internal state, the expected period of the
internal state is 2512, assuming the mapping is pseudo-random [4]. For crypto-
graphic use, establishing the lower bound for the period of the output sequence
is critical. Each round of Dragon is under the influence of a 64-bit counter, M .
Since the counter M has a period of 264, the period of Dragon’s internal state
is lower bounded by 264. Taken together, the internal state and the counter M
give Dragon an expected period of 2576.

The amount of keystream produced by a unique pair of K and IV is limited
to 264 bits (in most applications the actual keystream would be much smaller)
in the specification of Dragon. This is a small fraction of the lower bound of the
period (and a very small fraction of the expected period), and therefore avoids
the possibility of keystream collision attacks.

4.3 Weak Keys

Weak keys are those keys that bypass some operations of the cipher. That is,
the operations have no effect in the calculation of the feedback or the output
keystream.

Dragon is designed to avoid weak keys. The internal state is an NLFSR,
therefore the all zero state is not a problem as Dragon is designed to avoid fixed
points. While it is easy to bypass the pre-mixing phase in a single iteration of
the F function by having repetitive inputs such as all zeros or all ones, it is only
possible for the first of the 16 iterations of F in the key setup. Also, selected
values are limited to the first four inputs of the F function, as the last two inputs
take the value of M . The network of G and H functions ensure that the initial
states which bypass the pre-mixing phase cannot bypass any other operations
in F . We believe that the above design features provide a strong guarantee that
there are no weak keys for Dragon.

5 Cryptanalysis of Dragon

5.1 Related Key and IV Attacks

The Dragon rekeying strategy is simple, and the use of initialisation vectors
provides a way to reuse a master key without generating identical keystreams.
The rekeying strategy prevents related key and IV attacks before even the first
word of output is generated, by mixing each bit of the key into all words of
the initial state over 16 rounds of the highly non-linear F function defined for
the keystream generator module. This function has six 32-bit inputs and six
32-bit outputs. During rekeying, the F function is iterated 16 times, each time
populating the leftmost side of the internal state with 128 bits comprising four
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outputs. After eight rounds, all of the initial keying material in the state has
been replaced by unknown output from the F function.

Of the six inputs to the F function, four words are taken directly from the
keyed internal state, while two are taken from a 64-bit memory M . The contents
of this memory are initially known, since they are determined by a published
constant. Also, the memory can not be manipulated by the attacker in the same
way as the internal state, since it is not keyed. Two outputs from the F function
feedback to the memory, making its value hard to determine after the first round.
All output words of F are affected by the memory, increasing the difficulty that
the attacker faces in controlling inputs to subsequent rounds.

Diffusion. One strategy in an attack is to minimise the number of words with
a non-zero difference in the internal state. The aim of this strategy is controlla-
bility. The larger the number of non-zero words used as input to the non-linear
function, the more complex the resulting output. The key schedule of Dragon is
designed so that after 12 rounds, even an initial difference of single word differ-
ence is propagated to all words in the internal state (see Table 4). Since there are
16 rounds, this is an ample margin to ensure an attacker is unable to determine
the state contents after rekeying. The speed of this diffusion is aided by the fact
that the first word of the state is used as input to F function, and the output of
the F function replaces the first word.

Table 4. Propagation of non-zero difference in internal state of the rekeying

1 0 ΔA 0 0 0 0 0 0
2 0 0 ΔA 0 0 0 0 0
3 0 0 0 ΔA 0 0 0 0
4 0 0 0 0 ΔA 0 0 0
5 ΔA 0 0 0 0 ΔA 0 0
6 ΔB ΔA 0 0 0 0 ΔA 0
7 ΔC ΔB ΔA 0 0 0 0 ΔA
8 ΔD ΔC ΔB ΔA 0 0 0 0
9 ΔE ΔD ΔC ΔB ΔA 0 0 0
10 ΔF ΔE ΔD ΔC ΔB ΔA 0 0
11 ΔG ΔF ΔE ΔD ΔC ΔB ΔA 0
12 ΔH ΔG ΔF ΔE ΔD ΔC ΔB ΔA

Even a single round of Dragon F function prevents high probability differen-
tials due to its use of the G and H functions, and high diffusion. A single input
difference is propagated to differences in each of the outputs. The F function
consists of three layers: pre-mixing, confusion through s-box application, and
post-mixing. Referring to the notation of section 2.1, only inputs a, b, c and d
can be initially and indirectly controlled by an attacker, since e and f come from
internal and inaccessible memory.
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The attacker may wish to make use of the fact that b and d are mixed with
only one other word in the pre-mixing phase, while a and c are mixed with two
others. For the input −(e ⊕ f), b,−(b ⊕ e ⊕ f),−(b ⊕ e ⊕ f), e, e ⊕ f) the pre-
mixing stage produces the output (0, b ⊕ −(e ⊕ f), 0, 0, e, e ⊕ f). For difference
input Δb, this produces the difference (0,Δb, 0, 0, 0, 0) since e and f are at this
stage constants. This bypasses the G row of s-boxes and activates a single s-box
in the second row to produce the post-mixing input (ΔH1(Δb),Δb, 0, 0, 0, 0).
The post-mixing output is (ΔH1(Δb),Δb,Δb, (ΔH1(Δb), 0, 0)).

At this stage, all of the feedback words to the internal state are non-zero.
However, the difference of the feedback to the internal state is still zero. This fact
cannot be exploited by the attacker since the input differences to this round are
not reproducible in later rounds, and thus the difference of the internal memory
cannot be maintained. Consequently Dragon is not vulnerable to related key
attacks that are more efficient than a brute force search of the 256-bit key.

5.2 Time-Memory Tradeoff Attacks

Time-Memory tradeoff attacks [3] rely on pre-computation to reduce the effort
required for a key recovery attack on a keystream. The attack comprises two
steps. The first, the preprocessing step, sees the attacker calculating a table of
keys or internal states and corresponding keystream prefixes. The table is ordered
upon the prefix. The second step involves observing keystreams and attempting
to match each against a prefix in the table. If the match is successful, then with
some likelihood the internal state is known by reading the opposing entry in the
table.

The parameters in an attack are time (T ), memory (M), and amount of data
(D). Generally, T ×M2×D2 = S2 where S is the state space of the cipher, and
D2 ≤ T [3]. The pre-computation time P is equal to S ÷D.

Dragon has an internal state space of 1088 bits (including the 64-bit mem-
ory). Since the design strength of Dragon is 256 bits, the time-memory tradeoff
attack is infeasible. For the brute-force equivalent attack with T = 2256, data
requirements are limited to 264 bits, which imposes a lower bound on memory
for the attack of 2896 bits.

5.3 Guess and Determine Attacks

The indices {0, 9, 16, 19, 30, 31} of the state elements used in Dragon’s update
function form a full positive difference set. This is a design decision to prevent
guess and determine attacks [10].

In keystream generation, guessing six inputs (192 bits) to F in a round allows
an attacker to calculate the feedback words b′ and c′ and the keystream words
a′ and e′, which can be used to discard most incorrect guesses. At this point the
attacker has knowledge of the state words at indices {0, 1, 10, 17, 20} and some
information about the value of B31 and M . However, the FPDS selection of the
internal state means that to obtain the next pair of keystream words, guessing
a further five inputs (160 bits) is necessary. The attacker can attempt to jump
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ahead to a future keystream word pair, but again the FPDS means that the
attacker needs to guess five inputs. This rapid increase in the number of possible
guess pathways makes the attack infeasible. In addition, the interplay of B30,
B31 and M means there will be more than one set of values for these three
elements for a unique pair of e and f , further complicating the cryptanalytic
attempt by guess and determine.

The attacker is unable to reduce the complexity of a guess and determine
attack by guessing individual state bytes, rather than whole words. The use of
large s-boxes (G and H functions are effectively 32 × 32 s-boxes) means that
guessing three of the four input bytes is insufficient to deduce any byte of the
s-box output.

To calculate keystream words from two rounds of Dragon, the attacker is
required to guess more than 256 bits of the internal state. This is worse than
exhaustive key search, and makes guess and determine attacks on Dragon infea-
sible.

5.4 Distinguishing Attacks

If the output sequence of a stream cipher can be statistically distinguished from
a random sequence, then the cipher is not strong enough for cryptographic ap-
plications. Dragon is designed with a large state and complex initialisation and
update function. It has no linear masking, and therefore immune to this type
of distinguishing attacks [5]. It is expected to have a very large period of 2582

(with a lower bound of 264 because of the influence of the 64-bit counter) and
it passes standard statistically tests for randomness. The amount of keystream
output for an unique pair key and initialisation vector is limited to 264 bits.
We conjecture that it is impractical to collect an amount of output sufficient to
distinguish Dragon keystream output from a random binary sequence.

5.5 Linear Approximations

From Lemma 15 of [17], the non-linearity of the sum of disjoint functions can be
calculated as follows. Let g(x1, . . . , xs, y1, . . . , yt) = f1(x1, . . . , xs)⊕f2(y1, . . . , yt).
Then the non-linearity of g satisfies Ng ≥ 2s+t−1 − 1

2P1 · P2 where P1 and P2

are the maximum Walsh-Hadamard transform values of f1 and f2, respectively.
The G and H functions of Dragon are composed from two 8× 32 s-boxes, S1

and S2. Both s-boxes have all outputs with non-linearity 116, therefore PS1 =
PS2 = 28 − 2 · 116 = 24. The non-linearity of the output bits of the G and H
functions can then be calculated as NG = NH ≥ 28+8+8+8−1− 1

2 ·24 ·24 ·24 ·24 =
231− 165888. The best affine approximation to the G or H function output bits
has bias no greater than 231−231+165888

231 = 2−14.66. At any given round, the
keystream words of Dragon are the results of five G or H functions each, hence
the best affine approximation to the Dragon F function output bits has bias no
greater than (2−14.66)5 = 2−73.3.

Linear cryptanalysis requires equations relating the key bits to the internal
state bits, and in turn the keystream bits, where the internal state variables
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can be cancelled. The complete mixing of Dragon’s key setup avoids the divide
and conquer approach, therefore all the internal state variables are needed in
the linear equations. The output keystream will be dependent on all 1,024 bits
of the initial internal state after 8 iterations of F . The bias of the best affine
approximation over 8 iterations of F is no greater than (2−73.3)8 = 2−586.4. As
the key size of Dragon is 256 bits, attack on Dragon using linear approximation
has complexity greater than exhaustive key search.

5.6 Algebraic Attacks

Successful algebraic attacks on keystream generators [6] have so far been re-
stricted mainly to LFSR based generators. The general attack model consists of
the internal state S, the linear update function L and the output function f . Let
S0 denote the internal state at time t = 0, and Lt(S0) denote the internal state
at time t. The attacker constructs a system of equations relating the internal
state bits with the observed keystream bits, where zt = f(Lt(S0)) at time t.
The attacker can set up a large number of equations just by merely collecting
keystream bits, since the internal state at time t can easily be derived from the
linear nature of LFSRs.

This model cannot be applied to Dragon since the update function is non-
linear. Let the non-linear update function be N , then the equation becomes
zt = f(N t(S0)). Note that N has a poor linear approximation of 2−73.3 as
shown in Section 5.5. The lack of the linear update function means the attacker
can not simply calculate the internal state at time t to construct the system of
equations.

When constructing the system of equations for Dragon, the degree of equa-
tions would grow exponentially. This is easy to see as any output of G or H is a
degree 7 function of the inputs since S2 has algebraic order 7. If we approximate
� with ⊕, we can then write equations of degree 72 = 49 that maps the 192
input bits to the first 64 output keystream bits. However, the feedback is used
immediately in the production of the next 64 bits of keystream, and results in
equations of degree 74 = 2, 401. Note that at this point, the inputs consist of
only 352 bits, and therefore the equations would be limited to degree 352. The
degree of the equations would grow to the full 1024 bits of the internal state,
after 8 iterations of the F function, or 512 bits of keystream produced.

Using the technique published in [7] to describe the 8× 32 s-boxes of Dragon
using quadratic equations results in 565 quadratic equations in 256 monomials
for each s-box (identical to the analysis of CAST [1]). Again, let us approximate
� with ⊕, then after 8 iterations of F , the system of equations has degree 1,024
as well. This is to say, even if there existed some annihilators [13] that reduce
Dragon’s Boolean functions right down to quadratic, the degree of the overall
equations would still grow to unmanageable sizes.

It is clear that the system of equations for Dragon will be very difficult to
solve, if it is solvable at all. Furthermore, it will require far more effort than
exhaustive key search since solving techniques all have complexities exponential
in the degree of the equations. It is interesting to note that the above analysis
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approximates modular addition with XOR, and thus resulting in a weaker version
of Dragon. With the modular addition in place, it will be even more difficult for
algebraic attacks to succeed against Dragon (see similar example of the effect of
modular addition in CAST [1]).

6 Implementation and Performance

Dragon is designed to be efficient in both software and hardware, in terms of
throughput and a small implementation footprint. Its 32-bit word size is chosen
to match that of the ubiquitous Intel Pentium family, since this leads to the
best software efficiency on that platform. Note that the results presented in this
Section apply to both Dragon-128 and Dragon-256.

6.1 Software

On an Intel Pentium 4, a näıve C implementation of Dragon produces one byte
of keystream every 6.74 clock cycles, and 1,395 cycles per rekeying operation.
On a 3.2GHz Pentium 4, the throughput of Dragon is 3.8Gbps. This is compet-
itive with many of its peers, including SNOW 2 (5.5 cycles/byte), Turing (6.1
cycles/byte) and RC4 (7.1 cycles/byte).

Storage requirements include 2,048 bytes to store Dragon’s two 8×32 s-boxes,
1,024 bits (128 bytes) for the internal state, and a further 8 bytes for the 64-bit
counter. Including temporary variables and an object code size of 2,810 bytes,
Dragon has memory requirements totalling 4,994 bytes. This is suitable for even
very constrained environments.

A reference implementation of Dragon written in C can be obtained from
http://www.isrc.qut.edu.au/resource/dragon/.

6.2 Hardware

The design of Dragon allows high degree of parallelisation in hardware. The op-
erations on the six inputs of the F function can be divided into three groups,
each operating on two inputs. The pre-mixing and the post-mixing are imple-
mented using 32-bit modular adders. The G and H functions are implemented
using look-up tables and XOR operations. The hardware complexity is about
6,524 gates and 196,672 bits of memory. On Samsung 0.13um ASIC running at
2.6GHz, the minimum delay is 2.774ns with a throughput of 23Gbps.

The speed in hardware can be improved by using m-parallel-structure pro-
posed in [12]. This hardware implementation strategy applies to all shift reg-
isters, and achieves an m times increase in efficiency with m times increase in
hardware complexity. On Altera FPGA/CPLD running at 16.67MHz, an imple-
mentation of Dragon achieves a throughput of 1.06Gbps with 16 times hardware
complexity.
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7 Conclusion

This paper presents Dragon, a new stream cipher constructed upon a word based
non-linear feedback shift register. The key and initialisation vector are 128 bits
for Dragon-128 and 256 bits for Dragon-256. Dragon is designed with both se-
curity and efficiency in mind. It has been shown that Dragon is secure against
all known cryptanalytic attacks.
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A Test Vectors

128-BIT KEY AND IV

KEY:
00001111 22223333 44445555 66667777
IV:
00001111 22223333 44445555 66667777
KEYSTREAM:
99B3AA14 B63BD02F E14358A4 54950425 F4B0D3FD 8BA69178 E0392938 A718C165
2E3BEB1E 11613D58 9EABB9F5 43A1C51C 73C1F227 9D1CAEA8 5C55F539 BAFD3C59
ECAC88BD 17EB1C9D A28DD63E 9093C913 3032D918 3A9B33BC 2933A79D 75669827
20EF3004 C53B0253 7A1BE796 29F8D9A3 8DC1FD31 ED9D1100 B07DFFB1 AC75EB31

KEY:
00112233 44556677 8899AABB CCDDEEFF
IV:
00112233 44556677 8899AABB CCDDEEFF
KEYSTREAM:
98821506 0E87E695 EB7AEF36 313FF910 E6C7312F 30357424 4922043D 98146EE2
202D4D49 6C602ECC 937DD3F4 E39BE26C 849DB415 F04C540E 88588C7A A3C65A31
E2156229 1E86028B 3F5A21B9 4A94C135 B3A01527 747E6521 FFEE14F0 FA1FCC73
74C8B204 4009F57D 1D63007E F1D8D221 E429EBA8 60F56098 45891D74 716694B2

256-BIT KEY AND IV

KEY:
00001111 22223333 44445555 66667777 88889999 AAAABBBB CCCCDDDD EEEEFFFF
IV:
00001111 22223333 44445555 66667777 88889999 AAAABBBB CCCCDDDD EEEEFFFF
KEYSTREAM:
BC020767 DC48DAE3 14778D8C 927E8B32 E086C6CD E593C008 600C9D47 A488F622
3A2B94D6 B853D644 27E93362 ABB8BA21 751CAAF7 BD316595 2A37FC1E A3F12FE2
5C133BA7 4C15CE4B 3542FDF8 93DAA751 F5710256 49795D54 31914EBA 0DE2C2A7
8013D29B 56D4A028 3EB6F312 7644ECFE 38B9CA11 1924FBC9 4A0A30F2 AFFF5FE0

KEY:
00112233 44556677 8899AABB CCDDEEFF 00112233 44556677 8899AABB CCDDEEFF
IV:
00112233 44556677 8899AABB CCDDEEFF 00112233 44556677 8899AABB CCDDEEFF
KEYSTREAM:
8D3AB9BA 01DAA3EB 5CBD0F6D E3ECFCAB 619AF808 CF9C4A42 E2877766 6D2D7037
EE6F94AC 29D1EEE5 340DB047 8E91A679 480D8D88 2367CE2A 31C96AD4 49E70756
815EBEB2 290DBA7A 3CCB76A2 257BD122 2B0B7AED 917FAFFF 6B58B2B2 B05F24F6
E271A016 9E897BEF F5C22451 DA6F9E40 52B78BE5 6C97C1A5 C6F8E791 0F7B9C98
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B Dragon’s S-Boxes

sbox1[256]={
0x393BCE6B,0x232BA00D,0x84E18ADA,0x84557BA7,0x56828948,0x166908F3,
0x414A3437,0x7BB44897,0x2315BE89,0x7A01F224,0x7056AA5D,0x121A3917,
0xE3F47FA2,0x1F99D0AD,0x9BAD518B,0x99B9E75F,0x8829A7ED,0x2C511CA9,
0x1D89BF75,0xF2F8CDD0,0x2DA2C498,0x48314C42,0x922D9AF6,0xAA6CE00C,
0xAC66E078,0x7D4CB0C0,0x5500C6E8,0x23E4576B,0x6B365D40,0xEE171139,
0x336BE860,0x5DBEEEFE,0x0E945776,0xD4D52CC4,0x0E9BB490,0x376EB6FD,
0x6D891655,0xD4078FEE,0xE07401E7,0xA1E4350C,0xABC78246,0x73409C02,
0x24704A1F,0x478ABB2C,0xA0849634,0x9E9E5FEB,0x77363D8D,0xD350BC21,
0x876E1BB5,0xC8F55C9D,0xD112F39F,0xDF1A0245,0x9711B3F0,0xA3534F64,
0x42FB629E,0x15EAD26A,0xD1CFA296,0x7B445FEE,0x88C28D4A,0xCA6A8992,
0xB40726AB,0x508C65BC,0xBE87B3B9,0x4A894942,0x9AEECC5B,0x6CA6F10B,
0x303F8934,0xD7A8693A,0x7C8A16E4,0xB8CF0AC9,0xAD14B784,0x819FF9F0,
0xF20DCDFA,0xB7CB7159,0x58F3199F,0x9855E43B,0x1DF6C2D6,0x46114185,
0xE46F5D0F,0xAAC70B5B,0x48590537,0x0FD77B28,0x67D16C70,0x75AE53F4,
0xF7BFECA1,0x6017B2D2,0xD8A0FA28,0xB8FC2E0D,0x80168E15,0x0D7DEC9D,
0xC5581F55,0xBE4A2783,0xD27012FE,0x53EA81CA,0xEBAA07D2,0x54F5D41D,
0xABB26FA6,0x41B9EAD9,0xA48174C7,0x1F3026F0,0xEFBADD8E,0x387E9014,
0x1505AB79,0xEADF0DF7,0x67755401,0xDA2EF962,0x41670B0E,0x0E8642F2,
0xCE486070,0xA47D3312,0x4D7343A7,0xECDA58D0,0x1F79D536,0xD362576B,
0x9D3A6023,0xC795A610,0xAE4DF639,0x60C0B14E,0xC6DD8E02,0xBDE93F4E,
0xB7C3B0FF,0x2BE6BCAD,0xE4B3FDFD,0x79897325,0x3038798B,0x08AE6353,
0x7D1D20EB,0x3B208D21,0xD0D6D104,0xC5244327,0x9893F59F,0xE976832A,
0xB1EB320B,0xA409D915,0x7EC6B543,0x66E54F98,0x5FF805DC,0x599B223F,
0xAD78B682,0x2CF5C6E8,0x4FC71D63,0x08F8FED1,0x81C3C49A,0xE4D0A778,
0xB5D369CC,0x2DA336BE,0x76BC87CB,0x957A1878,0xFA136FBA,0x8F3C0E7B,
0x7A1FF157,0x598324AE,0xFFBAAC22,0xD67DE9E6,0x3EB52897,0x4E07E855,
0x87CE73F5,0x8D046706,0xD42D18F2,0xE71B1727,0x38473B38,0xB37B24D5,
0x381C6AE1,0xE77D6589,0x6018CBFF,0x93CF3752,0x9B6EA235,0x504A50E8,
0x464EA180,0x86AFBE5E,0xCC2D6AB0,0xAB91707B,0x1DB4D579,0xF9FAFD24,
0x2B28CC54,0xCDCFD6B3,0x68A30978,0x43A6DFD7,0xC81DD98E,0xA6C2FD31,
0x0FD07543,0xAFB400CC,0x5AF11A03,0x2647A909,0x24791387,0x5CFB4802,
0x88CE4D29,0x353F5F5E,0x7038F851,0xF1F1C0AF,0x78EC6335,0xF2201AD1,
0xDF403561,0x4462DFC7,0xE22C5044,0x9C829EA3,0x43FD6EAE,0x7A42B3A7,
0x5BFAAAEC,0x3E046853,0x5789D266,0xE1219370,0xB2C420F8,0x3218BD4E,
0x84590D94,0xD51D3A8C,0xA3AB3D24,0x2A339E3D,0xFEE67A23,0xAF844391,
0x17465609,0xA99AD0A1,0x05CA597B,0x6024A656,0x0BF05203,0x8F559DDC,
0x894A1911,0x909F21B4,0x6A7B63CE,0xE28DD7E7,0x4178AA3D,0x4346A7AA,
0xA1845E4C,0x166735F4,0x639CA159,0x58940419,0x4E4F177A,0xD17959B2,
0x12AA6FFD,0x1D39A8BE,0x7667F5AC,0xED0CE165,0xF1658FD8,0x28B04E02,
0x1FA480CF,0xD3FB6FEF,0xED336CCB,0x9EE3CA39,0x9F224202,0x2D12D6E8,
0xFAAC50CE,0xFA1E98AE,0x61498532,0x03678CC0,0x9E85EFD7,0x3069CE1A,
0xF115D008,0x4553AA9F,0x3194BE09,0xB4A9367D,0x0A9DFEEC,0x7CA002D6,
0x8E53A875,0x965E8183,0x14D79DAC,0x0192B555};
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sbox2[256]={
0xA94BC384,0xF7A81CAE,0xAB84ECD4,0x00DEF340,0x8E2329B8,0x23AF3A22,
0x23C241FA,0xAED8729E,0x2E59357F,0xC3ED78AB,0x687724BB,0x7663886F,
0x1669AA35,0x5966EAC1,0xD574C543,0xDBC3F2FF,0x4DD44303,0xCD4F8D01,
0x0CBF1D6F,0xA8169D59,0x87841E00,0x3C515AD4,0x708784D6,0x13EB675F,
0x57592B96,0x07836744,0x3E721D90,0x26DAA84F,0x253A4E4D,0xE4FA37D5,
0x9C0830E4,0xD7F20466,0xD41745BD,0x1275129B,0x33D0F724,0xE234C68A,
0x4CA1F260,0x2BB0B2B6,0xBD543A87,0x4ABD3789,0x87A84A81,0x948104EB,
0xA9AAC3EA,0xBAC5B4FE,0xD4479EB6,0xC4108568,0xE144693B,0x5760C117,
0x48A9A1A6,0xA987B887,0xDF7C74E0,0xBC0682D7,0xEDB7705D,0x57BFFEAA,
0x8A0BD4F1,0x1A98D448,0xEA4615C9,0x99E0CBD6,0x780E39A3,0xADBCD406,
0x84DA1362,0x7A0E984B,0xBED853E6,0xD05D610B,0x9CAC6A28,0x1682ACDF,
0x889F605F,0x9EE2FEBA,0xDB556C92,0x86818021,0x3CC5BEA1,0x75A934C6,
0x95574478,0x31A92B9B,0xBFE3E92B,0xB28067AE,0xD862D848,0x0732A22D,
0x840EF879,0x79FFA920,0x0124C8BB,0x26C75B69,0xC3DAAAC5,0x6E71F2E9,
0x9FD4AFA6,0x474D0702,0x8B6AD73E,0xF5714E20,0xE608A352,0x2BF644F8,
0x4DF9A8BC,0xB71EAD7E,0x6335F5FB,0x0A271CE3,0xD2B552BB,0x3834A0C3,
0x341C5908,0x0674A87B,0x8C87C0F1,0xFF0842FC,0x48C46BDB,0x30826DF8,
0x8B82CE8E,0x0235C905,0xDE4844C3,0x296DF078,0xEFAA6FEA,0x6CB98D67,
0x6E959632,0xD5D3732F,0x68D95F19,0x43FC0148,0xF808C7B1,0xD45DBD5D,
0x5DD1B83B,0x8BA824FD,0xC0449E98,0xB743CC56,0x41FADDAC,0x141E9B1C,
0x8B937233,0x9B59DCA7,0xF1C871AD,0x6C678B4D,0x46617752,0xAAE49354,
0xCABE8156,0x6D0AC54C,0x680CA74C,0x5CD82B3F,0xA1C72A59,0x336EFB54,
0xD3B1A748,0xF4EB40D5,0x0ADB36CF,0x59FA1CE0,0x2C694FF9,0x5CE2F81A,
0x469B9E34,0xCE74A493,0x08B55111,0xEDED517C,0x1695D6FE,0xE37C7EC7,
0x57827B93,0x0E02A748,0x6E4A9C0F,0x4D840764,0x9DFFC45C,0x891D29D7,
0xF9AD0D52,0x3F663F69,0xD00A91B9,0x615E2398,0xEDBBC423,0x09397968,
0xE42D6B68,0x24C7EFB1,0x384D472C,0x3F0CE39F,0xD02E9787,0xC326F415,
0x9E135320,0x150CB9E2,0xED94AFC7,0x236EAB0F,0x596807A0,0x0BD61C36,
0xA29E8F57,0x0D8099A5,0x520200EA,0xD11FF96C,0x5FF47467,0x575C0B39,
0x0FC89690,0xB1FBACE8,0x7A957D16,0xB54D9F76,0x21DC77FB,0x6DE85CF5,
0xBFE7AEE9,0xC49571A9,0x7F1DE4DA,0x29E03484,0x786BA455,0xC26E2109,
0x4A0215F4,0x44BFF99C,0x711A2414,0xFDE9CDD0,0xDCE15B77,0x66D37887,
0xF006CB92,0x27429119,0xF37B9784,0x9BE182D9,0xF21B8C34,0x732CAD2D,
0xAF8A6A60,0x33A5D3AF,0x633E2688,0x5EAB5FD1,0x23E6017A,0xAC27A7CF,
0xF0FC5A0E,0xCC857A5D,0x20FB7B56,0x3241F4CD,0xE132B8F7,0x4BB37056,
0xDA1D5F94,0x76E08321,0xE1936A9C,0x876C99C3,0x2B8A5877,0xEB6E3836,
0x9ED8A201,0xB49B5122,0xB1199638,0xA0A4AF2B,0x15F50A42,0x775F3759,
0x41291099,0xB6131D94,0x9A563075,0x224D1EB1,0x12BB0FA2,0xFF9BFC8C,
0x58237F23,0x98EF2A15,0xD6BCCF8A,0xB340DC66,0x0D7743F0,0x13372812,
0x6279F82B,0x4E45E519,0x98B4BE06,0x71375BAE,0x2173ED47,0x14148267,
0xB7AB85B5,0xA875E314,0x1372F18D,0xFD105270,0xB83F161F,0x5C175260,
0x44FFD49F,0xD428C4F6,0x2C2002FC,0xF2797BAF,0xA3B20A4E,0xB9BF1A89,
0xE4ABA5E2,0xC912C58D,0x96516F9A,0x51561E77};
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Abstract. A new solution to the millionaire problem is designed on
the base of two new techniques: zero test and batch equation. Zero test
is a technique used to test whether one or more ciphertext contains a
zero without revealing other information. Batch equation is a technique
used to test equality of multiple integers. Combination of these two tech-
niques produces the only known solution to the millionaire problem that
is correct, private, publicly verifiable and efficient at the same time.

Keywords: millionaire problem, efficiency, verifiability, zero test, batch
equation.

1 Introduction

In the millionaire problem, two millionaires want to compare their richness with-
out revealing their wealth. This problem can be formulated as a comparison of
two ciphertexts without decrypting them. Many solutions to the millionaire prob-
lem [3, 6, 8, 9, 10, 13, 16, 15, 24, 19, 20, 4, 5, 31, 12, 2] have been proposed. However,
none of them are both verifiable and efficient.

In this paper, a new solution to the millionaire problem is proposed. This
new solution is based on two new techniques: zero test and batch equation.
The zero test is an interactive multiparty protocol which takes as input one or
more ciphertexts and outputs 0 if at least one ciphertext is an encryption of 0,
and outputs 1 otherwise. Batch equation allows equality between multiple pairs
to be checked simultaneously, using randomised inputs. A circuit to solve the
millionaire problem is reduced to a zero test with the help of homomorphism of
the employed encryption algorithm and batch equation. Then the zero test is
performed by some participants (e.g. the two millionaires themselves) without
revealing their wealth. This scheme is the only known correct, private, publicly
verifiable and efficient solution to the millionaire problem.

The structure of the rest of this paper is as follows. In Section 2, the million-
aire problem is introduced and drawbacks of the currently existing solutions are
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pointed out. In Section 3, fundamental cryptographic primitives to be employed
in this paper are recalled. In Section 4 and Section 5, an original cryptographic
primitive — zero test — and a theorem about batch equation are proposed. In
Section 6 and Section 7, a novel solution to the millionaire problem is presented
and analysed. In Section 8, the paper is concluded.

2 The Millionaire Problem

In the millionaire problem, two millionaires want to compare who is richer with-
out revealing their wealth. So they encrypt their wealth and the two ciphertexts
should be compared. Some participants (often the two millionaires themselves)
are employed to process the two ciphertexts and find out which contains a larger
message. Any solution to the millionaire problem must be correct, private and
verifiable according to the following standards.

– Correctness: If every participant is honest, the correct result is obtained.
– Privacy: After the computation, different entities’ knowledge about the two

messages is as follows:
• a millionaire: his wealth, the result and what can be deduced from them;
• others: at most the result and what can be deduced from it.

– Verifiability: Each participant can verify that the other participants are hon-
est in their computation.

Fischlin [12] argued that the participants have no motivation to deviate from
the protocol if they are input providers (millionaires). To support his claim, he
gave an example, the “flighting ticket” problem and solved it as an application
of the millionaire problem. However, verifiability is necessary to a solution to the
millionaire problem in a general sense and needed in many of its applications like
auctions. Even in the “flighting ticket” problem, motivation to deviate cannot
be completely omitted and verifiability may still be needed.

Most current solutions to the millionaire problem are general-purpose and
can deal with other applications than the millionaire problem, while some (like
[12]) only deal with the millionaire problem. Two methods have been used to
solve the millionaire problem. The first method is based on encrypted truth ta-
bles. Namely, a truth table of each logic gate in a circuit is encrypted and the
rows in every table are shuffled, so that each gate can be evaluated with its
inputs and output in ciphertext. The second method is based on logic homo-
morphism of encryption schemes. As special encryption algorithms are designed
to be homomorphic in regard of the logical relation in the gates in the circuit,
the evaluation can be realized by computing the ciphertexts of the inputs to the
function without the help of any truth table.

The recent schemes employing the first method include [24], [20], [10], [19]
and [5]. In [24], a circuit is generated by an authority AI and sent to another
authority A, who uses it to process the ciphertext inputs. A hash function is
employed in the truth tables to link their inputs to their outputs. Oblivious
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transfer is employed to submit the inputs to the function confidentially. Correct-
ness of the circuit is guaranteed by a cut-and-choose mechanism. Correctness
of the computation is guaranteed by one-wayness of the hash function and an
assumption that AI and A do not conspire. As the oblivious transfer primitive
employed in [24] is not verifiable, AI can modify the inputs to the circuit without
being detected. This problem was fixed by Juels and Szydlo [20]. They design a
primitive called verifiable 1-out-of-2 oblivious transfer, which is slightly less effi-
cient than the 1-out-of-2 oblivious transfer in [24], but prevents AI from cheating
alone. Other drawbacks of [24] are (1) the cut-and-choose mechanism to guar-
antee circuit correctness is highly inefficient in communication as a few circuits
must be transported from AI to A; (2) correctness of the auction relies on trust
that the two authorities do not collude and is not publicly verifiable1; (3) the
oblivious transfer used for bid submission is not efficient (both in computation
and communication).

In [10], [19] and [5], correctness of circuit and evaluation can be publicly veri-
fied with help of public-key cryptology. So the costly cut-and-choose mechanism
is removed and correctness is not based on any trust. However, public-key cryp-
tology is much less efficient in computation than the hash function computation
in [24] and [20]. As the number of gates in a circuit is not small and construc-
tion, evaluation and the corresponding validity verification in each gate requires
hundreds of exponentiations, an extremely high computational cost.

The recent schemes employing the second method include [31], [2] and [12].
The schemes in [31] and [12] limit the computation to a two-input-provider
one-participant situation and employ a technique called non-interactive cryp-
tocomputing, where one input provider encrypts his input and the other input
provider acts as the participant to perform the computation on the encrypted in-
put. The scheme in [2] is a multiparty version of [31]. In [31], NOT and OR gates
are used to construct the circuits while Goldwasser-Micali encryption or ElGa-
mal encryption are extended to be NOT and OR homomorphic to calculate NOT
and OR logic in ciphertext. Extension of logic homomorphism is implemented by
expanding and combining ciphertexts. This expansion and combination mech-
anism brings two problems. The first problem is that the distribution of the
expression of the final result is dependent on the circuit (namely the input of
the participant), which violates privacy. The second problem is that the length
of ciphertexts increases quickly as the computations go on, which brings a heavy
burden on computation and communication. The efficiency pressure is so great,
that depth of the circuit (thus number and length of the inputs) is strictly lim-
ited in [31]. The scheme in [2] also has these two drawbacks. Non-interactive

1 Although it is said in [24] that “A naive verification procedure is to require the
auctioneer to publish the tables and garbled input values of the circuit (signed by
the AI), and allow suspecting bidders to simulate its computation”, this verification
procedure violates the basic rule in [24] that AI alone cannot know the bids. So
another verification method based on “signed ‘translation’ table” in [24] has to be
employed. Soundness of this verification method is based on an assumption that AI
does not reveal the ‘translation’ table to A.
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cryptocomputing brings a third problem to [31]: lack of verifiability. Although
Sander et al suggested the usage of a fault tolerance mechanism, it requires to
run the non-interactive cryptocomputing protocol many times, so is impractical
in efficiency. To overcome the first two problems in [31], Fischlin [12] proposed
a non-interactive cryptocomputing protocol, which sacrifices generality in [31]
and only deals with the millionaire problem. In [12], NOT, XOR and AND gates
are used to construct the circuits while Goldwasser-Micali encryption (which is
NOT and XOR homomorphic) is extended to be AND homomorphic. Ciphertext
expansion in [12] is not continual and does not bring the influence of the circuit
to the distribution of the expression of the final result. Although the first two
problems are overcome, [12] lacks verifiability too. As it employs non-interactive
cryptocomputing, there is no practical verification mechanism.

So far, there is not any correct, private, verifiable and efficient solution to the
millionaire problem. A correct, private, verifiable and efficient solution to the
millionaire problem will be designed in this paper. The new technique employs
the second method, but in a novel way.

3 Fundamental Primitives

Two fundamental primitives to be used in this paper are introduced in this
section.

3.1 Mix Network

A mix network [18, 29, 30] mixes a number of encrypted inputs to the same
number of outputs, while the link between the inputs and the outputs is kept
secret. A mix network is usually composed of some mixing servers, each of which
re-encrypts (or decrypts) and permutes the inputs in turn. The following two
properties are usually required.

1. Correctness: the plaintexts of outputs must be a permutation of the plain-
texts of the inputs.

2. Privacy: the permutation between the inputs and the outputs is unknown.

Correctness of a mix network must be publicly verifiable. There are two methods
to verify correctness of a mix network.

1. Global verification: after all the servers have finished their mixing and the
outputs are decrypted, a final verification is performed on the outputs in
plaintext.

2. Individual verification: immediately after each server’s mixing, he has to
prove that his mixing is correct and the proof is verified instantly.

Usually, mix network with global verification is more efficient, but global veri-
fication requires that some parties must know the plaintexts in the inputs and
can only be performed after the outputs are decrypted.
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3.2 Modified ElGamal Encryption

ElGamal encryption is modified slightly as follows to be additive homomorphic.

– Integers p and q are large primes, such that p = 2q+1. Integer g is a generator
of the cyclic subgroup of order q in Z∗

p .
– The private key is an integer x in Zq and the public key is (p, g, y =

gx mod p).
– Encryption: a message m in Zq is encrypted into c = (a, b) = (gr mod

p, gmyr mod p) where r is randomly chosen from Zq.
– Decryption: given a ciphertext c = (a, b), firstly d = b/ax mod p is calculated,

then a search is performed to find m = logg d.

As in this paper decryption is only employed to test whether a ciphertext con-
tains a zero or not, the search becomes a comparison of d and 1 (m = 0 iff
d = 1).

In the rest of this paper,

– unless specified all the computations are performed modulo p;
– when c1 and c2 are two modified ElGamal ciphertexts and c1 = (a1, b1),

c2 = (a2, b2)
• c1c2 = (a1a2, b1b2);
• c1/c2 = (a1a

−1
2 , b1b

−1
2 );

• cγ
1 = (aγ

1 , b
γ
1).

4 A Building Block—Zero Test

Zero test is a new technique to test whether one or more ciphertexts contain a
zero without decrypting them. The employed encryption algorithm E() must be
semantically secure2 and additive homomorphic: E(m1)E(m2) = E(m1 + m2).
The corresponding decryption function is D(), which must be a distributed de-
cryption function. The modified ElGamal encryption in Section 3.2 is employed
in this paper3. In this modified ElGamal encryption, an exponentiation with
the message as its exponent is encrypted using normal ElGamal encryption,
so it is additive homomorphic. As ElGamal encryption is based on DL prob-
lem, distributed key generation [11, 27, 14] without any trusted party can be
implemented efficiently. Although usually a search of logarithm is needed in the
decryption function of the modified ElGamal encryption, the costly search is not

2 Roughly, an encryption algorithm is said to be semantically secure if given m0, m1

and c = E(mk) where k = 0 or 1, the difference between the probability that k
can be correctly guessed and 0.5 is negligible. See [23–Page 306] for more formal
definition.

3 Paillier encryption [25] with distributed decryption could be used, but distributed
generation of an encryption system based on factorization problem is highly ineffi-
cient.
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necessary in this paper, where any decryption is only performed to test whether
the encrypted message is a known certain value, say zero. So application of the
modified ElGamal encryption in this paper is efficient.

4.1 Simple Zero Test

We start with a simple case: to test a single ciphertext. Given a ciphertext c, it
is required to test whether D(c) = 0 without revealing D(c). The test is denoted
as simple zero test ZT (c), which outputs 0 if D(c) = 0, 1 if D(c) �= 0. This
technique is similar to a equality test technique in [22]. However, a multiparty
test is used here while 2 two-party test is used in [22]. Suppose the private key
is shared by some authorities A1, A2, . . . , Am with a threshold secret sharing.
The simple zero test is as follows.

1. Randomization
Each Al chooses a random integer rl from {2, 3, . . . , q − 1} and calculates
cl = crl

l−1 to randomise the ciphertext where c0 = c. It is publicly verifiable
that cl �= 1 (al �= 1 is verified where cl = (al, bl)) and cl �= cl−1, so it is
ensured that rl > 1. Each Al proves cl is an exponentiation of cl−1 for l =
1, 2, . . . ,m using a proof of equality of logarithms [7]: logal−1

al = logbl−1
bl.

2. Decryption
The authorities cooperate to calculate d = D(cm) and prove the correctness
of the distributed decryption using Chaum-Pedersen proof of equality of
logarithms in [7] (see [27, 28] for details of distributed ElGamal decryption
and its correctness verification). The output of the zero test is then as follows.

ZT (c) =
{

0 if d = 0
1 if d �= 0 (1)

Theorem 1. ZT () is correct (if D(c) = 0, then ZT (c) = 0) and sound (if
D(c) �= 0, then ZT (c) = 1).

Proof: As the correctness proof of randomization (proof of equality of logarithms
[7]) is sound (if Al does not know rl such that cl = crl

l−1, he can pass the verifica-

tion with only a negligible probability), cm = c
∏m

l=1
rl with an overwhelmingly

large probability (in regard to the length of the challenge in the proof of knowl-
edge of logarithm in [32] or in the proof of equality of logarithms in [7]) if the
randomization is verified to be valid.

As the proof of correctness of decryption (Chaum-Pedersen proof of equality
of logarithms in [7]) is sound (incorrect decryption can pass the decryption veri-
fication with only a negligible probability), ZT (c) = D(cm) with an overwhelm-
ingly large probability (in regard to the length of the challenge in the Chaum-
Pedersen proof of equality of logarithms in [7]) if the decryption is verified to be
valid. So ZT (c) = D(c

∏m

l=1
rl) with an overwhelmingly large probability.

As E() is additive homomorphic, D(c
∏m

l=1
rl) = D(c)

∏m
l=1 rl. So ZT (c) =

D(c)
∏m

l=1 rl if the whole verification succeeds. So, if D(c) = 0, ZT (c) = 0,
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therefore ZT () is correct. As it is publicly verifiable that cm �= 1, it is guaranteed∏m
l=1 rl �= 0 mod q. So if D(c) �= 0, then ZT (c) �= 0. �

Theorem 2. ZT () is private. (No information about D(c) is revealed except
whether it is zero if at least one participant conceals his mixing and the number
of dishonest authorities is not over the sharing threshold.)

Proof: The correctness proof of randomization (proof of equality of logarithms
in [7]) is special honest-verifier zero knowledge, so rl is kept secret in the proof.
Moreover, if the number of dishonest authorities is not over the threshold, none
of c0, c1, . . . cm−1 can be decrypted. So the only revealed information about D(c)
is D(c)

∏m
l=1 rl, from which the cooperation of all the authorities is necessary

to deduce D(c). Moreover, D(c)
∏m

l=1 rl is uniformly distributed in the message
space of the encryption algorithm. So, if the number of dishonest authorities
is not over the sharing threshold (thus no ciphertext but cm can be decrypted
and at least one authority Al chooses rl randomly), D(c)

∏m
l=1 rl is uniformly

distributed and independent of D(c). Therefore, if the number of dishonest au-
thorities is not over the sharing threshold, no information about D(c) is revealed
except whether it is zero. �

Simple zero test is publicly verifiable as both randomization and distributed
decryption are publicly verifiable.

4.2 Complex Zero Test

As ZT () can only test whether a single ciphertext is an encryption of zero, it
cannot work when there are more than one ciphertext to test (to be zero or
not). In a complex zero test, it is required to test whether there is at least one
encryption of zero in multiple ciphertexts without revealing any other informa-
tion about the messages encrypted in the ciphertexts. Suppose ciphertexts ci for
i = 1, 2, . . . , n are the encrypted inputs to test. The complex zero test is denoted
as ZM(c1, c2, . . . , cn), which returns 0 iff there is at least one encryption of zero
in ci for i = 1, 2, . . . , n. The test ZM(c1, c2, . . . , cn) is implemented as follows
where the decryption key is shared by authorities A1, A2, . . . , Am.

1. Mix network
The authorities act as mixing servers and set up a mix network to mix ci

for i = 1, 2, . . . , n to ciphertexts c′i for i = 1, 2, . . . , n. The mix network
must be correct and private. As it is not desired to decrypt the outputs c′i
for i = 1, 2, . . . , n in this paper, correctness of the mixing must be publicly
verifiable without decrypting them. So mix networks with global verification
[26, 17, 29] cannot be employed although they are very efficient. Among the
mix networks employing individual verification, [18] and [30] are good choices
here. Both of them are efficient and their correctness and privacy are strong
enough for many applications including zero test. [30] is more efficient than
[18], but achieves weaker privacy.4

4 Shuffling in groups and batch verification of validity of shuffling are employed in [30].
The grouping operation leads to high efficiency, but weakens privacy a little.
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2. Simple zero tests
The authorities then cooperate to perform ZT (c′i) for i = 1, 2, . . . , n one by
one until a zero is found in one simple zero test or all the n simple tests
finish. The output of the zero test is then as follows.

ZM(c1, c2, . . . , cn) =
{

0 if a zero is found in one simple zero test
1 if no zero is found after all the simple tests finish

(2)

Theorem 3. ZM() is correct and sound (ZM(c1, c2, . . . , cn) = 0 iff there is at
least one encryption of zero in ci for i = 1, 2, . . . , n).

Proof: Equation (2) indicates that ZM(c1, c2, . . . , cn) = 0 iff ZT (c′i) = 0 for
some i in {1, 2, . . . , n}. As each ZT () is correct and sound, ZT (c′i) = 0 iff c′i
encrypts a zero. So ZM(c1, c2, . . . , cn) = 0 iff c′i encrypts a zero for some i in
{1, 2, . . . , n}.

As the employed mix network ([18] or [30]) is correct, {D(c′1), D(c′2), . . . ,
D(c′n)} = {D(c1), D(c2), . . . , D(cn)}. So ZM(c1, c2, . . . , cn) returns zero iff
D(ci) = 0 for some i in {1, 2, . . . , n}. �

Theorem 4. ZM() is private. (No information about D(ci) for i = 1, 2, . . . , n
is revealed except whether there is at least one zero among them if at least one
authority conceals his mixing and the number of dishonest authorities is not over
the sharing threshold.)

Proof: As ZT () is private, no information about D(c′i) for i = 1, 2, . . . , n is
revealed in ZM() except whether at least one of them is zero and the index of
the first zero among them (if there is at least one zero). As the employed mix
([18] or [30] ) network is private, no link is known between c1, c2, . . . , cn and
c′1, c

′
2, . . . , c

′
n if at least one authority conceals his mixing and the number of

dishonest authorities is not over the sharing threshold. So no information about
D(c′i) for i = 1, 2, . . . , n is revealed in ZM() except whether at least one of them
is zero. �

Complex zero test is publicly verifiable as both the mix network and simple zero
test are publicly verifiable.

5 Batch Equation

To apply zero test to the millionaire problem, the following theorem about batch
equation is necessary. Batch equation is a technique to test equality of each
pair of integers in multiple pairs. The idea is similar to the so called “batch
verification” [1]. However, unlike batch verification, no zero-knowledge proof or
verification is involved in batch equation.

Theorem 5. When there exists yi �= zi mod q with any i in {1, 2, . . . , n},∑n
i=1 yiti =

∑n
i=1 ziti mod q with a probability no more than 2−T if q is a prime,

ti is randomly chosen from {0, 1, 2, . . . , 2T − 1} for i = 1, 2, . . . , n and q ≥ 2T .

To prove Theorem 5, a lemma is proved first.



An Efficient and Verifiable Solution to the Millionaire Problem 59

Lemma 1. Suppose t1, t2, . . . , tv−1, tv+1, tv+2, . . . , tn are constant. If q is a
prime, yv �= zv mod q, q ≥ 2T and

∑n
i=1 yiti =

∑n
i=1 ziti mod q, then there is

only one possible T -bit solution for tv.

Proof: If this lemma is not correct, then the following two equations can be
satisfied simultaneously where yv �= zv mod q, |tv| = |t̂v| = T and tv �= t̂v.

n∑
i=1

yiti =
n∑

i=1

ziti mod q (3)

(
v−1∑
i=1

yiti) + yv t̂v +
n∑

i=v+1

yiti = (
v−1∑
i=1

ziti) + zv t̂v +
n∑

i=v+1

ziti mod q (4)

Subtracting (4) from (3) yields

yv(tv − t̂v) = zv(tv − t̂v) mod q

So
(yv − zv)(tv − t̂v) = 0 mod q

Note that tv − t̂v �= 0 mod q because q ≥ 2T and |tv| = |t̂v| = T .
As q is a prime, yv − zv = 0 mod q. A contradiction to the statement yv �=
zv mod q is found. Therefore, the lemma is correct. �

Proof of Theorem 5: Lemma 1 implies that among the (2T )n possible combi-
nations of {t1, t2, . . . , tn} in {0, 1, 2, . . . , 2T − 1}n, at most (2T )n−1 of them can
satisfy

∑n
i=1 yiti =

∑n
i=1 ziti mod q when yv �= zv mod q. So if yv �= zv mod q

and ti are randomly chosen from {0, 1, 2, . . . , 2T − 1} for i = 1, 2, . . . , n, then∑n
i=1 yiti =

∑n
i=1 ziti mod q is satisfied with probability no more than 2−T . �

6 Solution to the Millionaire Problem

The millionaire problem is solved in a circuit to compare two ciphertexts to deter-
mine which one contains a larger message without decrypting them. The circuit
is implemented through three levels of computation as shown in Statement (5),
which is true iff D(c1) > D(c2).

(D(c1,1) = 1 ∧D(c2,1) = 0) ∨ (D(c1,1) = D(c2,1) ∧D(c1,2) = 1 ∧D(c2,2) = 0)
∨ . . . ∨ (D(c1,1) = D(c2,1) ∧D(c1,2) = D(c2,2) (5)
∧ . . . ∧D(c1,L−1) = D(c2,L−1) ∧D(c1,L) = 1 ∧D(c2,L) = 0)

At the innermost level, there are tests of bit equality and tests of bit difference,
which can be implemented with the help of homomorphism of the employed
encryption algorithm. At the middle level, there are computations of “AND”
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logic, which can be implemented with the help of batch equation and homomor-
phism of the employed encryption algorithm. At the outermost level, there are
computations of “OR” logic, which can be implemented using zero test.

Suppose the two messages are encrypted bit by bit as c1 = (c1,1, c1,2, . . . , c1,L)
and c2 = (c2,1, c2,2, . . . , c2,L) where the most significant bit is on the left. The
solution is as follows.

1. The participants (e.g. the two millionaires) corporately and randomly choose
ti from {0, 1, 2, . . . , 2T − 1} for i = 1, 2, . . . , n. For example, one million-
aire randomly chooses t1,i for i = 1, 2, . . . , n and publishes H(t1,i) for i =
1, 2, . . . , n while the other randomly chooses t2,i for i = 1, 2, . . . , n and pub-
lishes H(t2,i) for i = 1, 2, . . . , n where H() is a one-way and collision-resistant
hash function. Then they publish ti,1, ti,2 for i = 1, 2, . . . , n and calculate
ti = ti,1 + ti,2 mod 2T for i = 1, 2, . . . , n.

2. The participants act as the authorities in ZM() and perform

ZM ( c1,1/(E(1)c2,1) , (c1,1/c2,1)t1(c1,2/(E(1)c2,2))t2 , . . .

(
L−1∏
i=1

(c1,i/c2,i)ti) (c1,L/(E(1)c2,L))tL ) (6)

where the modified ElGamal encryption in Section 3.2 is employed and
E(1) = (1, g). Then D(c1) is declared to be larger than D(c2) iff State-
ment (6)=0.

Theorem 6. The solution to the millionaire problem through Statement (6) is
a correct and sound with an overwhelmingly large probability (D(c1) > D(c2) iff
Statement (6)=0 with an overwhelmingly large probability).

Proof: D(c1) > D(c2) iff Statement (5) is true. According to additive homomor-
phism of the modified ElGamal encryption, Statement (5) is equivalent to

D(c1,1/(E(1)c2,1)) = 0 ∨ (D(c1,1/c2,1) = 0 ∧D(c1,2/(E(1)c2,2)) = 0) ∨
. . . ∨ (D(c1,1/c2,1) = 0 ∧D(c1,2/c2,2) = 0 ∧ . . . (7)
∧D(c1,L−1/c2,L−1) = 0 ∧D(c1,L/(E(1)c2,L)) = 0)

According to Theorem 5, with an overwhelmingly large probability Statement (7)
is equivalent to

D(c1,1/(E(1)c2,1)) = 0 ∨ t1D(c1,1/c2,1) + t2D(c1,2/(E(1)c2,2)) = 0 ∨
. . . ∨ t1D(c1,1/c2,1) + t2D(c1,2/c2,2) + . . . (8)
+tL−1D(c1,L−1/c2,L−1) + tLD(c1,L/(E(1)c2,L)) = 0

According to additive homomorphism of the modified ElGamal encryption, State-
ment (8) is equivalent to

(D(c1,1/(E(1)c2,1)) = 0 ∨ D((c1,1/c2,1)t1(c1,2/(E(1)c2,2))t2) = 0 (9)

∨ . . . ∨ D((
L−1∏
i=1

(c1,i/c2,i)ti)(c1,L/(E(1)c2,L))tL) = 0
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So D(c1) > D(c2) iff one of the L clauses in Statement (9) is true. As ZM() is
correct and sound method to test whether there is any zero encrypted in some
ciphertexts, Statement (9) can be evaluated through Statement (6). Therefore,
D(c1) > D(c2) iff Statement (6)=0 with an overwhelmingly large probability. �

Theorem 7. The solution to the millionaire problem through Statement (6) is
private.

Proof: The computations in Statement (6) before the zero test are in ciphertext
and involves no decryption, so are private. The computation in ZM() is private
as proved in Theorem 4. So the computations in Statement (6) are private. �

7 Analysis

Suppose the two millionaires act as the participants, the cost of the solution of
the millionaire problem includes:

– (L + 2)(L− 1) short exponentiations (T -bit exponent)
– 2L divisions;
– about 16L full-length exponentiations for the mix network in [18] or 2(2L+

k(4k− 2)) full-length exponentiations for the mix network in [30] where k is
a small parameter unrelated to L;

– average of L/2 simple zero tests: 2L full-length exponentiations, L proofs
of equality of logarithms (costing 2L full-length exponentiations) and L/2
distributed decryptions and validity proof of decryptions (costing 3L full-
length exponentiations).

A comparison between the new solution to the millionaire problem and solu-
tions based on the existing solutions is provided in Table 1. The schemes in [10]
and [2] are similar to [19] and [31] respectively, so are not analysed separately. In
the schemes in Table 1, only [12] and our proposed scheme provided a concrete
circuit to solve the millionaire problem. In [12], L + L(L − 1) two-input gates
are needed, while in our scheme, L+L(L− 1)/2 two-input gates are needed. In
the other schemes, at least 7L two-input gates are needed as analysed in [21].
In [31], the number of gates should be larger than 7L as only “NOT” and “OR”
gates are used. Even if only 7L two-input gates are employed in [31], ciphertext
expansion bring an intolerable cost for encryption and communication. As each
gate has only two inputs, those 7L gates must be in log2 7L levels. So in [31] at
least 8log2 7L = 343L3 ciphertexts must be transmitted. It is pointed out in [12]
that at least L4 multiplications are needed in [31]. In [12], L(L + 1)/2 “AND”
gates are needed, so λL(L + 3)/2 encryptions (each costly 1.5 multiplication in
average) and λL(L + 1)/2 multiplications are needed for “AND” gates. There
are L(L + 1)/2 multiplications for “XOR” and “NOT” computation in [12]. In
this analysis, the number of multiplications are accounted in computation and
transportation of integers with significant length (several hundred bits or longer)
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is accounted in regard of communication where K is the bit length of full-length
exponent (e.g 1024 bits). One full-length exponentiations is regarded as 1.5K
multiplications and computation of the product of n short exponentiations is
regarded as n + 0.5nT multiplications.

In the example in Table 1, K = 1024 and L = 100. Let t, the number of
cuttings in [20] and λ, the parameter in [12] be 40. The parameter k in the mix
network [30] is set to be 5, which is big enough to provide strong privacy.

The analysis in Table 1 indicates that both [12] and the proposed solution
can efficiently solve the millionaire problem with short inputs. Compared to the
proposed schemes, the scheme in [12] has a drawback: lack of verifiability. Is it
possible to overcome the drawback and make the scheme in [12] verifiable? A
naive method is to employ the shuffling-then-decryption technique from the pro-
posed scheme to [12]. However, this method is infeasible. Firstly, non-interactive
cryptocomputing implies that validity of the circuit is not verifiable. As the
circuit is dependent on the participant’s input, revealing the circuit violates pri-
vacy of the the participant’s input. Even if non-interactive cryptocomputing is
replaced by two-party computation in [12] and the circuit is independent on any
input, verifiability still cannot be practically achieved in [12]. Distributed key
generation for Goldwasser-Micali encryption (distributed generation of a secret
factorization) is much more costly than distributed key generation for ElGamal
encryption and distributing the Goldwasser-Micali private key between the two
participants without any trusted party is highly inefficient. Moreover, before the
encrypted result is output for decryption, the Lλ ciphertexts in it must be shuf-
fled using a re-encryption mix, otherwise privacy is violated. Although it may be
possible to design a verifiable re-encryption mix for Goldwasser-Micali cipher-
texts5, the large-scale shuffling (Lλ = 4000 when L = 100 and λ = 40) and proof-
verification of validity of the shuffling is too impractical. On the other hand, the
proposed solution to the millionaire problem can be modified to non-interactive
cryptocomputing to improve its efficiency. After the modification, distributed
decryption and the costly proof operations can be omitted, so that the proposed
scheme becomes much more efficient by sacrificing verifiability. Without veri-
fiability, the proposed scheme becomes more efficient than the scheme in [12].
In summary, the new solution achieves the best trade-off between security and
efficiency and provides the only general, correct, private, verifiable and efficient
solution for the millionaire problem.

8 Conclusion

A new solution to the millionaire problem is designed to achieve correctness,
privacy, verifiability and high efficiency, which have never been achieved simul-
taneously before. In the future, the possibility of using the techniques in this
paper to compute other functions will be investigated.

5 There is no such shuffling or mix at present.



An Efficient and Verifiable Solution to the Millionaire Problem 63

T
a
b
le

1
.
C

o
m

p
a
ri

so
n

o
f
so

lu
ti

o
n
s

o
f
th

e
m

il
li
o
n
a
ir

e
p
ro

b
le

m

C
o
rr

ec
tn

es
s

P
ri

va
cy

V
er

ifi
a
b
il
it
y

C
o
m

p
u
ta

ti
o
n

C
o
m

m
u
n
ic

a
ti

o
n

co
st

ex
a
m

p
le

co
st

ex
a
m

p
le

[2
4
]

Y
es

Y
es

N
o

≥
1
0
K

L
t

≥
4
0
9
6
0
0
0
0

≥
3
7
L

t
+

2
t

≥
1
4
8
0
8
0

[2
0
]

Y
es

Y
es

Y
es

≥
1
0
K

L
t

≥
4
0
9
6
0
0
0
0

≥
3
7
L

t
+

2
t

≥
1
4
8
0
8
0

[1
9
]

Y
es

Y
es

Y
es

av
er

a
g
e

3
1
8
4
6
4
0
0
6

av
er

a
g
e

1
6
2
6
0
6

3
1
1
0
K

L
+

6
1
6
2
6
L

+
6

[5
]

Y
es

Y
es

Y
es

av
er

a
g
e
≥

2
6
9
3
K

L
≥

2
7
5
7
6
3
2
0
0

≥
1
5
4
3
L

≥
1
5
4
3
0
0

[3
1
]

Y
es

N
o

N
o

L
4

>
1
0
0
0
0
0
0
0
0

≥
3
4
3
L

3
≥

3
4
3
0
0
0
0
0
0

[1
2
]

Y
es

Y
es

N
o

(1
.5

λ
L

(L
+

3
))

+
(λ

+
1
)L

(L
+

1
))

/
2

5
1
6
0
5
0

L
(λ

+
2
)

4
2
0
0

P
ro

p
o
se

d
sc

h
em

e
Y

es
Y

es
Y

es
av

er
a
g
e

2
7
7
2
0
5
8

av
er

a
g
e

2
5
0
0

u
si

n
g

[1
8
]
m

ix
(L

+
2
)(

L
−

1
)(

1
+

0
.5

T
)
+

2
5
K

L
2
5
L

P
ro

p
o
se

d
sc

h
em

e
Y

es
Y

es
Y

es
av

er
a
g
e

(L
+

2
)(

L
−

1
)(

1
+

0
.5

T
)

1
6
6
6
1
3
8

av
er

a
g
e

1
4
0
0

u
si

n
g

[3
0
]
m

ix
+

K
(2

L
+

2
(5

.5
L

+
4
k
(k

−
2
))

)
2
L

+
2
(5

.5
L

+
2
k

2
)



64 K. Peng et al.

Acnowledgement

This paper is sponsored by DP 0345458 ARC DISCOVERY/ 2003-2005 and LX
0346868.

References

1. Riza Aditya, Kun Peng, Colin Boyd, and Ed Dawson. Batch verification for equality
of discrete logarithms and threshold decryptions. In Second conference of Applied
Cryptography and Network Security, ACNS 04, volume 3089 of Lecture Notes in
Computer Science, pages 494–508, Berlin, 2004. Springer-Verlag.

2. D. Beaver. Minimal-latency secure function evaluation. In EUROCRYPT ’00,
Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 335–350. Springer, 2000.

3. Michael Ben-Or, Shafi Goldwasser, Joe Killian, , and Avi Wigderson. Multi-prover
interactive proofs: How to remove intractability assumptions. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC1988, pages
113–131, 1988.

4. Christian Cachin. Efficient private bidding and auctions with an oblivious third
party. In the 6th ACM Conference on Computer and Communications Secu-
rity, 1999. Available at http://www.tml.hut.fi/∼helger/crypto/link/protocols/
auctions.html.

5. Christian Cachin and Jan Camenisch. Optimistic fair secure computation (ex-
tended abstract). In CRYPTO ’00, pages 94–112, Berlin, 2000. Springer-Verlag.
Lecture Notes in Computer Science 1880.

6. D. Chaum, I. B. Damg̊ard, and J. van de Graaf. Multiparty computations ensuring
privacy of each party’s input and correctness of the result. In CRYPTO ’87, pages
87–119, Berlin, 1987. Springer-Verlag. Lecture Notes in Computer Science Volume
293.

7. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO ’92,
pages 89–105, Berlin, 1992. Springer-Verlag. Lecture Notes in Computer Science
Volume 740.

8. David Chaum, Claude Crepeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, STOC1988, pages 11–19, 1988.

9. Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Rabin.
Efficient multiparty computations secure against an adaptive adversary. In EURO-
CRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 311–326.
Springer, 1999.

10. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In EUROCRYPT ’01, Innsbruck,
Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer
Science, pages 280–299. Springer, 2001.

11. P Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th
Annual Symposium on Foundations of Computer Science, pages 427–437, 1987.

12. Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at
RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings,
volume 2020 of Lecture Notes in Computer Science, pages 457–472. Springer, 2001.



An Efficient and Verifiable Solution to the Millionaire Problem 65

13. Matthew K. Franklin and Stuart Haber. Joint encryption and message-efficient
secure computation. Journal of Cryptology 9(4), pages 217–232, 1996.

14. R Gennaro, S Jarecki, H Krawczyk, and T Rabin. Secure distributed key generation
for discrete-log based cryptosystems. In EUROCRYPT ’99, pages 123–139, Berlin,
1999. Springer-Verlag. Lecture Notes in Computer Science Volume 1592.

15. Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-
track multiparty computations with applications to threshold cryptography. In
Proceedings of the seventeenth annual ACM symposium on Principles of distributed
computing, PODC’98, pages 101 – 111, 1987.

16. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987,
pages 218–229, 1987.

17. Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and Ari Juels. Op-
timistic mixing for exit-polls. In ASIACRYPT ’02, pages 451–465, Berlin, 2002.
Springer-Verlag. Lecture Notes in Computer Science Volume 1592.

18. Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In Public Key
Cryptography 2003, pages 145–160, Berlin, 2003. Springer-Verlag. Lecture Notes
in Computer Science Volume 2567.

19. M Jakobsson and A Juels. Mix and match: Secure function evaluation via cipher-
texts. In ASIACRYPT ’00, pages 143–161, Berlin, 2000. Springer-Verlag. Lecture
Notes in Computer Science Volume 1976.

20. A. Juels and M. Szydlo. An two-server auction protocol. In Proc. of Financial
Cryptography, pages 329–340, 2002.

21. Kaoru Kurosawa and Wakaha Ogata. Bit-slice auction circuit. In 7th European
Symposium on Research in Computer Security, ESORICS2002, volume 2502 of
Lecture Notes in Computer Science Volume 2339, pages 24 – 38, Berlin, 2002.
Springer-Verlag.

22. H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test.
In ASIACRYPT ’03, volume 2894 of Lecture Notes in Computer Science, pages
416–433, Berlin, 2003. Springer.

23. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC press, 1996.

24. Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy perserving auctions and
mechanism design. In ACM Conference on Electronic Commerce 1999, pages 129–
139, 1999.

25. P Paillier. Public key cryptosystem based on composite degree residuosity classes.
In EUROCRYPT ’99, pages 223–238, Berlin, 1999. Springer-Verlag. Lecture Notes
in Computer Science Volume 1592.

26. C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all/nothing
election scheme. In EUROCRYPT ’93, pages 248–259, Berlin, 1993. Springer-
Verlag. Lecture Notes in Computer Science Volume 765.

27. Torben P. Pedersen. A threshold cryptosystem without a trusted party. In EU-
ROCRYPT ’91, pages 522–526, Berlin, 1991. Springer-Verlag. Lecture Notes in
Computer Science Volume 547.

28. Torben P. Pedersen. Distributed Provers and Verifiable Secret Sharing Based on the
Discrete Logarithm Problem. PhD thesis, Computer Science Department, Aarhus
University,Aarhus, Denmark, 1992.



66 K. Peng et al.

29. Kun Peng, Colin Boyd, Edward Dawson, and Kapali Viswanathan. Efficient im-
plementation of relative bid privacy in sealed-bid auction. In The 4th International
Workshop on Information Security Applications, WISA2003, volume 2908 of Lec-
ture Notes in Computer Science, pages 244–256, Berlin, 2003. Springer-Verlag.

30. Kun Peng, Colin Boyd, Edward Dawson, and Kapali Viswanathan. A correct,
private and efficient mix network. In 2004 International Workshop on Practice
and Theory in Public Key Cryptography, pages 439–454, Berlin, 2004. Springer-
Verlag.

31. Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing
for NC1. In 40th Annual Symposium on Foundations of Computer Science, New
York, NY, USA, FOCS ’99, pages 554–567, 1999.

32. C Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4, 1991, pages 161–174, 1991.



All in the XL Family: Theory and Practice

Bo-Yin Yang1,� and Jiun-Ming Chen2

1 Department of Mathematics, Tamkang University, Tamsui, Taiwan
by@moscito.org

2 Chinese Data Security, Inc., & National Taiwan U
jmchen@math.ntu.edu.tw

Abstract. The XL (eXtended Linearization) equation-solving algo-
rithm belongs to the same extended family as the advanced Gröbner
Bases methods F4/F5. XL and its relatives may be used as direct at-
tacks against multivariate Public-Key Cryptosystems and as final stages
for many “algebraic cryptanalysis” used today. We analyze the applica-
bility and performance of XL and its relatives, particularly for generic
systems of equations over medium-sized finite fields.

In examining the extended family of Gröbner Bases and XL from the-
oretical, empirical and practical viewpoints, we add to the general un-
derstanding of equation-solving. Moreover, we give rigorous conditions
for the successful termination of XL, Gröbner Bases methods and rela-
tives. Thus we have a better grasp of how such algebraic attacks should
be applied. We also compute revised security estimates for multivariate
cryptosystems. For example, the schemes SFLASHv2 and HFE Challenge
2 are shown to be unbroken by XL variants.

Keywords: algebraic analysis, finite field, Gröbner Bases, multivariate
quadratics, multivariate cryptography, XL.

1 Introduction

Public Key Cryptography depends on the intractibility of “hard problems”. Solv-
ing a system of quadratic equations over a finite field is one such (known to be
NP-hard, [33]) problem. Further, often in a cryptographical primitive we find
a polynomial system of equations to hold with good probability. This is called
algebraic cryptanalysis, currently a very hot topic. Ergo, knowing how fast we
can solve polynomial systems is important.

XL is an equation-solving method related to Gröbner Bases ([2, 54]). It was
proposed1 by Courtois-Klimov-Patarin-Shamir ([20]). Claims of cryptanalysis in-
volving XL-like system-solving have been made against many primitives: stream

� Supported by National Science Council of Taiwan under grant NSC 93-2115-M-032-
008.

1 XL is often regarded as a descendant of Kipnis-Shamir’s relinearization ([37]), used
in an algebraic attack on HFE, but we will discuss only XL-related methods from
now on.

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 67–86, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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ciphers like Toyocrypt ([15]) and E0 (the Bluetooth protocol, [16]), block ci-
phers like Rijndael/AES and Serpent ([21]), and multivariate PKC’s like HFE
and SFLASHv2 ([17]).

XL does not operate on underdetermined systems, we must first take guesses
to make it determined or over-determined. Henceforth we concern ourselves with
solving the system �1(x) = �2(x) = · · · = �m(x) = 0 of m ≥ n (quadratic unless
otherwise specified) equations in n variables x = (x1, x2, . . . , xn) over a field
K = GF(q).

We will study the time complexity of XL- and Gröbner-Bases-related algo-
rithms. For generic systems, this depend primarily on the minimum degree of
operation, which varies with m and n and other parameters. We hope to achieve
the following:

– obtain exact and asymptotic time complexity of several XL-like methods;
and hence:

– show some previous claims of cryptanalysis to be over-optimistic, and give
updated security estimates for the primitives of SFLASHv2 and HFE chal-
lenge 2 (neither of which now decreasing below 280) by various methods;

– demonstrate that XL with the XL2 adjunct is a primitive version of F5.

2 The XL Algorithm

The “Basic XL” ([24] terms it “reduced XL”) at degree D proceeds as follows:

1. “X” is for eXtend (or multiply). Generate equations R(D) = {xb�i(x) =
0 : i = 1 · · ·m, |b| ≤ D − 2}. |b| =

∑
i bi is the degree of monomial xb =

xb1
1 xb2

2 · · ·xbn
n .

2. “L” is for Linearize. Run an elimination on the equations R(D), treating
each monomial xb in the set T = T (D) of monomials of total degree ≤ D
as a variable. The number of variables and equations are denoted T and
R respectively. The number of independent equations (i.e., the rank of the
system, denoted I) cannot exceed T −1 if the original system has a solution.
Indeed, if I = T − 1 we expect the algorithm to terminate with a unique
solution. However, it is sufficient that the elimination results in an equation
to solve for (say) x1.

3. If necessary, solve the univariate equation giving x1, and repeat as needed.

If solving M linear equations in N variables takes E(N,M), then XL runs in time

Cxl = E(T,R) = E
((

n+D
D

)
,m

(
n+D−2

D−2

))
, (1)

for larger fields because R = m
(
n+D−2

D−2

)
and T =

(
n+D

D

)
. If we are dealing with

small fields, then both T and R would be smaller. A reasonable terminating con-
dition is then I ≥ T −min(D, q − 1), as this final equation may have up to the
D + 1 terms 1, x1, . . . , x

D
1 (or up to xq−1

1 if q ≤ D) instead of T = I − 1). Sur-
prisingly (cf. Sec. 6.2) this may offer little practical improvement over T −I = 1.
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3 The Family of XL Variants

When proposing XL ([20]) the authors noted that we need m− n ≥ 2 for good
performance. Which brings us the “FXL” method as the first of several XL
variants.

3.1 FXL: Guessing as Aid to Equation-Solving

The “F” in FXL stands for “fix” ([20]). The attacker assigns random values to f
variables, in effect guessing at them, hoping to decrease (cf. also XL’, Sec. 3.3)
the degree D needed for XL. After guessing, we run XL and test at the end if
any solution found is valid. The complexity for f variables fixed at degree D is

Cfxl = qf
[
C0 + E

((
n−f+D

D

)
, m

(
n−f+D−2

D−2

))]
, (2)

where C0 is a presumed small cost of collation. We will establish the worthiness
of FXL by demonstrating its gains, and give some guidelines for its profitable
application in Sec. 6.3. We note the fixing concept applies almost verbatim to the
F4 and F5. I.e., we may also guess at a few variables before applying a Gröbner
Bases method. We shall show that this can be a good idea in general.

3.2 XL2: Gaining Extra Equations via the T ′ Method

This was first proposed ([22]) as an addendum to XL over GF(2), to add useful
equations. Let T ′ count the monomials that when multiplied by a given variable
will still be in T = T (D). I.e. T ′ = |T ′

i |, where T ′
i = {xb : xixb ∈ T } for each i.

Suppose I is not as large as T −D, but C ≡ T ′ + I−T > 0 (i.e. we have enough
equations to eliminate all monomials not in T ′

i ), then:

1. Eliminate from the system R = R(D) the monomials not in T ′
1 first. We

are then left with relations R1 that gives each monomial in T \ T ′
1 as a

linear combination of those monomials in T ′
1 , plus C equations R′

1 with only
monomials in T ′

1 .
2. Repeat for T ′

2 to get the equations R2 and R′
2 (we should also have |R′

2| =
C).

3. For each � ∈ R′
1, monomial in the equation x1� = 0 are either in T ′

2 or can
be reduced (using R2) into T ′

2 . Ditto each x2� (� ∈ R′
2) and we get 2C new

equations.

XL2 is described as a sequence of Buchberger relations by [54]. It is important
it is similar to the final stage (T ′-method) of the related XSL (extended sparse
linearization, [21]) method that purports to break block ciphers with sparse
quadratic structure, including AES. We do not analyze XSL itself here. [22]
claims that most of the 2C equations “are likely” to be linearly independent,
and that XL2 can be repeated for an eventual solution. We seek to clarify the
heuristics below.
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3.3 XL’: Searching as the Final Step

XL’ ([22]) is XL except that we come down to a system in r variables and at
least r equations, then end by brute-force search. The total time complexity for
large q is

Cxl’ ≈ E
((

n+D
D

)
, m

(
n+D−2

D−2

))
+ qrD

1− 1
q

(
r+D

D

)
. (3)

The new terminations conditions are: instead of requiring T − I ≤ D, we only
require T −I ≤

(
r+D

D

)
−r. Note: It is usually 1-in-q for any polynomial to vanish

on random inputs, and we must test degree-D polynomials with r variables and
up to

(
r+D

D

)
terms. We need a suitably small qr and make some changes. This

D is smaller than the D0 for regular XL. We will check how much smaller in
Sec. 7.

3.4 XLF: Using the Field Relations

[17] proposes to use the field relations xq = x to advantage when q = 2k:

– Consider (x2
i ), (x4

i ), . . . , (x2k−1

i ) independent variables in K in addition to
xi.

– Equations are generated as in every other XL method, then each generated
equation is raised to the second, fourth,. . . powers easily (since this is a linear
operation) as equations in (x2

i ), . . ., (x2k−1

i ), for k times as many variables
and equations.

– That all equivalent monomials are ipso facto equal become new equations,
which may let the algorithm execute with a lower D (see Sec. 7).

3.5 XFL: Guessing with a Twist

Another variant proposed with the name “improved FXL” and later XFL ([17,
59]):

1. Choose f (“to fix”) variables. Multiply the equations by all monomials up
to degree D − 2 in the other n− f variables only.

2. Order the monomials so that all monomials of exactly degree D with no “to-
fix” factor comes first. Eliminate all such monomials from the top-degree
block.

3. Substitute actual values for “to-fix” variables, then collate the terms and try
to continue XL, re-ordering the monomials if needed, until we find at least
one solution.

There are
(
n−f+D−1

D

)
monomials of degree D with no “to-fix” variable, so T ′ =(

n−f+D
D

)
−
(
n−f+D−1

D

)
=

(
n−f+D−1

D−1

)
variables remain and the complexity is:

Cxfl = C ′′
0 + qf

[
C ′

0 + E
((

n−f+D−1
D−1

)
, m

(
n−f+D−2

D−2

)
−
(
n−f+D−1

D

))]
. (4)

C ′′
0 the cost of the initial elimination. What happens is that the max-degree

block of the elimination need not repeat with the guessing. We shall see how
this does later.
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4 Gröbner Bases Algorithms F4-F5

Gröbner Bases have come a long way since the early days of Buchberger. The
reader is referred to [6, 10, 11, 40] for general theory on the topic, although the
speed estimates there can be considered superseded. The most advanced imple-
mentations are detailed in [29, 30, 31]. Summaries can also be found in [2, 54],
here we only give a synopsis:

0. Initialize: The original are reduced according to some (usu. Degree Reverse
Lexicographic) monomial order to a system in row-echelon form.

1. Multiply/Extend: Increase the maximal degree by 1. The resulting equations
are multiplied by all monomials such that the product does not exceed the
maximal degree. In F5 the Frobenius selection criteria avoids redundant
equations.

2. Linearize/Reduce: Run a Gaussian-like elimination to row-echelon form, such
that every row/equation is only reduced against preceeding rows.

3. Repeat: If we do not yet have a Gröbner Basis, go to Step 1. We will find a
Gröbner Bases as in x1 = f1(x2, x3, . . . , xn), x2 = f2(x3, . . . xn), . . . , maybe
ending with fk+1(xk+1, . . . , xn) = 0 when the system variety has positive
Krull dimension.

Please refer to the abovementioned articles for technical details. Lazard (cf. [40])
notes long ago that a Gröbner Basis for a set of equations �i may be found by
a reduction on the extended version of the Macaulay matrix at some degree
D. This matrix contains exactly the coefficients of the equations R(D), and the
reduction of this matrix is exactly XL. Hence [2] and [54] explains XL as a special
case of Gröbner Algorithms.

5 Termination Conditions of XL and Gröbner Bases

How many independent equations do we get in the basic XL? Not all equations
are independent: If we write �i(x) =

∑
j≤k aijkxjxk +

∑
j bijxj + ci, then

[�i�i′ ] =
∑
j≤k

aijk[xjxk�i′ ] +
∑

j

bij [xj�i′ ] + ci [�i′ ]

=
∑
j≤k

ai′jk[xjxk�i] +
∑

j

bi′j [xj�i] + ci′ [�i],

where [xj�i] denotes the equation xj�i(x) = 0 in the XL system, etc., i.e., two
ideals spanned by each pair of (�i, �j) intersect, hence there will be a corre-
sponding dependency at every degree D > 4. We may compute the number of
free equations assuming no other source of dependencies than the above:

Proposition 1 ([24, 58]). If all dependencies result from �i[�i′ ] = �i′ [�i] then

T − I = [tD]
{
(1− t)m−n−1 (1 + t)m

}
=

∞∑
j=0

(−1)j

(
m− n− 1

j

)(
m

D − j

)
,(5)
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for all D < min(q,Dreg). Here Dreg is the degree of regularity given by

Dreg := min{D : [tD]
(
(1− t)m−n−1 (1 + t)m

)
≤ 0}, (6)

and [tk] p means “ the coefficient of tk in the expansion of p”. E.g. [x2](1+x)4 =
6. This implies that the minimum D required for the reliable termination of XL
is given by

D0 := min{D : [tD]
(
(1− t)m−n−1 (1 + t)m

)
≤ D}. (7)

Historical Remark: The [58] proof was faulty and did not prove D0 to be a
lower bound. T. Moh ([44]) states without proof a result similar to this one.
C. Diem has the first and only derivation ([24]) showing D0 to be a lower bound
if the Maximum Rank Conjecture (originally due to Fröberg, [32]) is generally
valid.

Corollary 2. When there are no extraneous dependencies (i.e., Eq. 5 holds),
then D0 is: 2n if m = n, m if m− n = 1, and �(m + 1)/2� if m− n = 2.

Proof. If m − n = 0, then T − I = [tD] ((1 + t)m/(1− t)) =
∑D

j=0

(
m
D

)
, which

increases rapidly. It stays constant after reaching 2m at D = m, so D0 ≥
max(2m, q).

If m − n = 1, then T − I = [tD] (1 + t)m =
(
m
D

)
> D up to and including

D = m−1 (whence T − I = m > D). Finally at D = m we have T − I = 1 < m.
The D0 = m− 1 = n of [17, 20] is due to a slightly different XL in [20].

If m − n = 2, then T − I = [tD] ((1− t) (1 + t)m) =
(
m
D

)
−

(
m

D−1

)
=(

m
D−1

)
m−2D+1

D . Obviously T − I ≤ 0 iff D ≥ (m + 1)/2, and T − I > D
early on. So D0 ≤ �(m + 1)/2�. When D is incremented by 1, T − I increases
by

((
m
D

)
−
(

m
D−1

))
−
((

m
D−1

)
−
(

m
D−2

))
=

(
m

D+1

)
− 2

(
m
D

)
+
(

m
D−1

)
, which starts

out positive and when D > 1
2 (m −

√
m + 2) turns negative (see below), so we

only need to check the case of D = �(m + 1)/2� − 1 first, which is the last
D before T − I decreases down to or past 0. Combinatorics texts (e.g. [52])
tell us that

(
2D
D

)
−
(

2D
D−1

)
= (2D)!

D!(D+1)! is the Catalan number cD, which satisfy

c0 = 1, cn =
∑n−1

j=0 cjcn−1−j . Since c2 = 2, cD for D > 2 will be the sum of D
positive integers, not all of them 1, so cD > D. Similarly for even m we have(
2D+1

D

)
−
(
2D+1
D−1

)
= (2D+2)!

(D+1)!(D+2)! = cD+1 > D.
So the bounds are tight. Eqs. 5 and 7, says that as described in [20], as m−n

increases D0 decreases, although formulas are more complicated for larger m−n
(Tab. 1).

Corollary 3. Good approximations to D0 for fixed small f = m−n is given by
Tab. 1.

D0 is not easily expressed as a function of m (or n) for larger f = m − n. We
may approximately assume that D0 ≈ Dreg. D0 is then the smallest D such that

T − I = [tD]
(
(1− t)f−1 (1 + t)m

)
=

f−1∑
j=0

(−1)j
(
f−1

j

)(
m

D−j

)
< 0.
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or, after dividing out (m!)/ [D!(m−D + f − 1)!], we get this inequality in D:

f−1∑
j=0

(−1)j

(
f − 1
j

)
D!

(D − j)!
(m−D + f − 1)!

(m−D + j)!
≤ 0 (8)

From Eq. 8 we can find Dreg explicitly (and D0 approximately) for f ≤ 10 using
lots of roots. We tabulate (cf. Table 1) the results for smaller f = m − n. This
shows that the earlier estimate of D0 ≈

√
n ([20]) for small f is not very good.

Indeed, [24] points out for any fixed f , D0/n→ 1/2.

Table 1. Relationship between f = m − n and minimal degree D0 = D0(m)

f D0 (as approximate function of m) 10 15 20 25 30 35

0 2m (but only up to q, cf. Sec. 5) 210 215 220 225 230 235

1 m 10 15 20 25 30 35

2 � 1
2
(m + 1)� 6 8 11 13 16 18

3 � 1
2
(m + 2 −√

m + 2)� 5 7 9 11 14 16

4 � 1
2
(m + 3 −√

3m + 7)� 4 6 8 10 12 14

5
⌈

1
2
(m + 4 −

√
3m + 8 +

√
6m2 + 30m + 40)

⌉
3 5 7 9 11 13

6
⌈

1
2
(m + 5 −

√
5m + 15 +

√
10m2 + 50m + 76)

⌉
3 4 6 8 10 12

The predictions of Eq. 5 is confirmed for random quadratics �i by simulations
due to N. Courtois ([18]) up to very high dimensions and degrees, including
all the parameters listed in [17] and earlier works. The public polynomials of
several PKC’s including SFLASHv2 also behaves like random polynomials at
low degrees. This verifies our own simulations, which are not so extensive.

5.1 XL2, Gröbner Bases, and Their Relationship

Corresponding to Eq. 7 for Gröbner Bases algorithms such as F5 we have ([4],
later [2]) is this result for semi-regular sequences of equations (i.e., no extra
dependencies):

Dg := min{D : [tD](1− t)m−n(1 + t)m < 0}. (9)

Its resemblence to D0 for XL means that some results for XL can extend directly
to Gröbner Bases: We can think of this as corresponding to exactly one fewer
variable, or we can think of the extra factor of (1−t) to mean that the elimination
is run on the highest-ranked monomials only. One variant method of XL does
exactly that — the XL2 adjunct (Sec. 3.2), otherwise known as the T ′-method.
In [58, 59], it was pointed out that one can run XL2 on all variables to achieve
effectively going one degree higher. [59] comments that XL2 may not repeat even
if it works once. It may be possible using the original, overly optimistic estimate
(T−I < T ′) as opposed to one that focuses on the top degree monomials; indeed,
we prove below that it is not the case for large q.
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Proposition 4. XL2 (for large q) on all variables will run when D ≥ Dg, and
will then repeat until we find a solution or prove the system self-contradictory.

Proof. We need to eliminate all top-degree monomials ([59]), and can think of
regular XL being run on homogenized equations with one variable assigned to
represent the constant 1, and we may apply Eq. 6, we get the first half of the
statement.

We know that multiplying by (1−t)−1 represent taking the sum of coefficients
of a generating function up to some degree, i.e., gm,f (D) =

∑D
d=0 gm,f+1(d) (here

f = m − n). We know that the zeroes of gm,f (D) := [tD]
(
(1− t)f−1(1 + t)m

)
and gm,f+1(D) alternate (see below) because their dominant terms are associ-
ated Hermite functions (which form an orthogonal sequence). So once D ≥ Dg,
gm,f+1(D) will not become positive until gm,f (D) becomes non-positive also.

We have shown that XL+XL2 and F5 operates at the same apparent degree Dg.
Further ([30]) the signature, i.e. the underlying degree, of the polynomials in the
matrix/system built by F5 is the same as the classical Buchberger algorithm,
which is the same as classical XL (this remark was also made in [2]). This is
scarcely surprising, given that Imai et al have shown that XL2 is equal to a
sequence of Buchberger-like operations. Therefore, we can think of XL+XL2 as
a less polished version of F5.

5.2 FXL and Asymptotic Estimates for D0

With m = n equations and variables in practice the attacker would most often
run the variant FXL, i.e., guesses at f variables, then attempts to run XL on
the remaining system. It is hence of particular interest to obtain asymptotic
behavior when m−n = f remains small compared to m or n. Eq. 7 is valid only
when D < q, but for GF(28) we can cover all m up to about 500, which is large
enough to bring in asymptotics. This requires first asymptotically estimating a
coefficient then approximating a sign-change position in the following manner
via Cauchy’s integral formula ([35]),

gm,f (D) := [tD]
(
(1− t)f−1(1 + t)m

)
=

1
2πi

∮
z−D−1(1− z)f−1(1 + z)mdz.

Standard asymptotic analysis recipes (cf. [12, 35, 57]) can be applied to find ([3])
that

Dreg =
m

2
− (hf−1,1)

√
m

2
+ O(1) ∼ m

2
−
√

fm. (10)

Here f = o(m1/3) and hk,1 is the largest zero of the Hermite polynomial Hk(x),
given by Szegö ([55]) as

√
2k + 1 + O(k−1/6). And when we have f ∼ cm

Dreg ∼
(

1
2
−
√
c +

c

2

)
m + O(m

1
3 ). (11)
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via the Coalescent Saddle Point method ([3, 12]). We note that Eqs. 10 and 11
are compatible which is necessary if the asymptotics are uniform.

One consequence of the above is that that an optimal f for FXL (cf. Sec. 6.3)
exist, which also applies to F4-F5. Let us start with a medium-large m = n
(asymptotics come into play as low as in the teens), and start with the as-
sumption that D = m/2, then we may compute lg T = 1.377m + O(logm) via
Stirling’s formula:

T =
(
n + D

n

)
=

(
3m/2
m

)
=

(3m/2)!
m!(m/2)!

∼
√

3
2πm

(
(3/2)3/2

(1/2)1/2

)m

When guessing at f variables, Eq. 10 means that n and D goes down re-
spectively by f and roughly

√
fm. We find that T goes down by a factor of

≈
(
(3/2)f · 3

√
fm

)
, hence lg T ∼ 1.377m − 1.585

√
fm + 0.585f , and if we as-

sume small f , q = 28, E to be degree ω = 2 + ε (a Lanczos solver, see below)
and R ∼ T then FXL has

lgCfxl ∼ 2 lg T + f lg q ∼ (lg q + 1.170)f − 3.170
√

fm + 2.755m. (12)

If Eq. 12 holds for all f , then lgCfxl will take a minimum of lgCfxl ≈ 2.63m
at f ∼ 0.014m, a significant gain. However, Eq. 12 is actually valid up for small
f , actually to only f = o( 3

√
m). We may still conclude that for FXL, there is

some small ε > 0 and δ such that we should take at least f = δ ·m1/3−ε guessed
variables, and we can say more since we have compatible asymptotics, for which
we refer you to [59]. The result is that we should guess even more variables:
For q = 28 and ω = 2 the minimum occurs at around c := f/m ∼ 0.049,
when lgCfxl ∼ 2.4m. Similarly when ω = lg 7 (Strassen blocking), the minimum
lgCfxl ∼ 3.0m when f ∼ 0.096m.

Even supposing that our numbers are slightly off, this shows that FXL is
a better way to apply XL on non-small fields. As Gröber Bases methods theo-
retically and asymptotically resemble XL, the phenomena should be nearly the
same. I.e., starting from m = n, one should guess at a very small percentage
of the variables before starting the Gröbner Bases computations. Indeed, for
m = n and ω = 2.8 (Strassen Blocking), we see that lg T = lg

(
2n
n

)
∼ 2n, hence

lgCF4 ∼ lgCF5 ∼ 5.6n, as opposed to 4.2n for guessing at one variable, and
3.0n with the optimal guessing. For ω = 2, the coefficients are 4, 3.0 and 2.4
respectively. This seems very natural, but has not been seen in print previously.
Results for smaller q can be found in [4, 58, 59]. As C. Diem points out, a critical
proof in [58] is inaccurate, its results are not always valid lower bounds. However
[59] shows FXL (and likewise FF4/FF5 worthwhile for all values of (q, ω).

6 Pragmatic Issues in XL-Related Methods

We first mention some theoretical and practical aspects of XL-related method,
particularly the parameters we shall use when estimating the complexity (secu-
rity level).
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6.1 On a Pragmatic Cost of Elimination

Naive cubic-time elimination ([8]) is inadequate for large matrices, and a cost
estimate T lg 7 (where T counts the monomials) or even lower is cited in all XL
articles ([15, 17, 20, 21, 22]). However, Strassen’s ([53]) original 2lg 7 algorithm
does not reliably invert a known nonsingular square matrix. The XL situation
is even more complex: The matrix (with R > T ) is not square, and we want
our elimination algorithm to (a) run despite the redundant rows (equations);
(b) compute a useful basis for the kernel (e.g. reduced row-echelon form) if
the matrix is not full-rank (i.e. T − I = 1). To pivot inerrantly around singular
submatrices in O(nlg 7) is quite nontrivial ([7]). Similar caveats apply to adapting
other sub-cubic matrix multiplications for equation-solving.

The best all-around result for dense matrices known to us is D. J. Bernstein’s
GGE (Generalized Gaussian Elimination, [9]) which computes the quasi-inverse,
which can (method “S”) solve a system of equations, and even (method “N”)
find a basis of the kernel of a matrix (a row-reduced echelon form)! Assume
M equations, N variables, and the time cost ∼ αNω to multiply two N × N
matrices, then GGE uses time

ES(N,M) =
2α(1 + γ)
(2ω − 2)

Mω−1N +
αMω

(2ω − 1)
; (13)

EN (N,M) =
2α(2 + γ)
(2ω − 2)

Mω−2N2 +
4αγ
7

Mω−1N +
αMω

(2ω − 1)
. (14)

Here the coefficient γ = (7α)/(2ω − 4). We shall look at how to do better in
Sec. 6.2.

6.2 A Need for Sparse-Matrix Algorithms

The systems generated by XL are obviously sparse. A respected textbook on
sparse matrices ([27]) remarks that in not using a matrix algorithms more tai-
lored for the situation “you would just be pushing milliards of zeros around”.
Moving around gigabytes full of zeroes not only slows down the computation dire-
cly, but increases the amount of memory required. With n = 15, m = 20, q = 28

and D = 7 (these are practical dimensions), we have T = 170544 monomials and
R = 310080 equations. A full elimination will take about 50 GB (≈ 236 bytes).
A normal procedure ([27]) is to find block structures with graph-coloring analy-
sis. The elimination cost is then dominated by E(N0,M0), the elimination cost
for the largest block. The XL equations are structured such that the largest block
comprise the equations with the highest degrees (and this naturally happen in F5).
Still, if we know that there is at most one solution, then it must be better to use
Lanczos, Conjugate Gradient (CG), or Wiedemann methods, each solving an N×
N system Mx = b using N multiplications of M to an N×1 vector. An M×N sys-
tem (M > N) in Lanczos (or CG) is converted to N×N by solving (MT DM)x =
MT Db instead. Here D is invertible, diagonal, and suitably random. For sparse
systems with t terms per equation, the expected time cost drops to order 2 + ε:

EL(M,N) ≈ (c0 + c1 lgN) tMN. (15)
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The log-factor is because accessing memory no longer take negligible time, and
tags are ∝ lgN long. Lanczos, CG and Wiedmann methods all have comparable
speeds. Consensus seems to peg the Wiedemann algorithm as intrinsically slower
but more reliable, and to get better results Lanczos methods must be randomized
which adds to the cost (cf. [8, 28, 38, 56]). Warning: Lanczos (or CG) is known to
terminate sometimes incorrectly over a finite field. Wiedemann is not known to
terminate always correctly for nonsquare matrices. Proper operating conditions
are not fully understood. However, we were informed ([13]) that such methods
are usable and widely used in practice.

6.3 Practical Parameters for Assessing FXL (for Large q)

Since we ultimately want reasonable security estimates, we need concrete values
for c0 and c1 in the Lanczos estimate EL. What are reasonable estimates? We
will use c0 = 4 and c1 = 1

4 in Eq. 15 to arrive at complexity estimates (for
Lanczos-like sparse solvers) in field multiplications. Calibrating against our own
test data, we should divide the number of multiplications by roughly 26 to get
numbers in 3DES encryption blocks (comparable to but a little longer than AES
blocks).

Furthermore, if the dimensions become very large, then asymptotically we will
eventually see R/T in the hundreds. However, we may generate fewer equations
([13, 18]), e.g., via a randomly picked set of equations (taking say 20% more
equations than variables) and solve ten such random systems to ensure not
missing a solution. Hence it makes much more sense to assume the equations
to have roughly as many equations as there are variables, and we may assume
R/T to be a constant on the order of “a few”. Of course, for smaller dimensions,
it may make more sense to run a more robust elimination. For Gröbner Bases
methods, obviously T = R and this is a smaller T because it is only the top
degree portion, but this contribution dominates the number of monomials for
large q and a typical case of XL/FXL anyway. With α = 7, ω = lg 7 ([41]), we
get

Esparse(N,M) = (
1
4

lgN + 4) ·MN · ( avg. # of terms per equation); (16)

Edense(N,M) = 51.33M0.8N2 + 65.33M1.8N + 1.167M2.8.

These numbers are for processors with enough cache only. We hear that some
IBM servers do have 100+GB of RAM and a mind-boggling 512MB cache per
CPU, so we assume that processing power, memory size and bandwidth all pose
no problems.

7 Practical Security Assessment of XL Variants

Infeasibility of the cryptanalysis against SFLASHv2 and HFE Challenge 2 as
mentioned in [59] is given, using some results that we prove rigorously for semi-
regular sequences.
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7.1 Inefficiency of XL’ and XLF for Small m − n and Large q

Proposition 5. The number of extra equations provided by XLF (Sec. 3.4) is
given by

ΔT = k

(
n + �D/2�
�D/2�

)
− 1. (17)

Proof. We need not track the redundant monomials explicitly as in [17]. These
monomials are the degree ≤ D monomials in the (xi)’s that can also be written
as monomials of the (x2

i )’s at a lower degree, copied k times. So we just count
monomials in the (x2

i )’s of total degree ≤ D/2, which number
(
n+�D/2
�D/2

)
. The

final −1 comes from the fact that the monomial 1 is counted as duplicated k
times, once too many.

Corollary 6. When D < q, XLF can be expected to work (most of the time)
when

[tD]
(
(1− t)m−n−1 (1 + t)m

)
−
(
n+�D/2
�D/2

)
< �D/2�. (18)

Note: This is likely only asymptotically correct (extra dependencies are possible).
If the elimination ends with all odd powers of (x2j

1 ) left we can still solve for x1.

Proposition 7. The following holds about XL’ and XLF for q large:

XL’: When m− n is 1 or 2, XL’ operates if and only if D > m− r; if m = n,
XL’ will not run at D = m + 1 − r, but will at D = m + 2 − r for r large
enough (around r > m/2). When r is small, we need a much larger D,
around 2m/r (r!)1/r.

XLF: When m− n ≤ 2, XLF need at least D > n/2 to operate.

Proof. We can use the approximations
(
2k
k

)
≈ 22k/

√
πk and k! ≈

√
2πk(k

e )k.

XL’: m = n: From the description of XL’ above and Eq. 5, we see that
(
r+D

D

)
−

r ≥
∑D

i=0

(
m
i

)
>

(
m+1

D

)
+
(
m+1
D−2

)
. Since

(
m
k

)
is increasing in m, we need

r+D > m+1 which suffices for r > m/2. For small r, we need
(
r+D

D

)
>

2m.
m = n + 1: Need

(
r+D

D

)
−
(
m
D

)
≥ r; when r + D = m + 1, the left hand side

becomes
(

m
D−1

)
≥ m > r, so it does the job, and no smaller r can do

that.
m = n + 2: Need

(
r+D

D

)
=

(
r+D+1

D

)
−
(

r+D
D−1

)
>

(
m
D

)
−
(

m
D−1

)
; again r + D =

m + 1 will do, and barely, because nothing smaller works.
XLF: Let m − n = 1. As we can presume D small, we have gives

(
n+1
D

)
<(

n+�D/2
�D/2

)
. At D = n/2 we have the left side ≈ 2n+1√

πn/2
(1 − 1

n+2 ), and the

right

≈
√

2π · 5n/4 · (5n
4e )5n/4(√

2π · n/4 · ( n
4e )n/4

) (√
2πn · (n

e )n
) =

√
5

2πn

[
(5/4)5/4

(1/4)1/4

]n

.



All in the XL Family: Theory and Practice 79

We see
[

(5/4)5/4

(1/4)1/4

]
≈ 1.87 < 2 and 2√

πn/2
(1 − 1

n+2 ) >
√

5
2πn . For m = n we

need a higher D (we can check that D ≈ 3m/4 is needed).
Now consider m − n = 2. We want

(
n+2
D

)
−

(
n+2
D−1

)
=

(
n+1
D

)
−

(
n+1
D−2

)
<(

n+�D/2
�D/2

)
, which we can verify to happen only when D ≤ n/2. The LHS is

about 1/D of what it was at m−n = 1, which is covered by the exponential
factor (1.87/2)n.

XL’ (designed for GF(2)) work suboptimally on a larger field. XLF is hindered
by the fact that the dependencies are multiplied along with the independent
ones ([18]).

7.2 XFL Is Really a Space-Time Tradeoff

XFL of Sec. 3.5 appears to be an improvement, but there are important draw-
backs. Essentially, for the initial elimination stage, the memory requirement is
increased (m− f)-fold. More importantly, once the initial substitution is made,
the resultant second-highest-degree block is no longer sparse and requires the
equivalence of GGE (Sec. 6.1).

There is no particular reason that XFL should fail. Indeed, it is better than
XL’ or XLF. However we believe that FXL works better due to the availability
of Lanczos.

7.3 Reassessing XL’/XLF/XFL Versus SFLASHv2 and HFE
Challenge 2

Proposition 8 ([58]). If 2q > D ≥ q, and the system is semi-regular up to
degree D, then T − I = [tD]

(
(1− t)m−n−1 (1− ntq) (1− t2)m

)
. [Also similarly

for F4/F5.]

This is a yardstick we need for the complexity of some XL variants, and we
look at how three XL variants apply to extant schemes SFLASHv2 and HFE
Challenge 2.

Did XL Variants really break SFLASHv2 in 280? To recap, SFLASHv2

([51]) is a NESSIE finalist. It is an instance of C∗− ([49], descendant of C∗,
[43])) with K = GF(27), m = 26 and n = 37, and reputed to be very fast,
suitable for smart card implementations ([1]). Although the NESSIE writeup
contained some extraneous private data that can be recovered ([34]), SFLASHv2

was previously considered safe ([47]). It is claimed ([17]) that after n is reduced
to 26 by guessing at eleven variables, any of the variants XL’, XLF, and XFL can
provide a cryptanalysis within 280 3DES operations. None of the cryptanalysis
attempts can function as given:

XL’: [17] gives D = 7, r = 5. From Sec. 7.1, we can see that at r = 5, XL’
should not work until D = 92. We actually ([18]) need D = 93. By trial
and error, we get best result is around r = 16, which gives a complexity of
∼ 2118.
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XFL: [17] gives f = 4, D = 6. Actually we see from Table 1 that D0 ≥ 10.
With Strassen and Bernstein, we get 2104 multiplications (298 3DES blocks).

XLF: [17] gives D = 10. Using Sec. 7.1 and Prop. 8 we verify that XLF only
works at D = 18 (complexity ∼ 292 even with Lanczos).

Reports of the demise of SFLASHv2 is exaggerated and justifies the design
decisions of Patarin et al. This is significant as SFLASHv3 ([19]) is much slower
with bulkier keys, and has security concerns due to unlucky choice in dimensions
([18, 26], cf. also http://www.minrank.org/sflash/). The best cryptanalysis is
FF5 if it works with Lanczos (complexity � 281). Else the best try is likely FXL
(complexity ∼ 285). If an attack works, it probably will be an algebraic attack
resembling [26].

Did XL Variants really break HFE challenge 2 in 280? HFE Challenge 2
is an HFE instance with q = 24 and m = n = 32. We believe that the parameters
as given in [17] does not lead to cryptanalysis under 280, after double-checking
against Sec. 7.1:

XL’ [17] gives m = n = 32, D = 10, for which T − I = 107594213. We can do
(cf. Prop. 7) XL’ using (D, r) = (15, 19) or (14, 20), which is very sufficient.

XFL: D = 7 and f = 2 ([17]) won’t function (since T − I = 2459664). We
recommend (f,D) = (12, 6) with complexity ∼ 297 3DES blocks.

XLF: [17] gives D = 10, which we can verify not to work (as above). We need
(cf. Prop. 8) all the way to D = 23, with a complexity 2112 even for Lanczos.

8 Discussions and Conclusion

With all the results we have gathered, we may tabulate the complexity in various
schemes. Two points need explaining. F1F5 and F2XL means F5 guessing at one
variable and FXL always guessing at two variables respectively. The asterisk
means that we are assuming Lanczos-class speed solvers to work with F5, which
is not a given.

Table 2. Time Estimates (3DES blocks): Blocking (ω = 2.8) v. Lanczos (∗: may not
work)

Attack Method FXL F2XL F5 F1F5 FF5

n = 26 q = 27

(SFLASHv2)
b 2101 2104 2117 2102 299

l 285 287 295
∗ 285

∗ 282
∗

n = 32, q = 24

(HFE Chal. #2)
b 297 2106 2111 2105 293

l 287 292 298
∗ 289

∗ 282
∗

n = 20, q = 28 b 291 291 2109 288 286

l 278 278 284
∗ 277

∗ 274
∗

Asymptotic for
big m = n, q

b 23.0n 23.86n 25.6n 23.86n 23.0n

l 22.4n 22.75n 24.0n
∗ 22.75n

∗ 22.4n
∗
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8.1 Comments on the Relationship of Gröbner Bases to XL

Imai et al ([54]) shows XL to be variation of the F4-F5 algorithms. However,
practical differences remain even if the theory of XL might be considered sub-
sumed by Gröbner Bases. Gröbner Bases is a general and elegant mathematical
theory that applies well to everything under the sun including symbolic compu-
tation. When F5 terminates , we should always obtain all solutions, including
those in extension fields. Shamir et al proposed XL as a cryptanalytical tool,
with one purpose: to find a known-or-conjectured-to-exist solution to a numeri-
cal set of equations. In FXL/Lanczos variant, this property is shown clearly: it
is possible to find all solutions in K, but not in extensions of K.

Wiedemann and Lanczos algorithms are not suitable for computing reduced
row-echelon forms; as a conclusion to XL, either works best with T − I = 1.
In a Gaussian, we need not know T − I beforehand and may come down to
any number of monomials (between 1 and min(q− 1, D)) with no speed penalty
and still terminate correctly; under Bernstein’s GGE, we are penalized by the
slower algorithm “N” (instead of “S”, cf. Sec. 6.1–6.2); using Lanczos requires
us to know T − I in advance, and to run exactly that many different iterative
sequences. [30, 31] seem to agree with the above assessment, and the critical step
of F4/F5 appears to be an elimination on the top block.

The aversion to Gaussion or Generalized Gaussian elimination is also why
we do not suggest XL2. We do not see how to link it reliably into a Lanczos-like
sparse solver.

[4] claims that Gaussian-like elimination in F5 can achieve time close to
Lanczos algorithms. At least, ω = 2 is “plausible”. We hasten to agree! It is
quite plausible that one can adapt these advanced Gröbner Bases methods for
Lanczos, or achieve ω = 2 + ε regardless. However, it is also plausible that
one cannot, because according to [30], the elimination is severely restricted in
the order of operations. We may also use guessing in F5, and the two methods
behaves very similarly (as expected). But in this event, the two methods could
be described as having largely converged. The entries that require running a
Lanczos-like sparse solver with F5 or Fix-then- F5 (denoted “FF5”) is marked
with an asterisk in Tab. 2. If effectively for F5 we will always have ω measurably
greater than 2, then these estimates are invalid. In this case FXL will eventually
dominate methods that always compute a Gröbner Basis.

There is one further situation where FXL might work better, which is when
we cannot hold the entire matrix of the F5 in memory. In turn, we can run
FXL without generating the whole Macaulay matrix. All the possibilities takes
further study.

8.2 Some Remarks on the Termination of Basic XL

Moh in [44] pointed out that Basic XL should not work if the system of equations
has a positive-dimensional solution at “at infinity”. It is our aim to help to clarify
this often-cited remark by Moh. We thank C. Diem for pointing out Prop. 9 to
us.
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As above, let �1, . . . , �m ∈ K[x1, . . . , xn]. Let �h
1 , . . . , �

h
m ∈ K[x0, . . . , xn] de-

note the homogenizations of the �i. Let D ∈ N, and let us assume (without loss
of generality) that �1, · · · , �a have degree ≤ D and �a+1, · · · , �h

m ∈ K[x0, . . . , xn]
have degree > D. For example, for i = 1, . . . , a, the �i might be quadratic and
for i = a+1, . . . ,m, the �i might be the field equations which might have a much
higher degree.

Let VD be the projective algebraic set defined by the equations

�h
1 = 0, . . . , �h

a = 0.

We note that if the system �1 = · · · = �a = 0 defines a 0-dimensional algebraic set
and the “set at infinity” is non-empty, the dimension of VD equals the dimension
of the “set at infinity”. Let T and I be as above. Our want to relate T − I to
the dimension of VD.

Proposition 9. If dim(VD) = r, then T − I ≥
(
r+D

r

)
.

Proof. Let J be the homogeneous ideal defined by �h
1 , · · · , �h

a , and let (K[x0, . . . ,
xn]/J )D be the D-th homogeneous part of the quotient ring K[x0, . . . , xn]/J .

Note that dim(VD) = dim(K[x0, . . . , xn]/J )−1 (since VD is projective), and

T − I = dim((K[x0, . . . , xn]/J )D)

(see [24–Section 4] for a derivation of this formula). We can go from K to any field
extension L without changing the numbers T, I and dim(VD). By going to a suf-
ficiently large extension L/K, we can apply the Noetherian Normalization Theo-
rem in the form of [39–Theorem 2.2]. We obtain that the ring L[x0, . . . , xn]/(J )
contains a polynomial ring L[y0, . . . , yr] such that the images of the yi are linear
combinations of the xi, hence

dimK((K[x0, . . . , xn]/J )D) = dimL((L[x0, . . . , xn]/(J ))D) ≥
dimL((L[y0, . . . , yr])D) =

(
r+D

r

)
Note that the proposition implies in particular that if r ≥ 1, then T − I ≥

D + 1, and if r ≥ 2, then T − I ≥ (D+2)·(D+1)
2 .

If T − I ≤ D, then XL will find a univariate polynomial, whereas if T − I
is greater than this number it will usually not find such a polynomial. The
interpretation of the proposition above is thus that usually XL does not ter-
minate if dim(VD) > 0. We would like to stress that VD is the variety defined
by �h

1 = 0, . . . , �h
a = 0, the equations �h

a+1 = 0, . . . , �h
m = 0 of higher degree are

disregarded.

Let us now set V as the projective algebraic set defined by all equations
�h
1 = 0, . . . , �h

m = 0. Then we have the following good news ([44–Lemma 2] is a
corollary).

Corollary 10. If V = ∅ or dim(V ) = 0, then XL terminates for some D.
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Proof. Let J be the homogeneous ideal defined by �h
1 , . . . , �

h
m. We now have

T − I = dim((K[x0, . . . , xn]/J )D)

for all D (where T and I are defined with respect to D).
Now, under our assumptions on V , there exists a D̃ > 0 such that for D ≥ D̃,

dim(K[x0, . . . , xn]/JD) is equal to the number of non-trivial solutions (counted
with multiplicities) of the system �h

1 = 0, . . . , �h
m = 0. This is one of the state-

ments of Hilbert theory. It is essentially proven in [36–I, §7]. It follows that for
some D > 0, one has T−I ≤ D, and the algorithm finds a univariate polynomial.

Cor. 10 does not apply to XSL (cf. 3.2) or any other method in which an entire
ideal I = K[�1, . . . , �m, p1, p2, . . . , pκ] is not used (the pi’s are extra polynomials
added by the attacker). It also does not say what D is. Even if it always works,
it may be slow.

When XSL ([21]) proposes to break AES (and Serpent). The more optimistic
claims of cryptanlysis in 287 or 2100 is based on XSL applied to the Murphy-
Robshaw structural equations ([45, 46]) of AES. It is claimed ([17, 21]) that XSL
can sidestep the objections of [44] because M-R equations are formed with tech-
niques similar to Sec. 3.4, and the final (“T ′-method”) stage is similar to XL2.
But these variant methods may work correctly or not, independently of Cor. 10.

8.3 A Conclusion

With all the analysis given here we hope to have done a reasonable job in cover-
ing various aspects of XL. In passing we may have rehabilitated the reputation
of SFLASHv2 to some extent. In conclusion: XL is a simplified version of current
Gröbner Bases algorithms. Some prior claims about XL variants were clearly too
ambitious, and sometimes unrealistic claims were put forward. Yet, the inven-
tion of XL (and particularly FXL) is clearly an advance, justifying the insights
of Courtois, Klimov, Patarin and Shamir. We hope we have evaluated the capa-
bilities of XL algorithms in a more rational and pragmatical manner. Still, much
remains to be done in the practical arena. One important item is to settle the
question of the validity of XSL.

The results of this work along with [59] should go some ways to show that
FXL is the best XL variant, and the principle extends to F4/F5. We hope that
this study will lead to better equation-solving methods based on FF5 (or FF4).
On the theoretical side, there are also a couple of things that can use a little
further study. One is the identification of situations where F5 (and XL/FXL)
will work substantially better or much worse than the [4] bound. Another is a
correct way to implement sparse matrix arithmetic so that F5 can reliably run
with a solver with Lanczos-like speeds. While the MAGMA project ([42]) has
an implementation of F4 that is very well optimized, even faster than Faugère’s
own F5, it is not yet pushing the limits of what such a solver can do. This is an
area that can still be exciting and practically useful.
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Abstract. We propose a new broadcast encryption scheme based on
polynomial interpolations. Our scheme, obtained from the Naor-Pinkas
scheme by partitioning the user set and interpolating multiple polyno-
mials, turns out to be better in efficiency than the best known broadcast
schemes like the Subset Difference and the Layered Subset Difference
methods, which are tree based schemes. More precisely, when r users
are revoked among n users, our method requires O(log(n/m)) user keys
and O(αr + m) transmission overhead in the worst case, where m is the
number of partitions of the user set and can be chosen to optimize its
efficiency, and α is a predetermined constant satisfying 1 < α < 2. So,
our scheme is always better in the storage than the tree based schemes
(whose storage overhead is O(log2 n) or O(log3/2 n)). In the transmission
overhead, our scheme beats those schemes except for a very small r/n.
The computation cost is worse than the other schemes but is reasonable
for systems with moderate computing power. The security proof is given
based on the computational Diffie-Hellman problem.

Keywords: Broadcast encryption, interpolation, partition.

1 Introduction

Broadcast Encryption is a cryptographic method to efficiently broadcast infor-
mation to a large set of users so that only privileged users can decrypt it. We
assume that each user is given a user-key, which is a set of secrets, from the
center before starting the broadcast and the user key is never updated, that
is, users are stateless receivers. In each session, a message is encrypted by a
session key and the encrypted message is transmitted over an insecure chan-
nel with the encrypted value, called a header, of the session key, which can be
decrypted only by the user-keys. When a user needs to be removed from the
set of the privileged users, the center should be able to make a header to be
decrypted only by the non-revoked users. Each session can have an independent
set of revoked users. That is, a revoked user in one session may subscribe another
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session. The application covers pay TV, internet multicast of movies or news,
and mobile games. The best known broadcast schemes are the Subset Difference
method (SD) [11] and the Layered Subset Difference method (LSD) [8], which is
a variant of SD adopting the notion of layers. There is also the Stratified Subset
Difference method (SSD) [6], which was proposed at Crypto’04.

The polynomial interpolation method was first introduced by Berkovits [2]
and improved by Naor and Pinkas [12]. In the improved scheme, called the
NP scheme, a user-key is only one field element and the header size is very
small. However, since this scheme is originally designed for multicast with traitor
tracing rather than broadcast, it has the best performance for small size user sets
(of several hundred users, say) and requires key refreshment from time to time.
The scheme can also be used for stateless receivers without key refreshment.
But in this case, the NP scheme has shortcomings. First, the system cannot
revoke more than d users, where d is the degree of a polynomial predetermined
in the setup stage. Second, its header size depends on d, not on the number r of
revoked users. If we increase d large enough to cover the maximum number of
revoked users, the header size increases along with d even if r is small. Third,
the computation cost for each user increases in the square order of d, which is
too large to be practical even for d ≈ 1000.

In this paper, we adopt two simple ideas, partitioning the users and inter-
polating multiple polynomials, to overcome the weaknesses of the NP scheme
mentioned above as a broadcast encryption for a large number of stateless re-
ceivers. Our scheme covers any number n of users and is more efficient than SD,
LSD and SSD in the user-key size and in the header size. More precisely, our
method requires O(log(n/m)) key storage and the O(αr+m) header size in the
worst case, where m, which can be chosen to optimize efficiency, is the number of
partitions of the user set, and α is a predetermined constant satisfying 1 < α < 2.
So, the user-key size is always smaller than the tree based schemes whose key
storage is O(logβ n) with 1 ≤ β ≤ 2. Our scheme satisfies, in fact, the log-key
restriction (the storage size is bounded by log n) [6] with much smaller trans-
mission overhead than SSD. The header size is also smaller than those schemes
except when r/n is very small. The computation cost is worse than those schemes
but can be adjusted according to computing power of the user device.

Outline of this paper is as follows: After a brief preliminaries in Section 2, we
propose the basic scheme interpolating multiple polynomials and the extended
scheme partitioning the user set, respectively, in Sections 4 and 5. We analyze
the performance of our scheme in Section 5, and compare our scheme with SD,
LSD and SSD in Section 6. We discuss a security proof of our scheme in Section
7, and conclude in Section 8. We present a detailed proof in Appendix.

2 Preliminaries

We use the following parameters:

n: the number of total users
r: the number of revoked users
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Iu: The identifier of a user u
Ku: the set of keys stored by a user u, i.e., the user-key of u

A session is one broadcast of data to all users and the session key k is the
key used to encrypt the data in the session. In order to broadcast a message M ,
the center encrypts M using the session key k and sends the encrypted message
together with a header to the users. That is, the center sends

〈 〈header〉, Ek(M) 〉

to the users, where Ek(M) is a symmetric encryption of M by k. Then, a priv-
ileged user u can easily compute k from a pre-defined function F satisfying
F (Ku, 〈header〉) = k. With this k, u can recover M by

Dk(Ek(M)) = M.

But any revoked user u should not be able to rend k from Ku and 〈header〉.
Furthermore, there should be no efficient polynomial time algorithm O such that

O(K1,K2, . . . ,Kr, 〈header〉) = k,

where Ka = Kua
and ua’s are revoked users for a = 1, 2, · · · , r. The fixed function

F is pre-distributed before the system starts to operate, and is computable in
polynomial time under user level computing power. We call the length of the
header the transmission overhead or message overhead. The computing time of F
is called the computation overhead or computation cost. In a broadcast encryption
scheme, the user-key size, called the storage overhead, the transmission overhead,
and the computation overhead are three most important parameters determining
the efficiency of the scheme.

3 Basic Scheme

Let n be the number of total users. Given a system parameter α satisfying
1 < α < 2, define a sequence of positive integers di by the recurrence relation:

d1 = 1 and di+1 = �α(di + 1)�,

where �x� denotes the largest integer not exceeding x. Let w be the minimal
integer such that n ≤ (α+ 1)(dw + 1) + 1. Then we take random w polynomials
fd1 , fd2 , . . . , fdw

, where fdi
is a polynomial of degree di. Let r be the number

of revoked users. If di−1 < r ≤ di for some 1 ≤ i ≤ w (we make a convention
that d0 = 0 for convenience), then the polynomial of degree di is to be used for
revocation. For the case when r = 0 or dw < r ≤ n, see below.

In the initialization step, the center chooses an elliptic curve E over Fp and
selects a point P in E which is of order q, where p and q are 160 bit primes. (As
a matter of fact, any abelian group over which the computational Diffie-Hallman
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problem is hard will do.) Then it chooses a system parameter α satisfying 1 <
α < 2, and selects a non-secret identifier Iu(= I) ∈ Zq to be given to each user
u. Then, the center chooses random polynomials fdi

of degree di corresponding
to (di+1)-out-of-n threshold secret sharing schemes for i = 1, 2, . . . , w, where
di+1 = �α(di + 1)� over Zq for i = 1, 2, . . . , w − 1. Each user u receives his/her
user-key

Ku = 〈 I, fd1(I), fd2(I), . . . , fdw
(I), φ, ψu 〉

and the system information E, P , p and q over a private channel from the center,
where φ is the key which will be used when there is no revocation and ψu is the
key which will be used when of r > dw.

Let u1, u2, . . . , ur be the revoked users, where di−1 < r ≤ di. For revocation,
the center first learns the identifiers Ia = Iua

(a = 1, 2, . . . , r) of the revoked
users. For a random s ∈ Zq, it takes k = fdi

(0)sP as a new session key that
should be unknown to the revoked users. The center chooses distinct di− r ran-
dom points, say Ir+1, Ir+2, . . . , Idi

∈ Zq, which are distinct from the identifiers
of all users, and broadcasts

〈 index, Q, (I1, fdi
(I1)Q), . . . , (Ir, fdi

(Ir)Q),
(Ir+1, fdi

(Ir+1)Q), . . . , (Idi
, fdi

(Idi
)Q) 〉,

where Q = sP and index is the indicator of the polynomial used in the session.
Each privileged user u can compute fdi

(I)Q by his/her own secret key fdi
(I)

and therefore can recover the session key fdi
(0)Q. More precisely, the user u can

compute fdi
(0)Q from the values

(I0, fdi
(I0)Q), (I1, fdi

(I1)Q), . . . , (Ir, fdi
(Ir)Q),

(Ir+1, fdi
(Ir+1)Q), . . . , (Idi

, fdi
(Idi

)Q),

where I0 = I, as follows:

fdi
(0)Q =

(
di∑

a=0

λafdi
(Ia)

)
Q =

di∑
a=0

λa (fdi
(Ia)Q) ,

where
λa =

∏
b �=a

Ib

Ib − Ia
. (1)

If there is no revoked user, i.e., r = 0, then the center encrypts the session
key k by symmetric encryption scheme with the key φ and broadcasts

〈 index,Eφ(k) 〉.

So only one encrypted session key is required. If r > dw, then the center encrypts
the session key k with each non-revoked user’s private key ψu and broadcasts

〈 index,Eψu1
(k), Eψu2

(k), . . . , Eψun−r
(k) 〉,

where u1, . . . , un−r are non-revoked users. This requires n− r encrypted session
keys.
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Performance. Each user stores w + 2 private keys, the identifier I and the
system parameters E, P , p and q.

If di−1 < r ≤ di for 1 ≤ i ≤ w, then the transmitted data consists of an
index, one base point, and di points in E(Fp). Since di ≤ α(di−1 + 1) ≤ αr, it
is at most αr + 1 elements in E(Fp). If r = 0, then the header contains only
one encryption. If r > dw, then the header contains n− r encryptions, which is
also bounded by αr + 1 since n − r ≤ n − (dw + 1) ≤ αr + 1. In any cases, the
transmission overhead is at most αr + 1 points ignoring the index.

The computation overhead is di +1(≤ αr+1) scalar multiplications in E(Fp)
if di−1 < r ≤ di. If r > dw, then it is n − r(≤ αr + 1) symmetric encryptions.
Since one symmetric encryption is faster than a scalar multiplication in E(Fp),
the computation overhead is bounded by (αr+1) scalar multiplications in E(Fp).
We can save the computation using a simultaneous scalar multiplication method,
which will be discussed in Section 5.

Security. If r = 0 or r > dw, then the scheme is secure since the session key is
encrypted by a symmetric encryption algorithm using the key φ or private keys
ψu’s of non-revoked users. If di−1 < r ≤ di, the session key fdi

(0)Q is secure
against the coalition of the r revoked users. This is because every revoked user
has only di values and cannot gain any further information. A more detailed
security proof is given in Appendix.

4 Extended Scheme

Although the basic scheme is quite efficient when the number n of users is small,
the scheme is not usable in practice when n is very large because the polynomial
degree grows too big and so does the computation overhead. This problem,
however, can be resolved easily by partitioning the users into small partitions and
applying the basic scheme to each partition. Despite the number of revoked users
in each partition can vary dynamically, we can handle the dynamics properly
with the polynomials chosen in the basic scheme.

In the initialization step, the center divides n users into m partitions of size
D. Actually, D and m are adjusted by the system parameter α in order to
make the computation overhead reasonable. (This will be discussed in Section
5.) Because each user should belong to one and only one partition, we can apply
the basic scheme to each partition. The center generates random polynomials

f1di
, f2di

, . . . , fmdi
for i = 1, 2, . . . , w,

where fjdi
is a polynomial of degree di over Zq assigned to the j-th partition.

Then it provides each user u in the j-th partition, via a private channel, his/her
user-key

Ku = 〈 I, fjd1(I), fjd2(I), . . . , fjdw
(I), φj , ψu 〉,

where I is the identifier of u, j is the partition number of the partition containing
u, and φj , ψu are the keys corresponding to φ, ψu, respectively, in the basic
scheme.
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For revocation, the center first learns the identifiers of r revoked users and
the partitions they belong to. Let uj1, uj2, . . . , ujrj

be the revoked users in the
j-th partition, where

r = r1 + r2 + · · ·+ rm.

If di−1 < rj ≤ di, then the polynomial fjdi
will be used for revocation in

the j-th partition. Let’s denote this di(depending on rj) by tj for convenience
in the following. The center then chooses tj − rj random distinct points, say
Ij,rj+1, Ij,rj+2, . . . , Ijtj

, from Zq, which are distinct from the identifiers of the
users in the j-th partition, and broadcasts the following:

〈 . . . , par(j), ind(j), Qj , (Ij1, fjtj
(Ij1)Qj), . . . , (Ijrj

, fjtj
(Ijrj

)Qj),

(Ij,rj+1, fjtj
(Ij,rj+1)Qj), . . . , (Ijtj

, fjtj
(Ijtj

)Qj), . . . 〉 ,
where par(j) is the indicator of the j-th partition, ind(j) = tj , Qj = sjP , sj

is a random number of the j-th partition and Ija is the identifier of uja for
1 ≤ a ≤ rj . Each non-revoked user u in the j-th partition can find which part
of the header is for his/her partition from the partition indicator par(j), and
then he/she can compute the session key k = fjtj

(0)Qj as in the basic scheme.
If rj = 0, then the center broadcasts

〈 . . . , par(j), ind(j), Eφj
(k), . . . 〉.

If rj > dw, then D − rj < αrj . So the center sends following:

〈 . . . , par(j), ind(j), Eψu1
(k), Eψu2

(k), . . . , EψuD−rj
(k), . . . 〉,

where u1, u2, . . . , uD−rj
are non-revoked users and Eψu

(k) is a symmetric en-
cryption of the session key k by ψu.

In the above, if fjtj
(0)Qj ’s are distinct, then we have to insert more infor-

mation in the header for all privileged users in each partition to compute the
session key k. To avoid this, we make all fjtj

(0)Qj ’s be equal as follows:
Choose a random s ∈ Zq and let

ŝ = f1t1(0)f2t2(0) · · · fmtm
(0)s.

For ŝ , define

sj =
ŝ

fjtj
(0)

(mod q) for all j = 1, 2, . . . ,m.

Then we have
k = f1t1(0)Q1 = f2t2(0)Q2 = · · · = fmtm

(0)Qm. (2)

5 Analysis

In the basic scheme, given α and w, the maximum possible value of n is �(dw +
1)(α + 1)� + 1. Since the performance of the basic scheme depends only on α
and w, we take D to be �(dw + 1)(α + 1)�+ 1 in the extended scheme.
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Storage Overhead. The storage overhead for each user is w + 2 elements in
Fp as in the basic scheme. We estimate w in terms of D. Recall that di’s are
determined from recurrence relations: d1 = 1 and di+1 = �α(di + 1)�. Since
di+1 > α(di + 1)− 1, we have

dw + 1 > α(dw−1 + 1) > · · · > αw−1(d1 + 1) = 2αw−1.

Since D > (α + 1)(dw−1 + 1), we obtain D > 2(α + 1)αw−2 > 2αw−1 and hence
w < logD/ logα (we assume that 1 < α < 2).

Transmission Overhead. Since the size of par(j) and ind(j) are negligible,
the transmission overhead for the j-th partition is αrj+1 elements of E(Fp) in
the worst case. So the total message overhead is at most

m∑
j=1

(αrj + 1) =
m∑

j=1

αrj + m = αr + m.

Computation Overhead. Most computation of this scheme consists of scalar
multiplications in E(Fp). To speed up this, one can use a simultaneous scalar
multiplication method [10]. If one computes c scalar multiplications using Non-
Adjacent Form (NAF), it takes c log q (doublings) + (c/3) log q (additions) on
the average. Using the standard simultaneous scalar multiplication method, it
takes log q (doublings)+(c/3) log q (additions) for c scalar multiplications, which
amounts about (3 + c)/4 scalar multiplications.

The computation overhead for each user is bounded by dw +1 scalar multipli-
cations, as in the basic scheme. Using the standard simultaneous multiplication
method, it is reduced to (dw/4) + 1 scalar multiplications. If the revoked users
are assumed to be uniformly distributed over all partitions, however, there are
r/m revoked users in each partition on the average. In this case, the computation
overhead is about (r/4m) + 1 scalar multiplications.

Optimization. In the extended scheme, we first fix a constant α with 1 < α < 2
and an upper bound M of the computation overhead (the number of scalar
multiplications in E(Fp)). And then, in order to optimize the scheme’s efficiency,
we choose the other system parameters as follows:

– Compute di’s, where d1 = 1 and di+1 = �α(di + 1)�
– Find the maximum w such that (dw/4) + 1 ≤M
– Compute D = �(dw +1)(α+1)�+1 (with this D, we can optimize the upper

bound of w with (logD − 1)/ logα
– Divide all users into m = �n/D� partitions of size D

The extended scheme with these optimized parameters is summarized in Fig. 1.
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Parameters
- n : the number of total users in the system
- p, q : 160-bit primes
- E : an elliptic curve over Zp

- P : an element of E(Fp) of order q
- M : an upper bound of the computation overhead

Setup (partitioning)
- Pick α(1 < α < 2) and compute di’s, where d1 = 1 and di+1 = �α(di + 1)�
- Find the maximum w satisfying dw ≤ 4(M − 1)
- Compute D = �(dw + 1)(α + 1)� + 1
- Divide all users into m = �n/D� partitions of size D

Key Generation of the j-th partition for j = 1, 2, . . . , m
- Assign the identifier I to each user u
- Make w random polynomials fjd1 , fjd2 , . . . , fjdw over Zp, where deg(fjdi) = di

- Give the set Ku = {I, fjd1(I), . . . , fjdw (I), φ, ψu} to each user u

Encryption and Decryption

◦ Case 1 1 ≤ rj ≤ dw:
- Assume that there are rj revoked users uj1, uj2, . . . , ujrj in the j-th partition
- For each j find di satisfying di−1 < rj ≤ di (convention : d0 = 0) and let tj = d

i- Choose s ∈ Zq randomly and compute ŝ = f1t1(0)f2t2(0) · · · fmtm(0)s
- For ŝ, define sj = ŝ/fjtj (0) (mod q) for each j = 1, 2, . . . , m
- Compute Qj = sjP
- Select distinct Ija’s which are different from the identifiers assigned to the users

in the j-th partition for a = rj + 1, rj + 2, . . . , tj

- Broadcast the following message:

〈 . . . , par(j), ind(j), Qj , (Ij1, fjtj (Ij1)Qj), (Ij2, fjtj (Ij2)Qj), . . . ,
(Ijrj , fjtj (Ijrj )Qj), (Ij,rj+1, fjtj (Ij,rj+1)Qj), . . . , (Ijtj , fjtj (Ijtj )Qj), . . . 〉

- Assume that u with identifier I = I0 is a privileged user in the j-th partition
- From the message, find out tj

- Compute λja =
∏

b�=a

Ijb

Ijb−Ija
and the session key k as follows:

k = fjtj (0)Q =
(∑tj

a=0 λjafjtj (Ija)
)

Q =
∑tj

a=0 λja

(
fjtj (Ija)Q

)
◦ Case 2 rj = 0:
- In this case, the center transmits 〈 . . . , par(j), ind(j), Eφj (k), . . . 〉,

where Eφj (k) is a symmetric encryption of the session key k by φj

- Then all users in the j-th partition decrypt by φj

◦ Case 3 rj > dw:
- Let u1, u2, . . . , uD−rj be the non-revoked users. Then the center broadcasts

〈 . . . , par(j), ind(j), Eψu1
(k), Eψu2

(k), . . . , EψuD−rj
(k), . . . 〉

where Eψu(k) is a symmetric encryption of the session key k by ψu

- Then each privileged user u in the j-th partition decrypts by ψu

Fig. 1. Extended Scheme
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6 Comparison

Table 1 provides the values of di’s for some α’s such that 1 < α < 2. In the
following, because the computation overhead depends on the degrees of polyno-
mials, we set 40 as an upper bound of the degrees. Interpolating a polynomial of
degree 40 requires about 11 scalar multiplications in E(Fp), which, we believe,
is reasonable in practice. The table also provides the value of D, the size of
one partition, which is determined from given α and dw. With these values, the
transmission overhead is less than or equals to αr + 1 for any number r of the
revoked users in one partition.

Table 1. The values of di’s

α di’s size of D

3/2 1 3 6 10 16 25 39 101
4/3 1 2 4 6 9 13 18 25 34 82
4
√

2 1 2 3 4 5 7 9 11 14 17 21 26 32 39 88

In Table 2, we compare our extended scheme with SD [11] and LSD [8], which
are regarded as the best known broadcast encryption schemes. The threshold
column shows that our scheme has the smaller message length than SD and
LSD except when r/n is very small. For example, our scheme with α = 4

√
2 has

smaller message length than SD when the number of revoked users is larger than
1.41 % of the total users. Fig. 2 depicts the transmission overhead (TO) of each
scheme with respect to 100r/n(%).

Table 2. Efficiency Comparison

Scheme Key Storage # of Computations Message Length Threshold(vs SD)

SD [11] log2n log n hashes 2r − 1 -

LSD [8] log3/2n log n hashes 4r -

Ours � (log D−1)
log α

� + 2 (dw/4) + 1 mul. in E αr + n/D -

α=3/2 9 10.75 mul. in E (3r/2) + (n/101) r > 1.99n/100
α=4/3 11 9.5 mul. in E (4r/3) + (n/82) r > 1.83n/100

α = 4
√

2 16 10.75 mul. in E 4
√

2 r + (n/88) r > 1.41n/100

From this comparison, we can see that our scheme always has the smaller
key storage as well than SD and LSD. The computation overhead, however, is
worse. But even so, our scheme is still practical for systems with some computing
power. Furthermore, considering the fact that the transmission cost is much
more expensive than the computation cost in practice, this is a desirable trade
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off. In addition, if the revoked users are assumed to be uniformly distributed
in each partition, the computation overhead O(dw) is reduced to (r/4m) + 1,
which is 2.26, 2.03, and 2.1 scalar multiplications in E(Fp) when r ≤ 0.05n and
α = 3/2, 4/3, 4

√
2, respectively.

Fig. 2. Comparison of Transmission Overhead for n = 100,000,000

7 Security Proof

Naor and Pinkas [12] proved that their NP scheme is secure against coalitions of
up to d revoked users under the computational Diffie-Hellman (CDH) assump-
tion, where d is the degree of a polynomial predetermined. We generalize their
proof to our basic scheme (with multiple polynomials) in the following lemma.

Lemma. The basic scheme is secure against coalition of r revoked users under
the CDH assumption for any r.

Proof. See Appendix. 
�
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And then we prove the extended scheme (with multiple partitions) is also
secure under the same assumption in the following theorem.

Theorem. The extended scheme is secure against coalition of total r revoked
users, where r1, r2, . . . , rm are the numbers of revoked users in partitions

G1, G2, . . . , Gm,

respectively, such that
r = r1 + r2 + · · ·+ rm.

Proof. See Appendix. 
�

Observe that if different fjtj
(0)Qj ’s - called the partition keys - are used for

different partitions in the extended scheme, the security proof is an immediate
consequence of the lemma above. But this increases the transmission overhead
by O(m). In order to avoid this, the extended scheme makes all the partition
keys be the same. The main part of the proof is, in fact, the part proving that
the same partition key does not harm to the security of the scheme.

The authors expect that our proof is useful for security proofs in similar
situations, that is, our security proof works for any broadcast encryption scheme
with multiple partitions using the same partition key.

8 Conclusion

In this paper, we introduced two simple ideas, multiple interpolations and mul-
tiple partitions, to the NP scheme to obtain an efficient broadcast encryption
scheme for a large number of stateless receivers. Our scheme fully satisfies the
general requirements of broadcast encryption (even the log-key restriction, the
notion of which was introduced in this year’s Crypto) and the scheme’s efficiency
is comparable to the most efficient broadcast encryption schemes known. Our
scheme, in fact, is better in the storage overhead and in the transmission over-
head. It costs more computations but the computation overhead is reasonable
for systems with moderate computing power. Our scheme is applicable to any
abelian group over which the CDH is hard. Moreover, our scheme has another
advantage: later entry of new users is very easy and cheap because we can simply
add new partitions at anytime. We expect that this advantage is exploited in
many applications in practice. We provide a detailed security proof in Appendix.
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Appendix: Security Proof

Naor and Pinkas [12] proved that the NP scheme is secure against coalitions of
up to t revoked users under the computational Diffie-Hellman assumption.

Computational Diffie-Hellman Assumption: For a cyclic group G in
which DLP is hard, let g ∈ G be a generator of G. Then there is no efficient
polynomial time algorithm that can compute gxy from 〈g, gx, gy〉, where x and
y are random integers in the interval [1, |G|]. In an elliptic curve, computational
Diffie-Hellman assumption means that there is no efficient algorithm that can
compute xyP from 〈P, xP, yP 〉.

We will prove that our scheme is also secure under the same assumption.

Lemma. The basic scheme is secure against coalition of r revoked users under
CDH assumption for any r.

Proof. Let r be the number of revoked users. When r = 0 or r > dw, then the
security of the scheme is guaranteed by the security of the symmetric encryption
algorithm used. So we may assume that r ∈ (di−1, di] for some i = 1, 2, . . . , w,
where d0 := 0. We first consider the case of one time revocation. Since r ∈
(di−1, di], the polynomial fdi

of degree di is used for revocation. Points on other
polynomials are useless to compute the session key since all polynomials are cho-
sen randomly. Therefore, for revoked users, computing the session key is equiv-
alent to finding polynomial of degree di with only di points, which is impossible
by [15].

Next we consider the case of repeated revocations. Let r and r′ be the
number of revoked users in current session and previous session, respectively.
If r ∈ (di−1, di] but r′ /∈ (di−1, di], then the scheme is secure because the
current polynomial fdi

is different from previous ones. We now assume that
r, r′ ∈ (di−1, di]. Then the same polynomial fdi

of degree di is used in two differ-
ent sessions, say the first two sessions. Assume also that a user u was not revoked
in the first session but is revoked in the second session. Let the revoked users in
the second session be u1(= u), u2, . . . , ur. At least the following information are
available to u with coalition of r revoked users:

s(1)P, fdi
(I1)s(1)P, . . . , fdi

(Ir)s(1)P, fdi
(I ′r+1)s

(1)P, . . . , fdi
(I ′di

)s(1)P,

fdi
(0)s(1)P, s(2)P, fdi

(I1)s(2)P, . . . , fdi
(Ir)s(2)P, fdi

(Ir+1)s(2)P, . . . ,
fdi

(Idi
)s(2)P, I1, I2, . . . , Ir, fdi

(I1), fdi
(I2), . . . , fdi

(Ir),

where Ia is the identifier of ua for each a = 1, 2, . . . , r; I ′j ’s and Ij ’s for j =
r + 1, . . . , di are random and distinct from Ia’s; and s(b) is a random number
chosen in the b-th session for each b = 1,2.

Although u doesn’t know the value of the session key in session 2, u knows
that the session key is of the form fdi

(0)s(2)P . In the following, we prove that
u cannot find the value of fdi

(0)s(2)P . Suppose that the scheme is not secure,
that is, there is an efficient algorithm O with input
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Input = 〈 s(1)P, fdi
(I1)s(1)P, . . . , fdi

(Ir)s(1)P, fdi
(I ′r+1)s

(1)P, . . . ,
fdi

(I ′di
)s(1)P, fdi

(0)s(1)P, s(2)P, fdi
(I1)s(2)P, . . . ,

fdi
(Ir)s(2)P, fdi

(Ir+1)s(2)P, . . . , fdi
(Idi

)s(2)P,
I1, I2, . . . , Ir, fdi

(I1), fdi
(I2), . . . , fdi

(Ir) 〉,

which can compute fdi
(0)s(2)P . Let

O( Input ) = fdi
(0)s(2)P

Then from the algorithm O, one can derive an efficient algorithm O′ that can
compute gxy from arbitrarily given inputs g, gx and gy (see [12] for details). This,
however, implies that u can solve the computational Diffie-Hellman problem. So
the scheme is secure against coalition of r revoked users under CDH assumption.


�

Theorem. The extended scheme is secure against coalition of total r revoked
users, where r1, r2, . . . , rm are the numbers of revoked users in partitions

G1, G2, . . . , Gm,

respectively, such that
r = r1 + r2 + · · ·+ rm.

Proof. We first show that the session key cannot be recovered from given secret
shares for the revoked users. Since polynomials in this scheme are all chosen
randomly, secret shares (points on polynomials) in one partition are useless in
guessing the polynomials in the other partitions. So, the security of the whole
scheme depends on the security of the session key of each partition. For all j =
1,2,. . . ,m, we define tj as di satisfying di−1 < rj ≤ di. Since the case of rj = 0
or rj > dw can be proved trivially as in the previous lemma, we may assume
that 0 < rj ≤ dw.

We now prove that using the same partition key for all partitions is also
secure. In the extended scheme, non-revoked users in all partitions can compute
the same partition key

k = f1t1(0)s1P = f2t2(0)s2P = · · · = fmtm
(0)smP

as in (2). This holds for all sessions. This, however, does not cause any weakness.
In order to show this, we first consider the case of one time revocation with two
partitions. In this case, the coalition of r = r1 + r2 revoked users know the
values of s1P, s2P , the secret shares of r users, and the fact that f1t1(0)s1P =
f2t2(0)s2P . Then,

f1t1(0)s1P = λuf1t1(Iu)s1P +
t1∑

a=1

λ1af1t1(I1a)s1P,
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f2t2(0)s2P = λvf2t2(Iv)s2P +
t2∑

a=1

λ2af2t2(I2a)s2P,

where u and v are non-revoked users chosen randomly from the first and the
second partitions, respectively, and λu and λv are the constants obtained from
the formula (1). So the attackers, the r revoked users, can make the following
equation:

A + α = B + β,

where
A = λuf1t1(Iu)s1P, B = λvf2t2(Iv)s2P,

α =
t1∑

a=1

λ1af1t1(I1a)s1P, β =
t2∑

a=1

λ2af2t2(I2a)s2P.

Here, α and β are known to the attackers, but A and B are not. Although there
are many pairs of (A,B) satisfying the above equation, it is impossible for the
attackers to find the right values of A and B, which render the correct session
key. When there are three partitions, the attackers may obtain

A + α = B + β = C + γ.

But it is still impossible for them to find the correct session key. It is obvious
from mathematical induction that increasing the number of partitions does not
do any harm to the security of the scheme.

Next, let’s consider the case of repeated revocations. Assume that there are
two partitions. We may assume that for each j = 1,2, the degree tj of the
polynomial corresponding to the number r

(b)
j of the revoked users in the j-th

partition dose not change in the b-th session for b = 1, 2. Assume further that
in the first session, some of the r revoked users in the second session were not
revoked so that they know the first session key. After receiving the header of the
second session, those r revoked users know

s
(1)
1 P, s

(1)
2 P, f1t1(0)s(1)

1 P = f2t2(0)s(1)
2 P

and the private keys of their own, where s
(b)
j denotes a random number used in

the j-th partition in the b-th session. To break the scheme, they must obtain the
value of

f1t1(0)s(2)
1 P = f2t2(0)s(2)

2 P.

As above, the attackers can set up the following equations:

A + α = B + β (3)

τA + α′ = τB + β′,

where τ ∈ Zq satisfying τs
(1)
1 P = s

(2)
1 P , τs(1)

2 P = s
(2)
2 P and

α′ =
t1∑

a=1

λ
(2)
1a f1t1(I

(2)
1a )s(2)

1 P, β′ =
t2∑

a=1

λ
(2)
2a f2t2(I

(2)
2a )s(2)

2 P,
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where I
(b)
ja is the identifier of a user u

(b)
ja , a revoked user in the j-th partition in

the b-th session for 1 ≤ a ≤ r
(b)
j . Since α, α′, β and β′ satisfy

τA + τα = τB + τβ and (τα)− (α′) = (τβ)− (β′),

we obtain
β′ − α′ = τ(β − α). (4)

Suppose that there is an efficient algorithm O that can compute τA, which
renders the second session key. In other words, let

O(A,α,B, β, α′, β′) = τA,

where A,B, α, β, α′, β′ satisfy the conditions (3) and (4). Then, one can derive
an efficient algorithm O′ that can compute xyP with the input data P, xP, yP
as follows:

O′(P, xP, yP ) = O( xP, P, (x− ξ + 1)P, ξP, ηP, (y(ξ − 1) + η)P ),

where ξ and η are random. From the conditions (3) and (4), one can easily obtain
that τ = y and O′(P, xP, yP ) = xyP .

Since this contradicts to the CDH assumption, we may conclude that there
is no efficient algorithm that can compute the second session key. For three
partitions, we can prove using the algorithm O defined by

O(A,α,B, β, C, γ, α′, β′, γ′) = τA.

where A,B,C, α, β, γ, α′, β′, γ′ satisfy the conditions

A + α = B + β = C + γ

τ(β − α) = β′ − α′ , τ(γ − α) = γ′ − α′.

By the same argument, we can derive from O an efficient algorithm O′ that can
solve the CDH, which proves the security of the scheme. So, the security of the
extended scheme with two sessions follows from mathematical induction on the
number of partitions.

Assume that the extended scheme with m partitions is secure in the first
�(≥ 2) sessions for any m. We now suppose that if the attackers know the first �
session keys, then session (�+ 1) is not secure. Under this supposition, we prove
that the second session is not secure if the attackers know the first session key,
which is a contradiction, as follows:

From the first session, the attackers can set up the equation

A1 + α1 = A2 + α2 = · · · = Am + αm (5)

and they know that the second session key is

τA1 + α′
1 = τA2 + α′

2 = · · · = τAm + α′
m
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τ (b)A1, τ (b)A2, . . . , τ (b)Am, α
(b)
1 , α

(b)
2 , . . . , α(b)

m

satisfying

α
(b)
1 = τ (b)α1 + t(b), α

(b)
2 = τ (b)α2 + t(b), . . . , α(b)

m = τ (b)αm + t(b)

from randomly chosen distinct τ (b) and t(b). Then it is easy to check that

τ (b)A1 + α
(b)
1 = τ (b)A2 + α

(b)
2 = · · · = τ (b)Am + α(b)

m (6)

and
α

(b)
2 − α

(b)
1 = τ (b)(α2 − α1), . . . , α(b)

m − α
(b)
1 = τ (b)(αm − α1)

for b = 1,2,. . . , �−1. With these �−1 equations in (6) together with the equation
(5), the attackers can find the second session key (regarded as the (� + 1)-st
session) by the supposition.

Therefore, we may conclude that the extended scheme with any number of
partitions is secure in any number of repeated sessions. 
�

We expect that our security proof may be applied to systems using partitions.
In particular, when a broadcast encryption, which is efficient for a small set of
users, is applied to many disjoint such sets, our security proof may help reducing
the transmission overhead further securely.

for some τ . From (5) the attackers can compute
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Abstract. In mining and integrating data from multiple sources, there
are many privacy and security issues. In several different contexts, the
security of the full privacy-preserving data mining protocol depends on
the security of the underlying private scalar product protocol. We show
that two of the private scalar product protocols, one of which was pro-
posed in a leading data mining conference, are insecure. We then describe
a provably private scalar product protocol that is based on homomor-
phic encryption and improve its efficiency so that it can also be used on
massive datasets.

Keywords: Privacy-preserving data mining, private scalar product pro-
tocol, vertically partitioned frequent pattern mining.

1 Introduction

Within the context of privacy-preserving data mining, several private (shared)
scalar product protocols [DA01b, DA01a, DZ02, VC02] have been proposed. The
goal is that one of the participants obtains the scalar product of the private
vectors of all parties. Additionally, it is often required that no information about
the private vectors, except what can be deduced from the scalar product, will be
revealed during the protocol. Moreover, since data mining applications work with
a huge amount of data, it is desirable that the scalar product protocol is also very
efficient. A secure scalar product protocol has various applications in privacy-
preserving data mining, starting with privacy-preserving frequent pattern mining
on vertically distributed database [VC02] and ending with privacy-preserving
cooperative statistical analysis [DA01a].

To give an idea of how such a protocol can be used, let us look at the pro-
tocol by Vaidya and Clifton for computing frequent itemsets from vertically
partitioned transaction database [VC02]. A transaction database is a multi-set
of subsets (transactions) of some finite set (of items). A transaction database
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can be seen also as a binary matrix where each row corresponds to a transac-
tion, each column corresponds to an item, and there is one in the entry (i, j)
if and only if the transaction i contains the item j. An itemset is a subset of
items. The frequency of an itemset in a transaction database is the fraction of
transactions containing the itemset as their subset. (The support of an itemset is
its frequency multiplied by the number of transactions in the database.) The σ-
frequent itemsets (i.e., the frequent itemsets with minimum frequency threshold
σ) in a transaction database are the itemsets with frequency at least σ. Thus,
mining the σ-frequent itemsets is equivalent to finding all subsets of columns of
the binary matrix where at least a σ-fraction of rows have only ones in those
columns. In a frequent itemset mining protocol for a vertically partitioned trans-
action database one party, Alice, has the projection of the database onto some
items and another party, Bob, has the projection of database onto the rest of
the items. The frequent itemset mining protocol of Vaidya and Clifton is based
on the property that an itemset can be frequent only if all of its subsets are
frequent. The candidate itemsets are generated and tested level-wise as in the
Apriori algorithm [AMS+96].

If an itemset contains items of only one party, then the party can compute the
frequency privately and share it with the other parties without any additional
privacy problems. The main challenge occurs when the support of a candidate
itemset containing items from both parties needs to be computed. In that case,
each party first computes which of the transactions contain the itemset within
their own part of the database. This kind of information can be conveniently
represented as binary vectors in which the ith entry represents whether or not
the itemset is contained in the ith transaction. The number of transactions
containing the itemset in the combined transaction database amounts to the
scalar product between the corresponding binary vectors of Alice and Bob. A
protocol, given by Vaidya and Clifton [VC02], attempts to compute the scalar
product in a secure manner, by computing the scalar product on scrambled
versions of the binary vectors, such that in the end of the protocol, both parties
obtain the joint support without ever seeing each others vector. Their protocol
reveals the supports of some infrequent itemsets, as not all candidate itemsets
are frequent; this can be avoided by combining private shared scalar product
protocols and Yao’s circuits for frequency testing.

In this paper, we show that the private scalar product protocol of Vaidya
and Clifton [VC02] is not private. Additionally, we are able to break another
private (shared) scalar product protocol which was recently proposed by Du
and Atallah [DA01a]. Our attacks against the Vaidya-Clifton and Du-Atallah
protocols work in the simplest cryptographic model: namely, they enable one of
the two parties to retrieve the private input of another party with probability,
very close to 1, after the two parties have executed the corresponding protocol
once.

While the attacks do not work for all possible private vectors of Alice and Bob,
they show that before applying the Vaidya-Clifton and Du-Atallah protocols, one
must carefully analyse whether it is safe to apply these protocols in any concrete
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case. Moreover, the provided attacks can be readily generalised to work for a
much larger fraction of private vectors in a more complex model where attack’s
success probability does not have to be 1 (but just large enough for practical
purposes, say 0.001) and/or when Alice and Bob re-execute the corresponding
scalar product protocols from [DA01a, VC02] with similar private vectors. (Scalar
product protocol from [DA01b] was recently analysed in [LL04].)

As a positive result, we describe a cryptographic protocol for computing
scalar product. We prove that the new scalar product protocol is private—in a
strong cryptographic sense—under standard cryptographic assumptions. More
specifically, no probabilistic polynomial time algorithm substituting Alice (resp.,
Bob) can obtain a non-negligible amount of information about Bob’s (resp., Al-
ice’s) private input, except what can be deduced from the private input and
private output of Alice (resp., Bob). This means, in particular, that this pro-
tocol can be used a polynomial number of times (in the security parameter)
with any private vectors of Alice and Bob in any context. In practice, the latter
means “an arbitrary number of times”. Finally, we show that by using some op-
timisation tricks, the proposed protocol can be made very efficient: we show how
to separately optimise for Alice’s and Bob’s computation, and for the commu-
nication of the new protocol. In particular, the communication-optimal version
is more communication-efficient than either of the Vaidya-Clifton or the Du-
Atallah protocols.

Road-map. In Section 2, we describe the necessary cryptographic preliminar-
ies. In Section 3, we analyse some previous private scalar product protocols.
In Section 4, we propose a new scalar product protocol, prove its security and
propose some important optimisations. We finish with conclusions and acknowl-
edgements.

2 Cryptographic Preliminaries

Secure Multi-party and Two-Party Computation. To guarantee that a
protocol is secure in as many applications as possible, one should use the secure
multi-party and two-party techniques [Gol04]. Briefly, a two-party protocol be-
tween Alice and Bob is secure when privacy and correctness are guaranteed for
both Alice and Bob. It is said that a protocol protects privacy, when the informa-
tion that is leaked by the distributed computation is limited to the information
that can be learned from the designated output of the computation [Pin02].

There are several different security models where one can prove the security
of a protocol in. The simplest setting is the semi-honest model, where it is
assumed that both Alice and Bob follow the protocol, but they are also curious:
that is, they store all exchanged data and try to deduce information from it.
In the malicious model, no assumption is made about the behaviour of Alice
and Bob, and it is required that the privacy of one party is preserved even in
the case of an arbitrary behaviour of the second party. Most of the papers on
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privacy-preserving data mining provide only security in the semi-honest model.
Such a protocol can be made secure in the malicious model when accompanied
with zero-knowledge proofs that both parties follow the protocol. However, such
proofs are usually too inefficient to be used in data mining applications.

Homomorphic public-key cryptosystems. A public-key cryptosystem Π
is a triple (Gen,Enc,Dec) of probabilistic polynomial-time algorithms for key-
generation, encryption and decryption. The security of a public-key cryptosystem
is determined by a security parameter k. For a fixed k, it should take more than
polynomial in k operations to break the cryptosystem. Together with increased
security, larger k means also larger keys and ciphertexts. The key generation
algorithm generates, on input 1k = 1 . . . 1 (k ones) a valid pair (sk, pk) of private
and public keys that corresponds to the security parameter k. For a fixed key pair
(sk, pk), let P (sk) denote the plaintext space of Π. The encryption algorithm Enc
takes as an input a plaintext m ∈ P (sk), a random value r and a public key pk and
outputs the corresponding ciphertext Encpk(m; r). The decryption algorithm Dec
takes as an input a ciphertext c and a private key sk (corresponding to the public
key pk) and outputs a plaintext Decsk(c). It is required that Decsk(Encpk(m; r)) =
m for any m ∈ P (sk), pk and r.

A public-key cryptosystem is semantically secure (IND-CPA secure) when
a probabilistic polynomial-time adversary cannot distinguish between random
encryptions of two elements, chosen by herself. We denote the encryption of
a message m by Encpk(m; r), where pk is the corresponding public key and r
is the used random string. A public-key cryptosystem is homomorphic when
Encpk(m1; r1) ·Encpk(m2; r2) = Encpk(m1 +m2; r1 · r2), where + is a group oper-
ation and · is a groupoid operation. This means that a party can add encrypted
plaintexts by doing simple computations with ciphertexts, without having the
secret key. Usually, P (sk) = Zm for some large m. One of the most efficient cur-
rently known semantically secure homomorphic cryptosystems was proposed by
Paillier cryptosystem [Pai99] and then improved by Damg̊ard and Jurik [DJ01].
In Paillier’s case, P (sk) = Zm with m ≥ 21024. One can effectively assume that
m is as large as say 24096, when using the Damg̊ard-Jurik cryptosystem [DJ01].
We will assume that k is the bit length of the plaintexts, thus k ≥ 1024.

Oblivious transfer. In an
(
n
1

)
-oblivious transfer protocol, Bob has a database

(D1, . . . ,Dn) and Alice has an index i ∈ [n]. The goal is for Alice to retrieve the
element Di without revealing her index i to Bob, and Bob does not want Alice
to get to know anything about the other elements in his database apart from
the element she asks for. Recently, Lipmaa [Lip04] proposed an asymptotically
efficient

(
n
1

)
-oblivious transfer protocol with communication Θ(log2 n)k.

3 Cryptanalysis of Proposed Private SP Protocols

Before cryptanalysing some of the previously proposed private scalar product
and private shared scalar product protocols, we must define what does it mean
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to attack one. Next, we will give a somewhat intuitive definition. For simplicity,
we will require that all arithmetic is done in Zm for some m.

We call a protocol between Alice and Bob a scalar product (SP) protocol
when Bob obtains, on Alice’s private input x = (x1, . . . , xN ) ∈ ZN

m and on Bob’s
private input y = (y1, . . . , yN ) ∈ ZN

m, the scalar product x · y =
∑N

i=1 xiyi. A
protocol is a shared scalar product (SSP) protocol when Alice receives a uniformly
distributed random value sA ∈ Zm and Bob receives a dependent uniformly
distributed random value sB ∈ Zm, such that sA + sB ≡ x · y (mod m). A
scalar product protocol is private when after executing the protocol, Bob obtains
no more knowledge than x · y and Alice obtains no new knowledge at all. In
particular, Alice gets to know nothing new about Bob’s vector and Bob gets to
know nothing about Alice’s vector that is not implied by x and x · y. A private
shared scalar product protocol is defined analogously.

Recently, several researchers from the data mining community have proposed
private SSP and SP protocols [DA01b, DA01a, DZ02, VC02], that were primarily
meant to be used in the context of privacy-preserving data mining. Most of
the proposed solutions try to achieve information-theoretical security—that is,
without relying on any computational assumption—by using additive or linear
noise to mask the values. In almost all such solutions, one can construct a system
of linear equations based on the specification of the protocol, and solve it for
the secret values. We will next demonstrate that explicitly in the case of the
protocols from [DA01a, VC02].

3.1 Vaidya-Clifton Private Scalar Product Protocol

First, we analyse the Vaidya-Clifton private SP protocol [VC02], depicted by
Protocol 1. For the sake of simplicity, we assume that the database size is N = �n,
where n is a block size and � is the number of blocks. We represent each N -
dimensional vector z either as z = (z1, . . . , zN ) or z = (z[1], . . . ,z[�]), where
z[i] = (z(i−1)n+1, . . . , zin). We denote the n-dimensional vectors (1, . . . , 1) and
(0, . . . , 0) by 1 and 0.

Protocol 1 is a slight modification of the original Vaidya-Clifton protocol.
Namely, in the original protocol all scalars belong to R, while in Protocol 1
they belong to Zm with m > N . Our modifications make the protocol more
applicable and also more secure for the next reasons. First, as computers can
use only limited precision, there will be stability and correctness problems when
computing over real numbers. Second, adding random noise r from R to value x
from R does not perfectly hide x since it is impossible to choose r uniformly at
random from R, or even from N. Therefore, cryptanalysis of the original Vaidya-
Clifton protocol is simpler and attacks against it are more dangerous when we
consider their protocol as working in R.

In the following, we explicitly assume that m is prime. Proposed attacks also
work with composite m, but then one would have to tackle many insubstantial
yet technical details. We will also establish some additional notation. First, for
any I = {i1, . . . , ij} ⊆ [N ] with |I| = j, any vector x and any matrix M , let
xI = (xi1 , . . . , xij

) and MI denote the sub-matrix of M that consists of the
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Private input of Alice: x ∈ {0, 1}N

Private input of Bob: y ∈ {0, 1}N

Private output of Bob: Scalar product x · y mod m.

1. Alice and Bob jointly do:
Generate a random invertible N × N matrix C.

2. Alice does:
Generate a random vector p ∈ ZN

m.
Send u ← x + Cp to Bob.

3. Bob does:
Generate 	 random values s1, . . . , s� ∈ Zm.
Send v ← CTy + r, where r[i] ← si1, to Alice.

4. Alice does:
Set t0 := v · p.
For i ∈ {1, . . . , 	}, set ti :=

∑n
j=1 p[i]j .

Send (t0, t1, . . . , t�) to Bob.
5. Bob does:

Return u · y − t0 +
∑�

i=1 siti.

Protocol 1. Vaidya-Clifton private shared scalar product protocol. (All com-
putations are done modulo a public m.)

rows I = {i1, . . . , ij}. Second, C is invertible and known to both Alice and Bob.
Therefore, define ai := (CT)−1ei mod m, where ei[j] = 1 if i = j and ei[j] =
0, otherwise. Define ω := (CT)−1v. Then (CT)−1r ≡ (CT)−1(s11, . . . , s�1) ≡∑�

i=1 siai (mod m), ω ≡ y +
∑�

i=1 siai (mod m) and ti ≡ ei · p ≡ ai · Cp
(mod m) for i ≥ 1.

First, we show that if the vector y has a low support then Alice is guaranteed
to learn half coefficients yi—and with a high probability the whole vector y—
after just executing Protocol 1 once.

Lemma 1. As previously, let supp(y) := |{y : yi �= 0}| be the support of y. As-
sume that N ≥ (2 supp(y) + 1)�. After just executing Protocol 1 once, a semi-
honest Alice obtains at least half of the coefficients of y, with probability 1, by
solving 2 supp(y) + 1 systems of linear equations in � variables.

Proof. Let M be the matrix with column vectors a1, . . . ,a�. Let s = (s1, . . . , s�).
The attack is based on the observation that the equality Ms ≡ ω− y (mod m)
gives Alice a system of N linear equations in � unknowns sj . The values vi and
vectors a1, . . . ,a� are known to Alice; the values yi ∈ {0, 1} are unknown. Alice
partitions the set [N ] iteratively into ≥ N/� (non-empty) parts Ik as follows:
Denote Jk := [N ] \

⋃
i<k Ik. Alice chooses an Ik ⊆ Jk, such that the matrix

MIk
has the maximal possible rank with respect to Jk and Ik is minimal unless

the rank of MJk
is zero. In particular, MJk

= DkMIk
for some matrix Dk.

If rank of MJk
is zero then Alice chooses a random index from Jk. Note that

MJk
= DkMIk

still holds for an appropriate zero matrix Dk.
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Now, there are at least N/� ≥ 2 supp(y)+1 parts Ik. For a majority of indices
k (we say that such indices k are “good”), yIk

is a zero vector. Therefore, in the
majority of the cases, Alice obtains the correct values sIk

by solving the equation
MIk

s = ωIk
. Since MJk

s = DkMIk
s, the value of yJk

is uniquely determined
by sIk

. Moreover, the smallest “good” k = k0 satisfies k0 ≤ supp(y) + 1. The
solution s of MIk0

s = (ω)Ik0
is consistent with the solutions that correspond

to other “good” k’s, that is, MIk
· sIk0

= ωIk
for all “good” indices k > k0.

Therefore, Alice can find all “good” indices k by majority voting. She also obtains
all coordinates of yJk0

. 
�

If |Ik0 | = � then all coordinates of y are revealed, otherwise coefficients are
revealed for all sets |Ik| ≤ |Ik0 |, as any solution to MIk0

s = ωIk0
uniquely

determines yJk0
= ωJk0

− Dk0ωIk0
. The next result shows that y is revealed

almost certainly.

Lemma 2. Let Ik be defined as in the proof of the previous lemma. Then
Pr [ |Ik| = |Ik+1| ] =

∏d−1
i=0

(
1 − m−|Jk|+i

)
. Thus, the probability that all coef-

ficients are revealed is approximately (1−m−N/2)supp(y)� ≈ 1− supp(y)�m−N/2.

Proof. Consider all possible vector assignments of a1, . . . ,a� that are consistent
with the choice of I1, . . . , Ik; that is, such assignments, for which MJk

= D′
kMIk

for some D′
k. The latter is equivalent to the assumption that rows of MJk

are randomly sampled from a vector space of dimension |Ik|. By a standard
result [vLW92–p. 303], the probability that rank(MJk

) = |Ik| is equal to∏|Ik|−1
i=0 (1 − m−|Jk|+i). Hence, the first claim is proven. Now, y is completely

determined if
∣∣Isupp(y)+1

∣∣ = �. As |I1| = � by the protocol construction and for
k < supp(y),

∣∣Jsupp(y)

∣∣ > N/2, the second claim follows from a straightforward
calculation. 
�

If we give more power to Alice, she will be able to do much better. Assume
that Protocol 1 is run twice with the same input vector y; let a1, . . . ,a� and
a′

1, . . . ,a
′
� be vectors, computed from the random matrices C and C ′ as pre-

viously. Then, ω − ω′ =
∑�

i=1 siai −
∑�

i=1 s
′
ia

′
i. With high probability, this

determines s and s′ uniquely. To avoid similar attacks, Bob must never run Pro-
tocol 1 twice with the same input y but different matrices C. The next lemma
shows that also Alice must never run Protocol 1 twice with the same input x
but different matrices C.

Lemma 3. If Protocol 1 is re-executed k > N/� times with the same x, Bob
obtains x with probability higher than

∏N−1
i=0 (1−m−k�+i).

Proof. Each execution of Protocol 1 provides � linear equations ai ·u = ai ·x +
ai ·Cp = ai ·x+ ti for i ∈ {1, . . . , �}. As a1, . . . ,a� are chosen randomly, similar
argumentation as in Lemma 2 gives the probability estimate. 
�

Finally, we get another efficient attack when we consider itemsets with almost
the same support. For example, assume that Alice knows that supp(y − y′) <
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N/(4�)− 1/2. Then, by using Lemma 1, Alice can determine s and s′ from the
equation ω−ω′ = y−y′+

∑�
i=1 siai−

∑�
i=1 s

′
ia

′
i; therefore, she obtains y and y′.

This attack works with any choice of C. The condition supp(y−y′) � N is not
so rare in the context of frequent itemset mining. Moreover, several optimisations
of Apriori are devised to exploit such shortcuts. To analyse the applicability
of low support attacks, we need additional notations. Let supp(I) denote the
support of the itemset I and yI the corresponding vector, i.e. yI,k = 1 iff the
kth row contains items I. We say that I is a closed frequent itemset, iff supp(I) is
over frequency threshold and for any proper superset J � I, supp(I) > supp(J).
Now, if the frequent itemset I is not closed, then the Apriori algorithm discovers
J ⊃ I such that supp(yI − yJ ) = 0 and Alice can apply the attack. The ratio
ρ between frequent and frequent closed sets describes the average number of
vectors revealed by a single closed set. Empirical results [PHM00] on standard
data mining benchmarks indicate that ρ can range from 2 to 100 depending
on the frequency threshold, when the database contains some highly correlated
items.

The analysis can be extended further by using notion of frequent δ-free sets. A
itemset I is δ-free if and only if for any proper subset J of I, supp(yJ −yI) > δ.
In other words, an itemset I is not δ-free if and only if there is J � I with
supp(yJ − yI) ≤ δ. Again, empirical results [BBR03, BB00] on standard data
mining benchmarks show that the number of frequent δ-free sets with δ ∈ [0, 20]
is several magnitudes smaller than the number of frequent sets, when database
contain highly correlated items. To conclude, low support differences are quite
common for many practical data sets and thus the Vaidya-Clifton scalar product
protocol is insecure for frequent itemset mining.

Remark on [VC02–Section 5.2]. In [VC02–Section 5.2], Vaidya and Clifton
note that the fact that xi and yi belong to {0, 1} can create a disclosure risk.
They propose two solutions. The first consists of “cleverly” selecting the matrix
C so that it is not evident which of the values of xi and yi are 1’s. Lemma 1
states that such a “clever” choice is impossible in general since at least a half
of y’s coordinates is revealed for every matrix C. Besides, the solution is not
fully spelled out and no security proofs are given. Another solution from [VC02–
Section 5.2] is said to increase the security of Bob but decrease the security of
Alice, but again, no security proofs are given. Thus, it is difficult to estimate the
exact security of the proposed solutions. It seems that neither of these mentioned
solutions is secure against our attacks.

Communication and computation of Vaidya-Clifton protocol. Alice and
Bob must both know C, thus the communication of the Vaidya-Clifton protocol
is approximately N2 logm bits. In the version of the scalar product protocol
where no privacy is guaranteed, Alice just sends her vector (N bits) to Bob, who
returns the scalar product (�log2 N� bits). Define the communication overhead
of a private scalar protocol P to be equal to C(P )/N , where C(P ) is the number
of bits communicated in the protocol P . Thus, the communication overhead of
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Private inputs: Vectors x ∈ {0, 1}N and y ∈ {0, 1}N .
Private outputs: Shares sA + sB ≡ x · y mod m.

1. Alice does:
Generate random v1, . . . , vd−1 ← ZN

m.
Set vd := x −∑d−1

i=1 vi and sA := 0.
2. For i = 1 to d do

(a) Alice does:
Generate random 	i ∈ {1, . . . , p}.
Set hi�i := vi .
For j ∈ {1, . . . , 	i − 1, 	i + 1, . . . , p}: Generate random hij ∈ Zn

m.
Send (hi1, . . . , hip) to Bob.

(b) Bob does:
Generate random ri ∈ Zm.
For j ∈ {1, . . . , p}: Set zij := hij · y + ri.

(c) Alice does:
Use

(
p
1

)
-oblivious transfer to retrieve zi�i from (zi1, . . . , zip).

Set sA := sA + zi�i .
3. Alice outputs sA, Bob outputs sB = −∑d

i=1 ri.

Protocol 2. Du-Atallah private SSP protocol. Here, m > N is a public modulus

the Vaidya-Clifton private SP protocol is Nm. Computation is dominated by
Θ(N2) multiplications and additions in Zm. The new scalar product protocol,
that we will propose in this paper, is both more secure and more efficient.

3.2 Du-Atallah Private Scalar Product Protocol

Du and Atallah proposed another private SSP protocol [DA01a], depicted by
Protocol 2. We show that also this protocol cannot handle binary vectors with
low support.

Since Protocol 2 chooses the values ri randomly, sA is a random value and
therefore Alice does not learn anything about y. To learn x, Bob must guess
correctly the values �i for all i. Since the probability of a random guess is p−d,
Du and Atallah argue that this protocol is secure when pd > 280. Bob can do
much better, however.

Lemma 4. Assume N ≥ (2 supp(x) + 1)pd. Then, with probability 1, Bob finds
at least N/2 coordinates of x by solving supp(x)+1 systems of linear equations,
each having dimension pd−1. With high probability ≈ (1−m−N/2)supp(x)(pd−1) ≈
1− supp(x)(pd− 1)m−N/2, Bob obtains the whole vector x.

Proof. Bob knows that
∑d

i=1 hiji
= x for some values ji. Equivalently,

d∑
i=1

p∑
j=1

cijhij = x ,
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where cij = 1 if j = ji and cij = 0, otherwise. Exactly as Alice did in the
proof of Lemma 1, Bob iteratively partitions [N ] into subsets Ik with maximal
possible rank. Hence, a solution to

∑
i,j cij(hij)Ik0

= 0 uniquely determines
xIk

=
∑

i,j cij(hij)Ik
for k > k0. On the other hand, Bob creates at least

2 supp(x) + 1 partitions Ik. Thus, there exists a k ≤ supp(x) + 1, such that
xIk

= 0. As in the proof of Lemma 1, we can determine the first “good” k0 ≤
supp(x) + 1 by using majority voting.

To reduce the amount of computations, Bob can ignore all sets |Ik| = pd.
For any “good” k, |Ik| ≤ pd − 1, as xIk

= 0 and the homogeneous system∑
i,j cij(hij)Ik

= 0 has a nontrivial solution.
The proof of the second claim is similar to the proof of Lemma 2, since it is

sufficient that pd− 1 random vectors are linearly independent, and |I1| ≥ pd− 1
by construction. 
�

This protocol has another serious weakness, since with high probability
slightly more than pd coordinates of x allow to determine correct cij and thus
also reveal other coordinates. Therefore, a leakage of pd database entries, can
reveal the whole vector (database) and thus pd must be large, say more than
200. On the other hand, this protocol is very inefficient when pd is large.

Communication and computation complexity. Assume pd > 280. Then
the communication of the Du-Atallah private SSP protocol is dpN + dtp, where
tp is the communication complexity of the

(
p
1

)
-oblivious transfer protocol. This is

minimal when d is maximised, i.e., when p = 2. Taking the efficient
(
p
1

)
-oblivious

transfer protocol from [AIR01], one has t2 = 3k, where k ≈ 1024 is the security
parameter. Then the communication is 2dN + 3dk bits for d ≥ 80 and k ≥
1024. Taking d = 80 and k = 1024, we get communication 160N + 245760 bits.
However, Lemma 4 indicates that for the security of the Du-Atallah protocol, one
should pick p and d such that pd is quite large. For example, picking p = 211 and
d = 8 might result in an acceptable security level, but then the communication
of the protocol will be 214 ·N + dtp bits.

4 Cryptographic Private SSP Protocol

In this section we describe a private SSP protocol (Protocol 3) that is based on
homomorphic encryption. Note that a private SP protocol can be obtained from
it by defining sB ← 0.

Theorem 1. Assume that Π = (Gen,Enc,Dec) is a semantically secure ho-
momorphic public-key cryptosystem with P (sk) = Zm for some large m. Set
μ := �

√
m/N�. Protocol 3 is a secure SSP protocol in the semi-honest model,

assuming that x,y ∈ ZN
μ . Alice’s privacy is guaranteed when Bob is a probabilis-

tic polynomial-time machine. Bob’s privacy is information-theoretical.

Proof. Clearly, the protocol is correct if the participants are honest. Since the
cryptosystem is semantically secure, Bob only sees N random ciphertexts, for
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Private inputs: Private vectors x, y ∈ ZN
μ .

Private outputs: Shares sA + sB ≡ x · y mod m

1. Setup phase. Alice does:
Generate a private and public key pair (sk, pk).
Send pk to Bob.

2. Alice does for i ∈ {1, . . . , N}:
Generate a random new string ri.
Send ci = Encpk(xi; ri) to Bob.

3. Bob does:
Set w ← ∏N

i=1 cyi
i .

Generate a random plaintext sB and a random nonce r′.
Send w′ = w · Encpk(−sB ; r′) to Alice.

4. Alice does: Compute sA = Decsk(w
′) = x · y − sB .

Protocol 3 Private homomorphic SSP protocol

which he cannot guess the plaintexts. In particular, this holds even when Bob has
given two candidate vectors x1 and x2 to Alice and Alice has randomly chosen
one of them, x := xb. Even after a polynomial number of protocol executions
with Alice’s input, Bob will gain only an insignificant amount of information
about xb that will not help him in guessing the value of b. (This roughly corre-
sponds to the standard notion of semantic security.) On the other hand, Alice
only sees a random encryption of sA = x ·y−sB, where sB is random. But Alice
has the key anyways, so she can decrypt this message. Thus, Alice obtains no
information at all. 
�

(Note that if m > 21024 and N ≈ 216 then μ ≥ 2504.) In Appendix A, we describe
an extension of this protocol to more than two parties.

Practical considerations. Note that when Alice and Bob need to execute this
protocol several times, they can reuse public and private keys and thus the setup
phase can be executed only once. Public key cryptography is computationally
demanding. To estimate the computational cost of the new scalar product proto-
col, we must count encryptions, decryptions and multiplications of ciphertexts.
Bob must perform N exponentiations and 1 encryption. Alice has to perform N
encryptions and 1 decryption.

In the specifically interesting case when xi, yi ∈ {0, 1} (e.g., when x and y
correspond to characteristic functions of two sets X and Y ; then x·y = |X ∩ Y |),
this protocol can be further optimised. Namely, Alice can pre-compute and then
store a large table of random encryptions of 0’s and 1’s. Then every “encryption”
just corresponds of fetching a new element from the correct table; this can be
done very quickly. Bob has to perform 1 encryption and supp(y) multiplications,
since the exponents yi are all Boolean. (When yi = 0 then cyi

i = 1 and otherwise
cyi

i = ci.)

.
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The current hardware allows to do approximately 105 multiplications per sec-
onds and thus the computational complexity of both Alice and Bob is tolerable.
A similar analysis applies for Protocol 4. Here, Alice and Bob must pre-compute
N encryptions. Hence, we can conclude that the computational complexity is not
a serious downside of the proposed protocols. Similar, although not as efficient,
optimisation tricks can also be used to speed up Protocol 3 when x and y are
not binary.

Estimated communication complexity. The only serious drawback of the
new protocols is the communication overhead: since Alice sends N ciphertexts
ci, the overhead is k′/μ, where k′ is just the size of each ciphertext in bits. When
using any of the currently known most efficient semantically secure homomorphic
cryptosystems (e.g., the one from [Pai99]), k′ ≈ 2048. For x,y ∈ Zm′ with very
small m′—say, m′ ≤ 13, this compares non-favourably with the overhead of
the (insecure) Du-Atallah protocol which has the overhead of approximately 160
times with d = 80 and k = 1024. For a large m′, the described protocol is already
more communication-efficient than the Du-Atallah protocol.

Comparison with Freedman-Nissim-Pinkas protocol. Recently, Freed-
man, Nissim and Pinkas proposed a related cryptographically secure protocol
for computing the set intersection cardinality [FNP04], a task that is equiva-
lent to privately computing the scalar product of two binary vectors. In the
non-shared case, the Freedman-Nissim-Pinkas protocol is more efficient than the
new one, but then the participants also learn the values supp(x) and supp(y).
However, recall that in the data mining applications it is preferable that both
parties will get only shares sA + sB = x · y mod m of the scalar product, oth-
erwise frequency of some infrequent sets is revealed. Moreover, sometimes only
a list of frequent sets without frequencies is required.

Freedman, Nissim and Pinkas proposed also a solution for shared version,
but their protocol requires a secure circuit evaluation. Briefly, secure evaluation
means that first Alice and Bob obtain supp(x) different shares

si + ti =

{
0, if xi = 1, yi = 1
ri, if xi = 1, yi = 0

}
mod m

where ri ∈ Zm is a random value and m is (say) a 1024-bit number. To securely
compute x · y by secure circuit evaluation, one therefore needs to execute obliv-
ious transfer for each 1024 · supp(x) input bit pairs (si, ti). Since a

(
2
1

)
-oblivious

transfer protocol requires sending at least three encryptions, the communication
overhead of the Freedman-Nissim-Pinkas protocol is lower than the communica-
tion overhead of Protocol 3 only if supp(x) ≤ N/(3 · 1024), i.e., if the candidate
set is very infrequent.

Reducing communication overhead. We shall now discuss how to reduce
the overhead if it is known that x and y are Boolean. Again, similar optimi-
sation techniques can be used when x,y ∈ Zμ′ for some 2 < μ′ � μ. In the
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following we assume that the plaintext space of the cryptosystem Π is a residue
ring Zm such that logm ≥ 1024. This is the case for all widely known homo-
morphic cryptosystems. When we assume that xi, yi ∈ {0, 1}, every ciphertext
ci in Protocol 3 only transfers a single bit xi, which results in communication
overhead.

The next technique for packing several bits into one plaintext is fairly stan-
dard in cryptography (it has been used at least in the context of electronic vot-
ing [CGS97, DJ01], electronic auctions [LAN02] and oblivious transfer [Lip04]).
To pack k entries into a single message—recall that the plaintext length is k
bits—, we fix a radix B > N , such that Bk < m, and work implicitly with B-
ary numbers. Let [vk, . . . , v2, v1] = v1 + v2B + · · ·+ vkB

k−1. Our method works
only in the case when Alice and Bob do batch computation of scalar products,
more precisely, when Alice and Bob need to compute xi · y for several vectors
xi, i ∈ {1, . . . , k}, owned by Alice. (This is exactly what happens in the context
of frequent itemset mining.)

The new batch scalar product protocol looks exactly like Protocol 3, except
that Alice computes ci as

ci =Encpk([xki, . . . , x2i, x1i]; ri)

=Encpk(1; 0)x1iEncpk(B; 0)x2i · · · · · Encpk(Bk−1; 0)xikEncpk(0; ri) .

It takes at most k multiplications to compute ci. Again, the encryptions
Encpk(Bj ; 0) can be computed in the setup phase. Hence, during the first step,
Alice’s computation is N encryptions and O(kN) multiplications.

At the second step of the protocol, Bob computes

w =
N∏

i=1

Encpk(yi[xki, . . . , x2i, x1i]; ri)Encpk(−sB , r′)

= Encpk ([xk · y, . . . ,x1 · y]− sB ; r′′) .

Hence, if Bob reveals sB, Alice can restore all scalar products xj ·y. Sometimes
it is also needed that Alice be able only to compute xj · y for j ∈ I, where I
is a proper subset of {1, . . . , k}. One can do this efficiently by using standard
cryptographic techniques.

Therefore, when using the Paillier cryptosystem, the resulting protocol for
privately computing the scalar product of two binary vectors has almost opti-
mal communication overhead of �logN� times. (When using the Damg̊ard-Jurik
cryptosystem, the communication overhead might even be smaller.) This should
be compared to the 160 times overhead of the insecure Du-Atallah protocol.

Related work. After the preproceedings version of the current paper was pub-
lished, we were acknowledged by Rebecca Wright of some previous work. In
particular, in [WY04], Wright and Yang proposed essentially the same SSP pro-
tocol as Protocol 3, optimised for the case of binary data as in our paper. How-
ever, they did not consider the batch SSP case. (See [WY04] and the references
therein.)
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Security in malicious model. Protocol 3 can be made secure in the malicious
model by letting Alice to prove in zero-knowledge, for every i, that ci encrypts
a value from Zμ. This can be done efficiently in the random oracle (or common
reference string) model [Lip03]. An alternative is to use conditional disclosure
of secrets [AIR01] modified recently to the setting of Paillier’s cryptosystem
in [LL05]. Both methods guarantee that at the end of a protocol run, Alice is
no better of than mounting the next probing attack : Alice creates a suitable
valid input vector x′, executes the protocol with Bob, and obtains x′ · y. If x′

is suitably chosen (e.g., x′
i = 1 and x′

j = 0 for j �= i), this may result in privacy
leakage. However, this probing attack is unavoidable, no matter what private
scalar product protocol is used instead of Protocol 3. The only way to tackle this
attack is to let Alice to prove that her input x is “correctly” computed, whatever
“correctly” means in the concrete application (e.g., in frequent itemset mining
on vertically distributed databases). While such a functionality can be added to
Protocol 3, it is not a part of the definition of a “private scalar product” protocol,
but highly application-dependent (and thus should be left to be specified on a
higher level), and very often, highly costly.

5 Conclusions

The secure computation of a scalar product is an important task within many
data mining algorithms that require the preservation of privacy. Recently, several
protocols have been proposed to solve this task. We have shown, however, that
they are insecure. Moreover, we presented a private scalar product protocol based
on standard cryptographic techniques and proved that it is secure. Furthermore,
we described several optimisations in order to make it very efficient in practice.
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A Private Generalised Scalar Product Protocol

Next, we propose a secure generalised scalar product protocol (Protocol 4) for

〈x1,x2, . . . ,xk〉 =
N∑

i=1

x1i · · ·xki .

For the sake of simplicity, we consider only the three-party case but the protocol
can be easily generalised. Again, Alice has a private key; Bob and Carol know
only the corresponding public key. The security of the generalised scalar product
protocol depends on Alice. Namely, when Alice colludes with other parties then
privacy can be compromised. For example, colluding Alice and Carol can reveal
yi, unless xi = 0, since Decsk(di) = xiyi. Thus, we get the following result.

Theorem 2. Assume that Π = (Gen,Enc,Dec) is a semantically secure homo-
morphic public-key cryptosystem with P (sk) = Zm for some large m. Protocol 4
is a secure generalised scalar product protocol. In particular, it is secure against
all possible coalitions provided that Alice does collude with other parties.
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The proof is a simple generalisation of the previous proof. Bob must re-
randomise ci’s as di = ci · Encpk(0; r′i), since otherwise the values of yi’s can be
detected only by comparing the ciphertext that he receives from Alice with the
one he sends to Carol. The sharing step 4 allows combine the outcome with other
cryptographic protocols.

Private inputs: Private vectors x, y, z ∈ ZN
μ .

Private outputs: Shares sA + sB + sC ≡ 〈x, y, z〉 mod m

1. Alice does:
Generate a key-pair (sk, pk).
Send the public key pk to Bob and Carol.

2. Alice does for i ∈ {1, . . . , N}:
Send ci = Encpk(xi; ri) to Bob.

3. Bob does for i ∈ {1, . . . , N}:
Set di = cyi

i Encpk(0; r′i).
Send di to Carol.

4. Carol does:
Set w ← ∏N

i=1 czi
i .

Generate a random plaintext sC and a random nonce r′.
Send w′ ← w · Encpk(−sC ; r′) to Bob.

5. Bob does:
Generate a random plaintext sB and a random nonce r′′.
Send w′′ ← w′ · Encpk(−sB ; r′′) to Alice.

6. Alice computes sA ← Decsk(w
′′) = x · y − sB − sC .

Protocol 4 Private generalised homomorphic SSP protocol.

The assumption that Alice does not collude with other parties is quite strong.
When we modify the protocol so that (sk, pk) is generated jointly by Alice, Bob
and Carol and that on the step 4, they do threshold decryption of w, we get a
private SP protocol with the next security result:

Theorem 3. Assume Π = (Gen,Enc,Dec) is a semantically secure homomor-
phic threshold public-key cryptosystem. Then Protocol 4, generalised to κ parties,
is secure against coalitions by < κ/2 parties.
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Abstract. The popular certificate revocation systems such as CRL and
OCSP have a common drawback that they are explicit certificate re-
vocation; the sender must obtain the revocation status information of
the receiver’s certificate, before sending an encrypted message. Recently,
an implicit certificate revocation system called ‘certificate-based encryp-
tion’ was introduced. In this model, a receiver needs both his private key
and an up-to-date certificate from the CA (Certification Authority) to
decrypt a ciphertext, while senders need not be concerned about the cer-
tificate revocation problem. Hence, the certificate-based encryption sys-
tem has the advantage of light infrastructure requirement. However, the
certificate-based encryption system has an important drawback that it is
inseparable; only the CA can handle the certificate revocation problem
and the load cannot be distributed among multiple trusted authorities.
In this paper, we propose a separable implicit certificate revocation sys-
tem called ‘status certificate-based encryption,’ in which the authenticity
of a public key is guaranteed by a (long-lived) certificate and the certifi-
cate revocation problem is resolved by a (short-lived) status certificate.
We present a secure construction based on bilinear mappings as well as
definitional works.

Keywords: PKI, certificate revocation, certificate-based encryption.

1 Introduction

PKI and the certificate revocation problem. The main idea of PKI
(Public Key Infrastructure) is a digital certificate, which is a digitally signed
statement that binds a user and his public key. When a certificate is issued, its
validity is limited by a pre-defined expiration time. However, instances occur
where a certificate must be invalidated prior to its expiration time, and CRL
(Certificate Revocation List) is the most common mechanism for determining
whether a certificate is revoked or not [11]. CRL is a signed list of revoked cer-
tificates that is periodically issued by the CA (Certification Authority). The size
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of the CRL can grow arbitrarily large, which causes unnecessary consumption
of storage and bandwidth that cannot be tolerated in certain environments. An-
other popular mechanism that provides the revocation status of a certificate is
OCSP (Online Certificate Status Protocol), where a client generates an OCSP
request and an on-line server replies to the client with an OCSP response [12].
OCSP provides a real-time status and is appropriate for applications where time-
liness is of high priority. A major drawback of OCSP is that the server must be
on-line and involved in every transaction. Also, the OCSP server can be the main
target of DoS (Denial-of-Service) attacks. Even though there are other certifi-
cate revocation systems [14, 13, 15], previous systems including CRL and OCSP
have a common inherent drawback that they are explicit revocation; when Alice
wants to send an encrypted message to Bob, she must obtain fresh information
on Bob’s certificate status in advance. Distributing large amounts of fresh status
information on certificates requires infrastructure, and the apparent need for this
infrastructure is often cited as a reason against the deployment and management
of public key cryptosystems.

Certificate-based encryption. Recently, the notion of CBE (Certificate-
Based Encryption) was introduced to construct an efficient PKI requiring light
infrastructure [10]. In this model, a certificate acts as a partial decryption key
as well as a traditional public key certificate. When Bob wants to decrypt a
ciphertext sent from Alice, he needs both an up-to-date certificate from the CA
and his private key. Hence, senders in a CBE system are not required to obtain
fresh status information on the receiver’s certificate and the up-to-date certificate
(i.e., the revocation information) can be ‘pushed’ only to the owner of the public
key by the CA. As with public key cryptography, each user in CBE generates his
own public key/private key pair and requests a certificate from the CA. Then,
the CA uses identity-based cryptography [3, 19] to generate the certificate. CBE
retains the desirable properties of public key cryptography (no key escrow) and
identity-based cryptography (implicit certification), while it is not subjected to
the private key escrow problem inherent in identity-based cryptography.

Even though the CBE system has better characteristics than previous cer-
tificate revocation systems, it is questionable whether CBE systems are widely
adopted in practice. This question stems from the fact that CBE systems are
inseparable; only the CA can manage the certificate revocation problem and the
burden cannot be distributed among other trusted parties. Therefore, a CBE sys-
tem becomes inefficient when the CA has a large number of clients and performs
frequent certificate updates. By contrast, the load distribution among multiple
trusted parties can be accomplished in other certificate revocation systems; for
example, the OCSP server can be (1) the CA who issued the certificate, (2) a
Trusted Responder whose public key is trusted by the requester, or (3) a CA
Designated Responder (Authorized Responder) who holds a specially marked
certificate issued directly by the CA, indicating that the responder may issue
OCSP responses for that CA [12].



Separable Implicit Certificate Revocation 123

Our contribution. When the CA in CBE issues a certificate for the time
period t, the CA guarantees the following two facts: (1) the binding between a
user and his public key, and (2) the validity of the binding for the time period t.
However, we find that the authenticity of a public key (i.e., the binding between
a user and his public key) does not need to be checked at every time period.
Instead, we propose the notion of SCBE (Status Certificate-Based Encryption),
in which (1) the authenticity of a public key is guaranteed by a (long-lived)
certificate and (2) the certificate revocation status information is carried by a
(short-lived) status certificate. In an SCBE system, each user generates his own
public key/private key pair and the CA issues a certificate. When Alice wants to
send an encrypted message to Bob, Alice obtains Bob’s public key from Bob’s
certificate with no need of checking the revocation status of the certificate. To
decrypt Alice’s message, Bob needs a decryption key which is computed from
his private key and an up-to-date status certificate. Note that a status certificate
can be issued by a dedicated trusted third party, say SCA (Status Certification
Authority), which is different from the CA. Therefore, the CA guarantees the
binding between a user and his public key, and the SCA guarantees the validity
of the binding for the time period t. The advantageous properties of CBE (no key
escrow and implicit revocation) are maintained in SCBE while the CA’s burden
of certificate revocation can be distributed, i.e., SCBE is a separable implicit
certificate revocation system.

2 Certificate-Based Encryption

2.1 The Model of CBE

A CBE scheme [10] is specified by a 6-tuple of poly-time algorithms. In lieu of
an original definition, we present a slightly modified version, i.e., a CBE scheme
with only one security parameter instead of two. While eliminating the second
security parameter from the input of CB Set User Key, we add a parameter list
params to the input of CB Set User Key. Since params is derived from a secu-
rity parameter k, this change makes no meaningful difference for all practical
purposes. In addition, the definition is not based on either identity-based en-
cryption or public key encryption. Thus, the definition is independent and more
general.

Definition 1. A certificate-based encryption scheme is a 6-tuple of poly-time al-
gorithms (CB Gen, CB Set User Key, CB UpdCA, CB UpdUser, CB Enc, CB Dec)
such that:

– CB Gen, the master key and parameter generation algorithm, is a probabilis-
tic algorithm that takes as input a security parameter 1k and (optionally)
the total number of time periods N. It returns a master key CBSK∗ and a
parameter list params.

– CB Set User Key, the user key generation algorithm, is a probabilistic algo-
rithm that takes as input a parameter list params, a user identity id, and
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(optionally) the total number of time periods N. It returns the user id’s pri-
vate key CBSKid and public key CBPKid.

– CB UpdCA, the CA update algorithm, is a deterministic algorithm that takes
as input a parameter list params, a user identity id, a time period t, the user
id’s public key CBPKid, and the CA’s master key CBSK∗. It returns the
user id’s certificate Cert(id,t) for the time period t.

– CB UpdUser, the user update algorithm, is a deterministic algorithm that takes
as input a parameter list params, a time period t, a certificate Cert(id,t), and
(optionally) CBPD(id,t−1). It returns a partial decryption key CBPD(id,t).

– CB Enc, the encryption algorithm, is a probabilistic algorithm that takes as
input a message M, a user identity id, a time period t, a parameter list
params, and the user id’s public key CBPKid. CB EncCBPKid

params (M, id, t) re-
turns a ciphertext C.

– CB Dec, the decryption algorithm, is a deterministic algorithm that takes
as input a parameter list params, the private key CBSKid, a ciphertext C,
and the partial decryption key CBPD(id,t). CB DecCBSKid

params (C,CBPD(id,t))
returns a message M or the special symbol ⊥.

We require that CB DecCBSKid
params (CB EncCBPKid

params (M, id, t), CBPD(id,t)) = M for
all message M .

In a CBE scheme, CB Gen and CB UpdCA are performed by the CA, and
CB Set User Key and CB UpdUser are executed by a user. Since CB Set User Key
is executed by a user, the key escrow of a user’s private key is not inherent in
a CBE scheme. At the beginning of a time period t, a certificate Cert(id,t) is
given to a user id by the CA. Then, the user computes a partial decryption
key CBPD(id,t) based on Cert(id,t) and (possibly) CBPD(id,t−1). This partial
decryption key CBPD(id,t) together with the private key CBSKid is used in
the decryption algorithm. CB Enc is carried out by a sender unconcerned about
certificate revocation status.

For security analysis, we give the adversary access to three types of oracles.
The first is a certification oracle CB Upd(·, ·, ·, ·) that returns Cert(id,t) on input a
user identity id, a time period t, and the user id’s public key/private key pair. The
second is a decryption oracle CB Dec(·, ·, ·, ·, ·) that returns CB DecCBSKid

params (C,
CBPD(id,t)) on input (id, t, C,CBPKid, CBSKid). The third is a left-or-right
encryption oracle [2] CB Enc(·, ·, ·, ·, LR(·, ·, b)) that given a user id, a time period
t, the user id’s public key/private key pair, and equal length messages M0, M1

returns a challenge ciphertext Cch = CB EncCBPKid
params (Mb, id, t).

The security of a CBE scheme is directed against two different types of ad-
versaries. The Type I adversary AI has no access to the master key, but may
make certification queries and decryption queries. The Type II adversary AII

equipped with the master key models an eavesdropping CA. For the Type II
adversary AII , (params,CBSK∗) replaces the user id’s public key/private key
pair in the input of oracle queries. For detailed restrictions on the two types of
adversaries and security notions, refer to [10].
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Definition 2. Let ΠCB be a certificate-based encryption scheme. For any ad-
versary A, we may define the following:

SuccA,ΠCB
(k) = Pr[b′ = b : (CBSK∗, params) ← CB Gen(1k); b← {0, 1};

b′ ← AO(·),CB Dec(·,·,·,·,·),CB Enc(·,·,·,·,LR(·,·,b))(params, h)]

where O(·) = CB Upd(·, ·, ·, ·), h =⊥ for AI , and O(·) =⊥, h = CBSK∗ for AII .
The adversary may query oracles adaptively, except that it can make exactly
one query to the left-or-right encryption oracle. A must follow the adversarial
constraints given in [10]. ΠCB is said to be secure against chosen-ciphertext
attacks if for any probabilistic polynomial time (PPT) adversary A, the advantage
AdvA,ΠCB

(k) = 2× |SuccA,ΠCB
(k)− 1/2| is negligible.

2.2 Remarks on CBE

The relief of the CA’s burden. When the CA in CBE issues an up-to-
date certificate for the time period t, the CA guarantees both (1) the binding
between a user and his public key and (2) the validity of the binding for the
time period t. If certificate revocation information is to be refreshed day by
day, the CA should update certificates everyday. While it is desirable that the
revocation information is frequently refreshed, the authenticity of the public key
need not be checked by the CA at each time period. Since the CA’s private
key is required to guarantee the condition (1), the CA’s burden of certificate
revocation management cannot be distributed in CBE.

To relieve the CA’s burden of certificate revocation management, we deal
with the two confirmations individually and introduce the notion of SCBE in
which (1) a (long-lived) certificate by the CA guarantees the authenticity of a
public key and (2) a (short-lived) status certificate by the SCA guarantees the
validity of the certificate for a specific time period. If certificate revocation infor-
mation is to be refreshed day by day, the CA issues a long-lived (say one year)
certificate and the SCA issues status certificates everyday. Since the binding is
guaranteed by the CA’s long-lived certificate, the SCA only checks the validity
of the binding; therefore the generation of a status certificate in SCBE is easier
than that of a certificate in CBE.

Key-insulated security. As portable devices are spreading widely, the
threat of exposure of private keys has increased considerably. Cryptographic
computations are often performed on a relatively insecure device that cannot
be trusted to maintain secrecy of the private key. To mitigate the damage of
private key exposure, key-insulated security [7, 8] can be adopted. In this model,
the decryption key stored on the insecure device is refreshed at discrete time pe-
riods via interaction with a physically-secure but computationally-limited device
which stores a master private key. In a (T , N)-key-insulated scheme, an adver-
sary who compromises the insecure device and obtains decryption keys for up to
T time periods of his choice is unable to violate the security of the cryptosystem
for any of the remaining N − T periods.
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In a CBE system, the decryption algorithm CB Dec takes as input the pri-
vate key CBSKid as well as the partial decryption key CBPD(id,t). When a
user travels, he has to carry the private key CBSKid together with the partial
decryption key CBPD(id,t) on his portable device. If the device is compromised,
the private key CBSKid is revealed. Since the adversary can eavesdrop on the
user id’s certificate sent by the CA, the user id’s security for the entire time
period collapses in case of the exposure of the private key CBSKid.

To minimize the damage caused by the exposure of secret information in a
user’s device, we remove the private key from the input of decryption algorithm
in the SCBE system. Instead, the user update algorithm computes a decryption
key for a time period t from the user’s private key and a status certificate. Hence,
the user need not store his private key on a portable device. When a decryption
key for a time period t is exposed, the security for other time periods can be
maintained.

3 Status Certificate-Based Encryption

3.1 The Model of SCBE

An SCBE scheme is specified by an 8-tuple of poly-time algorithms.

Definition 3. A status certificate-based encryption scheme is an 8-tuple of poly-
time algorithms (SCB GenCA, SCB GenSCA, SCB Set User Key, SCB InitCA,
SCB UpdSCA, SCB UpdUser, SCB Enc, SCB Dec) such that:

– SCB GenCA, the CA’s master key and parameter generation algorithm, is
a probabilistic algorithm that takes as input a security parameter 1k and
(optionally) the total number of time periods N. It returns a master key
SCBSKCA and a parameter list paramsCA.

– SCB GenSCA, the SCA’s status certification key generation algorithm, is a
probabilistic algorithm that takes as input a parameter list paramsCA. It re-
turns a status certification key SCBSKSCA and an SCA parameter
paramsSCA.

– SCB Set User Key, the user key generation algorithm, is a probabilistic al-
gorithm that takes as input a parameter list paramsCA, a user identity id,
and (optionally) the total number of time periods N. It returns the user id’s
private key SCBSKid and public key SCBPKid.

– SCB InitCA, the certificate issuance algorithm, is a deterministic algorithm
that takes as input a parameter list paramsCA, a user identity id, the user
id’s public key SCBPKid, and the CA’s master key SCBSKCA. It returns
the user id’s certificate Certid.

– SCB UpdSCA, the SCA update algorithm, is a deterministic algorithm that
takes as input a parameter list paramsCA, the user id’s certificate Certid,
a time period t, and the status certification key SCBSKSCA. It returns the
user id’s status certificate StatusCert(id,t) for the time period t.
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– SCB UpdUser, the user update algorithm, is a deterministic algorithm that
takes as input a parameter list paramsCA, a time period t, a status certificate
StatusCert(id,t), the user id’s public key/private key pair, and (optionally)
SCBDK(id,t−1). It returns a decryption key SCBDK(id,t) for the time
period t.

– SCB Enc,1 the encryption algorithm, is a probabilistic algorithm that takes
as input a message M, a user identity id, a time period t, a parameter list
paramsCA, an SCA parameter paramsSCA, and the user id’s public key
SCBPKid. SCB EncSCBPKid

paramsCA,paramsSCA(M, id, t) returns a ciphertext C.
– SCB Dec, the decryption algorithm, is a deterministic algorithm that takes

as input a parameter list paramsCA, a ciphertext C, and the decryption key
SCBDK(id,t). SCB DecparamsCA(C,SCBDK(id,t)) returns a message M or
the special symbol ⊥.

When SCBDK(id,t) is derived from the private key and StatusCert(id,t) cor-
rectly, SCB DecparamsCA(SCB EncSCBPKid

paramsCA,paramsSCA(M, id, t), SCBDK(id,t))=
M holds for all message M .

In an SCBE scheme, SCB GenCA and SCB InitCA are performed by the CA
while SCB GenSCA and SCB UpdSCA are performed by the SCA. Since SCB GenSCA

takes as input a parameter list paramsCA, it is assumed that the CA generates
the system parameter and multiple SCA’s can be employed under a specific
CA. After each user generates his own public key/private key pair using the
SCB Set User Key algorithm, the CA issues a (long-lived) certificate Certid to
guarantee the binding between a user and his public key. At the beginning of
every time period, a (short-lived) status certificate StatusCert(id,t) is given to
a user id by the SCA. Since SCB UpdSCA takes as input the user id’s certificate
Certid, the authenticity of the public key is guaranteed by the certificate and
the SCA has only to check the revocation status of the public key in order to
issue a status certificate. After receiving StatusCert(id,t) from the SCA, the user
computes a decryption key SCBDK(id,t) for the time period t from his private
key and the status certificate. When Alice wants to send an encrypted message
to Bob, Alice obtains Bob’s public key from a certificate without checking the
revocation status. To decrypt Alice’s message, Bob needs his decryption key
SCBDK(id,t) for the time period t. Note that the private key SCBSKid is not
required by the decryption algorithm SCB Dec. If an SCBE system is constructed
carefully, exposure of a decryption key SCBDK(id,t) does not compromise secu-
rity for other time periods.

For security analysis, we give the adversary access to three types of or-
acles. The first is a status certification oracle SCB Upd(·, ·, ·, ·) that returns
StatusCert(id,t) on input a user identity id, a time period t, and the user id’s
public key/private key pair. The second is a decryption oracle SCB Dec(·, ·, ·, ·, ·)
that returns SCB DecparamsCA(C,SCBDK(id,t)) on input (id, t, C, SCBPKid,

1 The public key SCBPKid can be obtained from Certid as an ordinary PKI. In
addition, Certid can include an SCA’s parameter, especially when multiple SCA’s
exist.
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SCBSKid). The third is a left-or-right encryption oracle SCB Enc(·, ·, ·, LR(·, ·,b))
that given a user id, a time period t, the user id’s public key, and two equal length
messages M0, M1 returns a challenge ciphertext Cch that is the encryption of
Mb.

The security of an SCBE scheme is directed against three different types of
adversaries: an eavesdropping CA, an uncertified user and a dishonest SCA. In
traditional PKI, the CA is always assumed not to issue new certificates binding
arbitrary public keys and a user, and especially not for those where the CA
knows the corresponding private key [1]. If the CA forges certificates, then the
CA can be identified as having misbehaved through the existence of two valid
certificates for the same user. The CA who replaces a user’s public key will
be implicated in the event of a dispute. Hence, we can consider an uncertified
user and an eavesdropping CA in a unified way. The Type I adversary who
models an eavesdropping CA (and an uncertified user) has no access to the
status certification key, but may make status certification queries and decryption
queries. The Type II adversary AII who models a dishonest SCA is equipped
with the status certification key. For the Type II adversary AII , the user id’s
public key and private key are replaced by (paramsSCA, SCBSKSCA) in the
input of oracle queries.

Definition 4. Let ΠSCB be a status certificate-based encryption scheme. For
any adversary A, we may define the following:

SuccA,ΠSCB
(k)

= Pr[b′ = b : (SCBSKCA, paramsCA) ← SCB GenCA(1k);
(SCBSKSCA, paramsSCA)← SCB GenSCA(paramsCA); b← {0, 1};
b′ ← AO(·),SCB Dec(·,·,·,·,·),SCB Enc(·,·,·,LR(·,·,b))(paramsCA, paramsSCA, h)]

where O(·) = SCB Upd(·, ·, ·, ·), h = SCBSKCA for AI , and O(·) =⊥, h =
SCBSKSCA for AII . The adversary may query oracles adaptively, except that
it can make exactly one query to the left-or-right encryption oracle. A must
follow the adversarial constraints given in [10]. ΠSCB is said to be secure against
chosen-ciphertext attacks if the advantage AdvA,ΠSCB

(k) = 2×|SuccA,ΠSCB
(k)−

1/2| is negligible for any PPT adversary A.

To define key-insulated security, we give the adversary additional access to
a key exposure oracle SCB Exp(·, ·) that returns a decryption key SCBDK(id,t)

on input a user identity id and a time period t.

Definition 5. Let ΠSCB be a secure status certificate-based encryption scheme
and A be an adversary who submits at most T requests to the key exposure
oracle and never queries to the key exposure oracle the same (id, t) as the input
of left-or-right encryption oracle. ΠSCB is said to be (T,N)-key-insulated, if the
advantage AdvA,ΠSCB

(k) in Definition 4 is negligible for any PPT adversary A
with additional access to SCB Exp(·, ·).
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3.2 An SCBE Scheme Based on Bilinear Mappings

We provide a concrete example of a secure SCBE scheme ΨSCB = (SCB GenCA,
SCB GenSCA, SCB Set User Key, SCB InitCA,SCB UpdSCA,SCB UpdUser,SCB Enc,
SCB Dec) based on bilinear mappings that are implemented using Weil and Tate
pairings on elliptic curves in practice. While the encryption algorithm of Full-
CBE in [10] requires two executions of pairing computation, SCB Enc of ΨSCB

needs only one execution of pairing computation.

SCB GenCA(1k)

– Run a BDH parameter generator G [3] on input a security parameter 1k, to
generate groups G1, G2 of some prime order q and an admissible bilinear
mapping ê : G1 ×G1 → G2.

– Choose a generator P ∈ G1 and four cryptographic hash functions H1 :
{0, 1}∗ → G1, H2 : G2 → {0, 1}n , H3 : {0, 1}n × {0, 1}n → Z∗

q , H4 : {0, 1}n

→ {0, 1}n for some n.
– Choose a master key sCA ∈ Z∗

q and sets QCA = sCAP .
– Return the CA’s master key SCBSKCA = sCA and the parameter list

paramsCA = (G1, G2, ê, P,QCA,H1,H2,H3,H4, q, n).

SCB GenSCA(paramsCA)

– Choose a status certification key sSCA ∈ Z∗
q and sets QSCA = sSCAP .

– Return the SCA’s status certification key SCBSKSCA = sSCA and the SCA
parameter paramsSCA = QSCA.

SCB Set User Key(paramsCA, id)

– Select a private key sid ∈ Z∗
q and sets Qid = sidP .

– Return the user id’s private key SCBSKid = sid and public key SCBPKid =
Qid.

SCB InitCA(paramsCA, id,Qid, sCA)

– Verify the user id’s information. If the information is invalid, abort.
– Compute Certid = sCAPid, where Pid = H1(id,Qid, paramsCA, id-info)

and id-info contains additional information about the user id.
– Return the user id’s certificate2 Certid = sCAPid.

SCB UpdSCA(paramsCA, Certid, t, sSCA)

– Check the revocation status of the user id’s certificate Certid for the time
period t. If Certid is already revoked, abort.

– Compute StatusCert(id,t) = sSCAP(id,t), where P(id,t) = H1(id, t, Qid,
paramsCA, id-info).

2 For simplicity, we misuse the terminology since Certid is a signature value and the
public key cannot be extracted from Certid. In practice, Certid should be a complete
certificate, such as X.509 certificate [11].

– Return the user id’s status certificate StatusCert(id,t) = sSCAP(id,t).
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SCB UpdUser(paramsCA, t, sSCAP(id,t), Qid, sid)

– Compute SCBDK(id,t) = sidP(id,t) + sSCAP(id,t).
– Return the decryption key SCBDK(id,t).

SCB Enc(M, id, t, paramsCA, QSCA, Qid)

– Choose a random σ ∈ {0, 1}n and set r = H3(σ,M).
– Compute the ciphertext

C = [U, V,W ] = [rP, σ⊕H2(gr),M⊕H4(σ)], where g = ê(QSCA+Qid, P(id,t)).
– Return the ciphertext C.

SCB Dec(paramsCA, C, SCBDK(id,t))

– Compute σ = V ⊕H2(ê(U, SCBDK(id,t))).
– Compute M = W ⊕H4(σ) and set r = H3(σ,M).
– Test whether U = rP or not.
– If the test succeeds, return M and otherwise, return ⊥.

The certificate Certid issued by the CA is a BLS signature [4]. If (P , QCA, Pid,
Certid) is a valid co-Diffie-Hellman tuple, the CA’s signature is accepted. From
Certid, the sender obtains Qid that is required by SCB Enc.

If C = [U , V , W ] is the encryption of M sent to a user id for the time period t,
the decryption is the inverse of the encryption.

V ⊕H2(ê(U, SCBDK(id,t)))
= V ⊕H2(ê(rP, sidP(id,t) + sSCAP(id,t)))
= V ⊕H2(ê((sid + sSCA)P, P(id,t))r)
= V ⊕H2(ê(Qid + QSCA, P(id,t))r)
= σ ⊕H2(gr)⊕H2(ê(QSCA + Qid, P(id,t))r)
= σ

Fujisaki-Okamoto transformation [9] was applied to the construction of ΨSCB

and the security of ΨSCB can be proved in the random oracle model [5] by
reduction to the security of FullIdent in [3].

Theorem 1. ΨSCB is a secure SCBE scheme in the random oracle model under
the Bilinear Diffie-Hellman assumption.

Proof. (Sketch) We assume that readers are familiar with FullIdent and the se-
curity model of identity-based encryption. Otherwise, refer to Appendix A or
[3].

Let AI be a Type I attacker who can break ΨSCB . Suppose that AI has
advantage ε and runs in time t. We show how to construct from AI an ad-
versary A′ against FullIdent = (ID Gen, ID Ext, ID Enc, ID Dec). At the begin-
ning, the FullIdent adversary A′ is given by the FullIdent challenger a parameter
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list params = (G1, G2, ê, P,QPKG,H1,H2,H3,H4, q, n) and three oracles: key
exposure oracle ID ExpIDSK∗

params(·), decryption oracle ID DecIDSK∗
params(·, ·), and left-

or-right encryption oracle ID Encparams(·, LR(·, ·, b)), where IDSK∗ = s. To
run AI , A′ simulates the SCB GenCA(1k) by supplying AI with paramsCA =
(G1, G2, ê, P, yP,H1,H2,H3,H4, q, n) where y is randomly chosen by A′. Then,
all users register their public keys to the CA and A′ can simulate SCB InitCA

perfectly by using y. A′ also gives sCA = y to AI . Note that yP is independent
of QPKG. Let qc be the number of certificate issuance requests.

First, we consider the case for the adversary AI attacking other users’ secu-
rity. A′ chooses a random index j ∈ {1, · · · , qc}. Denote idj as the user identity
of j-th certificate issuance query. To simulate SCB GenSCA(1k), A′ chooses a ran-
dom x ∈ Z∗

q and sets QSCA = xP . Additionally, A′ sets Qidj
= QPKG −QSCA.

Now, A′ responds to AI ’s oracle queries as follows.3

– Status certification oracle SCB Upd(·, ·, ·, ·) queries: Suppose that AI asks
with an input (id, t, Qid, sid).
1. If id = idj , A′ checks the validity of the query. If Qidj

= sidP , A′ obtains
s = sid + x and wins the game. Otherwise, A′ aborts.

2. If id �= idj , A′ checks the validity of the query and computes the sta-
tus certificate StatusCert(id,t) = xP(id,t), where P(id,t) = H1(id, t,Qid,
paramsCA, id-info). A′ sends StatusCert(id,t) to AI .

– Decryption oracle SCB Dec(·, ·, ·, ·, ·) queries: Suppose that AI asks with an
input (id, t, C, Qid, sid).
1. If id = idj , A′ sends (idα, C) to the FullIdent decryption oracle

ID DecIDSK∗
params(·, ·), where idα is (id, t, Qid, paramsCA, id-info). Since

Qidj
+ QSCA = QPKG, FullIdent decryption oracle can decrypt this

query correctly. A′ sends the output of ID DecIDSK∗
params(·, ·) to AI .

2. If id �= idj , A′ checks the validity of the query and computes the de-
cryption key SCBDK(id,t) = sidP(id,t) + xP(id,t), where P(id,t) = H1(id,
t, Qid, paramsCA, id-info). A′ returns M = SCB Dec(paramsCA, C,
SCBDK(id,t)).

– Left-or-right encryption oracle SCB Enc(·, ·, ·, ·, LR(·, ·, b)) queries: Suppose
that AI asks with an input (id, t, Qid, M0, M1).
1. If id = idj , A′ checks the validity of the query and sends (idα, M0, M1)

to the FullIdent left-or-right encryption oracle, where idα is (id, t, Qid,
paramsCA, id-info). Let Cch be the output of the FullIdent left-or-right
encryption oracle. Cch is also a valid output of the SCBE left-or-right
encryption oracle from the relation of QPKG = Qidj

+ QSCA.
2. If id �= idj , A′ aborts.

When the Type I adversary AI outputs b′, A′ outputs the same b′ to the FullIdent
challenger. If A′ does not abort during the simulation, the AI ’s view is identical
to its view in the real attack. Since the index j is chosen randomly, the probability

3 If the input is invalid, A′ answers arbitrarily.
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that A′ does not abort during the simulation is 1/qc. Hence, the advantage of
A′ satisfies AdvA′,FullIdent(k) = 2× |Pr(b′ = b)− 1/2| ≥ ε/qc and A′ runs in time
O(time(t)).

Second, we consider the case for the adversary AI trying to decrypt his own
ciphertext without valid status certificate. Let QAI

be the public key of AI . To
simulate SCB GenSCA(1k), A′ sets QSCA = QPKG−QAI

. Since A′ does not know
logP QSCA, A′ maintains the list H list

1 = {(id, t, z)} and simulates the random
oracle H1 by answering P(id,t) = zP , which is a typical trick in the random
oracle model. Then, A′ can simulate three ΨSCB oracles. The other parts of the
simulation are similar to the first case.

Let AII be a Type II attacker who can break ΨSCB . Suppose that AII has
advantage ε and runs in time t. We construct from AII an adversary A′′ against
FullIdent. At the beginning, A′′ is given by a FullIdent challenger a parameter
list params = (G1, G2, ê, P,QPKG, H1,H2,H3,H4, q, n) and three oracles. To
run AII , A′′ simulates the SCB GenCA(1k) by supplying AII with paramsCA =
(G1, G2, ê, P, yP , H1,H2,H3,H4, q, n) where y is randomly chosen by A′′. Then,
all users register their public keys to the CA and A′′ can simulate SCB InitCA

by using y. Let qc be the number of certificate issuance requests. A′′ chooses a
random index j ∈ {1, · · · , qc}. Denote idj as the user identity of j-th certificate
issuance query. To simulate SCB GenSCA(1k), A′′ chooses a random x ∈ Z∗

q and
sets QSCA = xP . Additionally, A′′ sets Qidj

= QPKG − QSCA. Now, A′′ gives
x to AII since AII has access to the status certification key. This is practically
equivalent to the case in which AII chooses the status certification key. The
remaining part of the proof is A′′’s simulation of the decryption oracle and the
left-or-right oracle. Here, one important point is that AII does not have access
to the users’ private keys. If AII has the users’ private keys with the status
certification key, no security can be guaranteed by definition. Therefore, AII does
not know users’ private keys and A′′ sets these values. Then, the simulation of
the decryption oracle and the left-or-right encryption oracle is exactly the same
as the first case of the Type I attacker A′, since A′′ has access to sid for each id.
After the simulation, the advantage of A′′ satisfies AdvA′′,FullIdent(k) ≥ ε/qc and
the running time of A′′ is O(time(t)).

Q.E.D. �

To study the damage of decryption key exposure, we consider a dishonest SCA
who obtains a decryption key SCBDK(id,ta) = sidP(id,ta) + sSCAP(id,ta). The
dishonest SCA can get sidP(id,ta) from SCBDK(id,ta), since he can compute the
user id’s status certificate StatusCert(id,ta) = sSCAP(id,ta). However, he cannot
compute sidP(id,tb) for a �= b, since sidP(id,ta) is a BLS signature and the BLS
signature is unforgeable under an adaptive chosen message attack [4]. To prove
the key-insulated security of ΨSCB , we convert an adversary attacking ΨSCB into
the attacker against FullIdent. We leave the details to readers.

Theorem 2. ΨSCB is (N − 1, N)-key-insulated.
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3.3 Applications

Compatibility with legacy CA systems. The CA’s signature of ΨSCB is a
BLS signature. However, any signature scheme including RSA [18] and DSA [16]
can be used by the CA. As Certid is used only for guaranteeing the authenticity
of a public key, the change of the CA’s signing algorithm does not affect other
parts of ΨSCB.4 Therefore, the legacy CA systems can be used in ΨSCB with
little modification.

New business model. The new part of ΨSCB is the SCA. The separation of
a certificate and a status certificate introduces different business models. For
example, the department of motor vehicles (DMV) issues a driver’s license guar-
anteeing the authenticity of a citizen and the assurance company makes a profit
from assuring the current validity of the driver’s license. This role of the SCA
is similar to that of the key compromise agent (or the suicide bureau) in the
Rivest’s system [17].

Multiple SCA’s. When multiple SCA’s are implemented, ΨSCB can be ex-
tended in diverse ways. For example, the ciphertext generation can be modified
as follows, when a sender wants the validity of the receiver’s certificate to be
assured by both SCAi and SCAj :

C = [rP , σ ⊕H2(gr), M ⊕H4(σ)],
where g = ê(QSCAi

+ QSCAj
+ Qid, P(id,t)).

To decrypt this ciphertext, the receiver has to obtain status certificates from
both SCAi and SCAj . The required number of the pairing computation does
not increase and this extension holds for any number of SCA’s. Multiple SCA’s
are very useful for inter-domain applications and are also used for creating sub-
domains. Note that multiple SCA’s can be naturally applied to access control
and a similar technique was used in [6, 20].
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Appendix A. Identity-Based Encryption

After reviewing the definition and security model of identity-based encryption,
we present FullIdent of [3].

Definition 6. An identity-based encryption scheme is a 4-tuple of poly-time
algorithms (ID Gen, ID Ext, ID Enc, ID Dec) such that:



Separable Implicit Certificate Revocation 135

– ID Gen, the master key and parameter generation algorithm, is a probabilistic
algorithm that takes as input a security parameter 1k. It returns a master
key IDSK∗ and a parameter list params.

– ID Ext, the decryption key issuance algorithm, is a deterministic algorithm
that takes as input a user identity id, a parameter list params, and a master
key IDSK∗. It returns the user id’s decryption key IDSKid.

– ID Enc, the encryption algorithm, is a probabilistic algorithm that takes as in-
put a message M, a user identity id, and a parameter list params.
ID Encparams(M, id) returns a ciphertext C.

– ID Dec, the decryption algorithm, is a deterministic algorithm that takes as
input a parameter list params, the decryption key IDSKid, and a ciphertext
C. ID DecIDSKid

params (C) returns a message M or the special symbol ⊥.

We require that for all message M , ID DecIDSKid
params (ID Encparams(M, id)) = M .

In an identity-based encryption scheme, ID Gen and ID Ext are performed by
a private key generator (PKG). A decryption key IDSKid is given to a user id
by the PKG through a secure channel. Note that the key escrow of the user’s
private key is inherent in an identity-based encryption scheme.

For security analysis, we define a key exposure oracle ID ExpIDSK∗
params(·) that

returns a decryption key IDSKid on input id. We also give the adversary ac-
cess to a decryption oracle ID DecIDSK∗

params(·, ·) that returns ID DecIDSKid
params (C) on

input (id, C). Finally, the adversary can access a left-or-right encryption ora-
cle ID Encparams(·, LR(·, ·, b)) that given a user identity idch and equal length
messages M0, M1 returns a challenge ciphertext Cch = ID Encparams(Mb, idch).

The security goal of an identity-based encryption scheme is chosen cipher-
text security. This means that any PPT adversary A should have a negligi-
ble advantage of distinguishing the encryptions of two messages of his choice
given access to the key exposure oracle ID ExpIDSK∗

params(·), the decryption oracle
ID DecIDSK∗

params(·, ·), and the left-or-right encryption oracle ID Encparams(·, LR(·,
·, b)). The key exposure oracle models the ability of the adversary to compromise
any user of his choice, except the target user.

Definition 7. Let ΠID be an identity-based encryption scheme. For any adver-
sary A, we may define the following:

SuccA,ΠID
(k) =

Pr[b′ = b : (IDSK∗, params) ← ID Gen(1k); b← {0, 1};
b′ ← AID ExpIDSK∗

params(·),ID DecIDSK∗
params(·,·),ID Encparams(·,LR(·,·,b))(params)]

where the adversary may query oracles adaptively subject to the restriction that
it can make exactly one query to the left-or-right encryption oracle. Let idch

be the user identity of the query to the left-or-right encryption oracle and Cch

be the challenge ciphertext returned by the left-or-right encryption oracle. We
say that A succeeds if b′ = b, idch was never submitted to the key exposure
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oracle, and (idch, Cch) was never submitted to the decryption oracle after Cch was
returned by the left-or-right encryption oracle. ΠID is said to be secure against
chosen-ciphertext attacks if for any PPT A, the advantage AdvA,ΠID

(k) = 2 ×
|SuccA,ΠID

(k)− 1/2| is negligible.

FullIdent is an identity-based encryption scheme secure against chosen-ciphertext
attacks in the random oracle model under the Bilinear Diffie-Hellman assump-
tion. The description of FullIdent is as follows:

ID Gen(1k)

– Run a BDH parameter generator G on input a security parameter 1k, to
generate groups G1, G2 of some prime order q and an admissible bilinear
mapping ê : G1 ×G1 → G2.

– Choose a generator P ∈ G1 and four cryptographic hash functions H1 :
{0, 1}∗ → G1, H2 : G2 → {0, 1}n , H3 : {0, 1}n × {0, 1}n → Z∗

q , H4 : {0, 1}n

→ {0, 1}n for some n.
– Choose a master key s ∈ Z∗

q and sets QPKG = sP .
– Return the CA’s master key IDSK∗ = s and the parameter list params =

(G1, G2, ê, P,QCA,H1,H2,H3,H4, q, n).

ID Ext(id, params, IDSK∗)

– Compute Pid = H1(id) and IDSKid = IDSK∗Pid = sPid.
– Return the user id’s decryption key IDSKid.

ID Enc(M, id, params)

– Choose a random σ ∈ {0, 1}n and set r = H3(σ,M).
– Compute the ciphertext

C = [U, V,W ] = [rP, σ ⊕H2(gr),M ⊕H4(σ)], where g = ê(QPKG, Pid).
– Return the ciphertext C.

ID Dec(params, IDSKid, C)

– Compute σ = V ⊕H2(ê(U, IDSKid)).
– Compute M = W ⊕H4(σ) and set r = H3(σ,M).
– Test whether U = rP or not.
– If the test succeeds, return M and otherwise, return ⊥.
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Abstract. This paper extends results concerning efficient exponentia-
tion in groups where inversion is easy (e.g. in elliptic curve cryptography).
It examines the right-to-left and left-to-right signed fractional window
(RL-SFW and LR-SFW) techniques and shows that both RL-SFW and
LR-SFW representations have minimal weight among all signed-digit
representations with digit set {±1,±3, . . .,±m, 0}. (Fractional windows
generalize earlier sliding-window techniques, providing more flexibility
for exponentiation algorithms in order to make best use of the memory
that is available for storing intermediate results.) Then it considers the
length of representations: LR-SFW representations are an improvement
over RL-SFW representations in that they tend to be shorter; further
length improvements are possible by post-processing the representations.

Keywords: Efficient implementations, elliptic curve cryptography.

1 Introduction

Many public-key cryptosystems involve exponentiation in some finite group, and
often (e.g. for elliptic curve cryptography) group elements are represented such
that the inversion operation is almost immediate. It is well known that signed-
digit representations of integers e are useful to perform exponentiations ge in
such groups. A particular signed-digit representation is the right-to-left signed
fractional window (RL-SFW) representation introduced in [14]. Fractional win-
dows provide more flexibility for exponentiation algorithms than the previously
known sliding-window representations; the purpose of this flexibility is to make
best use of the memory that is available for storing intermediate results. The
present paper also considers the left-to-right signed fractional window (LR-SFW)
representation (cf. [19] and [9]); it complements [14] by proving minimality of
weight for both RL-SFW and LR-SFW representations. A general motive for
preferring the left-to-right variant is that it generates the digits in the order in
which they are usually needed for exponentiation. We also examine the length of
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representations and see that the LR-SFW method actually provides an improve-
ment in this respect, and that further improvements are possible. Finally, we
observe that no finite-state machine can always generate a minimal-length rep-
resentation among the representations of minimal weight employing a prescribed
set of signed digits.

To motivate and explain the goals of this paper, let us first look at typical
exponentiation techniques in some detail. Given integers b�, . . ., b0 as digits, we
write (b� . . . b0)2 for

∑
0≤i≤� bi · 2i. For m ≥ 1 odd, let

Bm = {±1,±3, . . .,±m}

be the set of odd integers with absolute values up to m. We call b� . . . b0 a
Bm-representation of e if b�, . . ., b0 ∈ Bm∪{0} and e = (b� . . . b0)2. For example,
for any m, 1001 is a Bm-representation of 7, where we use the convention that
b denotes digit value −b. If we assume that e �= 0 and that � is chosen minimal (so
that b� �= 0), the power ge can be computed by the two-stage algorithm shown in
Fig. 1. This algorithm processes the digits bi from the most significant down to

{LR-exponentiation: compute ge where e = (b� . . . b0)2, b� �= 0 }

{Precomputation stage }
A ← g2

G1 ← g
for b = 3 to m step 2 do

Gb ← Gb−2 · A {= gb }

{Evaluation stage }
A ← (

b� > 0 ? Gb� : G−1
|b�|

)
for i = 	 − 1 down to 0 do

A ← A2

if bi �= 0 then
A ← A · (bi > 0 ? Gbi : G−1

|bi|
)

return A

Fig. 1. LR-exponentiation

the least significant one, i.e. left to right assuming big-endian notation; we speak
of LR-exponentiation. Let H(b� . . . b0) denote the weight (generalized Hamming
weight) of the given Bm-representation, i.e. the number of non-zero digits. The
LR-exponentiation algorithm in Fig. 1 performs the following numbers of group
operations (where we distinguish between squarings and general multiplications
since they will typically have different computational cost, but neglect inversions
as these are assumed to be almost immediate):

– In the precomputation stage, one squaring and
m− 1

2
general multiplications;
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– in the evaluation stage, � squarings and H(b� . . . b0) − 1 general multiplica-
tions.1

Increasing parameter m makes additional digit values available, typically allow-
ing for lower-weight representations at the cost of an increased precomputation
stage effort. Parameter m also determines the amount of memory needed for
storing the precomputed values G1, . . ., Gm, so implementations may have to
take into account some upper limit on m.

For given m and e, there is a lower limit on � (i.e. there is a lower limit on
the length �+ 1 of Bm-representations of e). There is no upper limit on � (since
e.g. (111 . . . 1)2 = 1), but low-weight Bm-representations never need be more
than one digit longer than the binary representation: the bounds⌊

log2|e|
⌋
− �log2 m� ≤ � ≤

⌈
log2|e|

⌉
hold for the following well-known representations and for the newer representa-
tions that will be discussed afterwards.

– Let w ≥ 1 be an integer parameter and W = w + 1. The width-W non-
adjacent form (W -NAF) of e is a specific B2w−1-representation such that
for |e| → ∞, on average

H(b� . . . b0)⌈
log2|e|

⌉ ≈ 1
W + 1

assuming that e consists of random bits. As the W -NAF is a signed-digit
equivalent of the well-known sliding-window technique for unsigned digits
(cf. [4]), we also call it a right-to-left signed window representation with
window width W .
(The origin of the 2-NAF is “property M” in [18]; the generalization to
arbitrary W ≥ 2 was alluded to in [20] and described independently in [12],
in [22] as an improvement of a technique from [21], and in [2].)

– Now consider an arbitrary odd m ≥ 1 and let
wm = �log2 m�+ 1,
Wm = wm + 1,

Δm =
2wm − 1−m

2wm−1

(so that 0 ≤ Δm < 1). Generalizing right-to-left signed window representa-
tions, there is a right-to-left signed fractional window (RL-SFW) representa-
tion of e, the m-RL-SFW representation (details follow in Section 2). This
is a Bm-representation such that for |e| → ∞, on average

H(b� . . . b0)⌈
log2|e|

⌉ ≈ 1
Wm −Δm + 1

1 For 	 ≥ 1, an immediate optimization to the algorithm as written is to skip the
first evaluation stage assignment and squaring if b� = 1 (just keep g2 in A from the
precomputation stage) or b� = −1 (just invert A to obtain g−2).
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assuming that e consists of random bits. If m is of the form 2w − 1 (so
that Δm = 0), the m-RL-SFW representation is the same as the Wm-NAF;
otherwise the effective window width Wm − Δm is a fraction between wm

and Wm:

m 1 3 5 7 9 11 13 15 17 19 · · ·
Wm −Δm 2 3 3 1

2 4 4 1
4 4 2

4 4 3
4 5 5 1

8 5 2
8 · · ·

(The RL-SFW representation was introduced in [14].)

The (finite-state) algorithms to obtain these representations given the binary
representation of e read the least significant bit first and output the least sig-
nificant signed digit first, proceeding towards the most significant input bit and
output digit. This means they work right to left assuming big-endian notation;
thus we speak of RL-transformations.

The use of an RL-transformation with LR-exponentiation means that usually
the Bm-representation would be computed and stored before the actual expo-
nentiation begins. This is unfortunate if memory is scarce. (Alternatively, the
RL-transformation could be used repeatedly to determine the signed digits in
the order in which they are needed, but this would mean an increased compu-
tational cost.) It is possible to perform RL-exponentiation instead so that the
signed digits are used in the order in which they are generated (using algorithms
from [23] and [11–exercise 4.6.3-9] as summarized in [14]); however, there are
drawbacks:

– The group operation count to perform an RL-exponentiation is slightly
higher than for an LR-exponentiation, given the same Bm-representation.

– The technique of employing mixed coordinates [3] for elliptic curves requires
LR-exponentiation. (This technique uses additional precomputation effort
to convert the elements Gb into a representation that accelerates evaluation
stage operations A ·Gb or A ·G−1

|b| .)
– The technique of interleaved exponentiation [13] for efficiently computing

power products
∏

1≤j≤k g
ej

j applies to LR-exponentiation only.

Hence, left-to-right analogues of the above low-weight representations are called
for.

A left-to-right analogue of the 2-NAF was described in [8], and recently, gen-
eral left-to-right analogues of the signed window representation have appeared
in [16], [1], and [17]. The latter two publications use an inherently identical LR-
transformation, but describe it differently; see also [7–Section 6]. Also recently,
proofs have appeared that the right-to-left signed window representation and its
left-to-right variants are optimal in the sense of always achieving minimal weight
([15], [16], [1]): that is, given any e and w, no B2w−1 representation b′�′ . . . b

′
0 of e

can have lower weight than the (w + 1)-NAF or its left-to-right analogues.
We generalize and extend these results by examining the right-to-left signed

fractional window (RL-SFW) technique from [14] as well as its left-to-right vari-
ant (LR-SFW) implied by the approach of [17] and [7–Section 6]. (For unsigned
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windows, right-to-left and left-to-right variants are equally simple: unsigned frac-
tional windows, originally only presented for an RL-transformation in [14], have
an immediate left-to-right analogue [5]. Signed-digit representations are trickier
since they involve carries, but the approach of [17] and [7] makes it straightfor-
ward to come up with a left-to-right analogue of the RL-transformation from [14];
cf. [19] and [9].) We give minimality proofs for the weight of both RL-SFW and
LR-SFW representations, and we examine the length of representations to study
efficiency improvements beyond weight minimization. We always assume that e
is positive: the case e = 0 is trivial; for negative e, apply the technique to −e
and replace all resulting digits by their negatives.

Section 2 looks at the RL-SFW representation and proves that it has minimal
weight. Then Section 3 develops the LR-SFW representation and shows that it
too has minimal weight. Section 4 points out that the left-to-right method is
advantageous in that it tends to achieve slightly shorter lengths than the right-
to-left method (and never yields a greater length), with details in Appendix A.
It also considers how modified representations can further reduce the length in
some cases; however, Appendix B observes that no finite-state transformation
algorithm can always achieve minimal length among the representations of min-
imal weight.

2 Right-to-Left Signed Fractional Windows (m-RL-SFW)

The right-to-left signed fractional window (RL-SFW) representation was intro-
duced (plainly as the “signed fractional window representation”) in [14]. Here we
describe the technique in a way that encompasses the non-fractional case as well
(i.e. the right-to-left signed window representation, often called the W -NAF).
Given any odd m ≥ 1, let wm = �log2 m�+ 1 and Wm = wm + 1; then we have
2wm−1 ≤ m < 2wm . The m-RL-SFW representation of any positive integer e is
the Bm-representation b� . . . b0 obtained as follows.

First we define a mapping digitm : {0, 1, . . ., 2Wm − 1} → Bm ∪ {0}.
– If x is even, let digitm(x) = 0;
– otherwise if 0 < x ≤ m, let digitm(x) = x;
– otherwise if m < x < 2Wm −m, let digitm(x) = x− 2wm ;
– otherwise (i.e. 2Wm −m ≤ x < 2Wm), let digitm(x) = x− 2Wm .

Observe that if x is odd, then x − digitm(x) ∈ {0, 2wm , 2Wm}. We extend the
mapping to

digitm : Z → Bm ∪ {0}
by defining digitm(x) = digitm(x mod 2Wm); it follows that 2wm | x− digitm(x)
for any odd x ∈ Z. The RL-transformation algorithm in Fig. 2 on input any Bm-
representation b′�′ . . . b

′
0 of a positive integer e (e.g. the binary representation)

generates a Bm-representation b� . . . b0 such that

bi = digitm

(
e−

∑
0≤j<i bj · 2j

2i

)
.
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{RL-transformation: determine the
right-to-left signed fractional window (m-RL-SFW) representation
of (b′�′ . . . b′0)2 }

i ← 0
D ← (b′wm

. . . b′0)2
while D �= 0 ∨ i + wm < 	′ do

d ← digitm(D)
bi ← d
i ← i + 1

D ← b′i+wm
· 2wm +

D − d

2
	 ← i − 1
return (b�, . . ., b0)

Fig. 2. RL-transformation for fractional windows

The algorithm assumes that b′i = 0 for i > �′. It is easy to verify that the
algorithm in Fig. 2 will always terminate with b� . . . b0 as given above, which
implies e = (b� . . . b0)2. (Note that

(b′�′ . . . b
′
i+Wm

0 . . . 0︸ ︷︷ ︸
wm zeros

d bi−1 . . . b0)2 = e

holds as a loop invariant.)
To see that the average weight for |e| → ∞ with e composed of random bits

satisfies

H(b� . . . b0)⌈
log2|e|

⌉ ≈ 1

Wm −
2wm − 1−m

2wm−1
+ 1

=
1

Wm +
1 + m

2wm−1
− 1

as claimed in Section 1, assume that the RL-transformation algorithm has to pro-
cess an endless sequence of independently uniform random bits b′i. Whenever the
loop generates a non-zero digit bi, the current value of D has its least significant
bit set and is an otherwise random Wm-bit integer. Thus from the definition of

digitm it is clear that with probability p =
1 + m

2wm
we have 2Wm | D−digitm(D),

and with probability 1− p we have D−digitm(D) = 2wm . In the latter case, the
next non-zero output digit will follow after exactly Wm − 2 intermediate zeros;
in the former case, the next non-zero output digit will follow after Wm interme-
diate zeros on average. This means that the total average a for the number of
intermediate zeros is

a = pWm + (1− p)(Wm − 2) = Wm + 2p− 2 = Wm +
1 + m

2wm−1
− 2,

and thus the density
1

a + 1
of non-zero digits is as claimed above.
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2.1 Minimality of Weight

To prove that the m-RL-SFW representation has minimal weight among all
Bm-representations of any integer e, we show that

H(b� . . . b0) ≤ H(b′�′ . . . b
′
0)

always holds if the transformation algorithm is applied to any Bm-representation
b′�′ . . . b

′
0 to obtain the corresponding RL-SFW representation b� . . . b0. For the

analysis, we look at a variant of the algorithm from Fig. 2, shown in Fig. 3. This
variant is easily seen to generate results that are identical except for leading
zeros. The algorithm as written assumes that all variables bi are initially zero.

{RL-transformation (variant): determine the
right-to-left signed fractional window (m-RL-SFW) representation
of (b′�′ . . . b′0)2 }

l ← 	′

(bl, . . ., b0) ← (b′�′ , . . ., b
′
0)

i ← 0

while i ≤ l do

{ b�, . . ., bi+1, bi−1, . . ., b0 ∈ Bm ∪ {0} ∧ |bi| ≤ 2m }
if bi is even then

bi+1 ← bi+1 + bi/2
bi ← 0

{ b�, . . ., bi+2, bi, . . ., b0 ∈ Bm ∪ {0} ∧ |bi+1| ≤ 2m }
i ← i + 1

else
D ← (bi+wm . . . bi)2
d ← digitm(D)

(bi+wm , . . ., bi) ←
(

D − d

2wm
, 0, . . ., 0︸ ︷︷ ︸

wm − 1 zeros

, d

)
{ b�, . . ., bi+wm+1, bi+wm−1, . . ., b0 ∈ Bm ∪ {0} ∧ |bi+wm | ≤ 2m }
i ← i + wm

if i > l ∧ bi �= 0 then
l ← i

	 ← i − 1
return (b�, . . ., b0)

Fig. 3. RL-transformation (variant) for fractional windows

While the input and output consist only of digits from Bm ∪ {0}, the vari-
able bi at the beginning of the loop body may contain other values; we call this
digit the current carry digit. We can verify as a loop invariant that at the be-
ginning of the loop body digits bh other than the carry digit (h �= i) will always
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satisfy bh ∈ Bm ∪ {0} (thus |bh| ≤ m) while the carry digit will always satisfy
|bi| ≤ 2m. This clearly holds for i = 0. If for any i it holds at the beginning of
the loop body, then it will also hold at the end of the loop body:

– If at the beginning of the loop body bi is even, then it follows from |bi+1| ≤ m
and |bi| ≤ 2m that

|bi+1 + bi/2| ≤ 2m.

– If at the beginning of the loop body bi is odd, then

|D| ≤ m · 2wm + . . . + m · 21 + 2m = m · 2wm+1

and thus
|D − d| ≤ m · 2wm+1 + m.

Now because of 2wm | D − d and m < 2wm , it follows that

|D − d| ≤ m · 2wm+1

and thus ∣∣∣∣D − d

2wm

∣∣∣∣ ≤ 2m.

So in both cases, the absolute value of the subsequent carry digit indeed cannot
exceed 2m. It is clear that no other digit will be set to values not in Bm ∪ {0}.

Now we consider the value

H̃ = H(bl . . . b0) + #
{
h; |bh| > m + 1

}
as observed at the beginning and at the end of the loop body (remember that bi

is the only digit among bl . . . b0 that is not necessarily an element of Bm ∪ {0},
so H̃ exceeds the weight of bl . . . b0 at most by one). Given the loop invariant,
we can show that H̃ will never increase within the loop body. It is clear that the
loop body will not change any of the digits and thus not H̃ if bi is zero. If bi

is non-zero and even, following the algorithm it is easy to see that the changes
done to bi and bi+1 cannot increase H̃. For bi odd, at the beginning of the loop
body define

H = H(bi+wm
. . . bi) + #

{
h; |bh| > m + 1 ∧ i + wm ≥ h ≥ i

}
;

now we can distinguish between the following cases:

– H = 1. This implies bi = D = d, so the loop body will not change any of the
digits and thus not H̃.

– H = 2. If |bi| ≤ m, then there are initially exactly two non-zero digits
among bi+wm

. . . bi, both of absolute value at most m, and thus we have
|D| ≤ (2wm + 1) ·m. If |bi| > m, then bi is the only non-zero digit among
bi+wm

. . . bi, which implies D = bi and thus |D| ≤ 2m. In both cases, for
d = digitm(D) it follows that
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∣∣∣∣D − d

2wm

∣∣∣∣ ≤ (2wm + 2) ·m
2wm

,

and since 2wm | D − d and m < 2wm ,∣∣∣∣D − d

2wm

∣∣∣∣ ≤ ⌊
(2wm + 2) ·m

2wm

⌋
= m +

⌊
2m
2wm

⌋
= m + 1.

Thus when the loop body overwrites the digits bi+wm
. . . bi with new values,

the new carry digit will be of absolute value at most m + 1; and since at
most two of the new values will be non-zero, H̃ cannot increase.

– H ≥ 3. The digits bi+wm
. . . bi are overwritten with new values out of which at

most two are non-zero, and at most one is of absolute value larger than m+1;
so these new digit values will contribute at most 3 to H̃. This means that H̃
cannot increase.

Initially, H̃ is the input weight H(b′�′ . . . b
′
0); in the end, it is the output weight

H(b� . . . b0). H̃ never increases, so no Bm-representation can have lower weight
than the RL-SFW representation generated by the transformation algorithm.

3 Left-to-Right Signed Fractional Windows (m-LR-SFW)

To arrive at a left-to-right version, we use an approach from [17] and (building on
[6] and [1]) from [7–Section 6]. This provides another way to view the RL-SFW
method, and it yields an LR-SFW method (which was new at time of writing,
but meanwhile has independently been described in [19] and [9].)

Given the binary representation βλ . . . β0 of any positive integer e, first let
�′ = λ + 1 and b′i = βi−1 − βi for i = �′, . . ., 0 (where β−1 = 0). Since

(b′�′ . . . b
′
0)2 = (βλ . . . β0 0)2 − (βλ . . . β0)2 = 2e− e = e,

this gives us a new B1-representation b′�′ . . . b
′
0 of e. Observe that this representa-

tion can be obtained from the binary representation just as easily in left-to-right
as in right-to-left direction. It is clear from the construction of this new repre-
sentation that every digit b′i = 1 indicates that βi−1 is the left-most digit in a
sequence of successive ones in the binary representation (βi = 0, βi−1 = 1), and
that every digit b′i = 1 indicates that βi is the right-most digit in such a sequence
of ones (βi = 1, βi−1 = 0). Thus, there must be an even number of non-zero
digits in b′�′ . . . b

′
0, and these show the following structure:

– The left-most non-zero digit is a 1.
– Skipping any zeros, the neighbors of a 1 digit will always have value 1 and

the neighbors of a 1 digit will always have value 1.
– The right-most non-zero digit is a 1.
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Because of this structure, we call b′�′ . . . b
′
0 a sign-alternating B1-representation.

(This representation has previously been called “reversed binary representa-
tion” [10–exercise 4.1-27], “alternating greedy expansion” [6], and “mutual op-
posite form” [17].) If we write ∗ for any digit of value either 1 or 1, we get
a simplified form from which the B1-representation b′�′ . . . b

′
0 can unequivocally

be reconstructed due to its structure. We call ∗ and 0 compressed digits. The
compressed-digit form of any subsequence of digits b′i . . . b

′
h allows reconstruct-

ing the digits except for possible sign reversal (i.e. reconstruction would yield a
sequence of digits that is identical to either b′i . . . b

′
h or b′i . . . b

′
h).

The approach from [17] and [7] to obtain related RL- and LR-transformations
is to apply a sliding-window technique to the sign-alternating B1-representation:
this can be done right to left, giving the well-known right-to-left signed window
representation (W -NAF); or left to right, giving a left-to-right signed window
representation. Generalizing this technique, we describe how a similar approach
can be used with fractional windows. As before, let wm = �log2 m� + 1 and
Wm = wm + 1 given an odd integer m ≥ 1.

The sliding-window technique scans the representation b′�′ . . . b
′
0 in one direc-

tion, either right to left (RL-scanning) or left to right (LR-scanning), starting
a new window whenever a non-zero digit is encountered. Observe that for a
window b′i+w . . . b′i of any width w + 1 in a sign-alternating B1-representation,
the window value (b′i+w . . . b′i)2 will have absolute value at most 2w, or 2w − 1
after dividing out powers of two. (In a B1-representation that is not necessarily
sign-alternating, the maximal absolute window value would be 2w+1 − 1.) To
accommodate fractional windows, the width of the current window is set to Wm

if this is admissible, or wm otherwise (or less than wm when less than wm digits
are left for scanning). Here a window width is considered admissible if the win-
dow value is either some digit in Bm or even. (Window widths smaller than Wm

are always admissible.) In any case, the window value will be the product of a
power of two and a digit from Bm. Thus, each of the windows requires just one
of the digits from Bm, appropriately positioned, to achieve the proper window
value.

As an illustration of the transformations, we consider an example for m = 5.
We have wm = 3 and Wm = 4. Now windows of the form ∗ 0 0∗ and ∗ 0 ∗∗ are
not admissible while windows of the form ∗ ∗ 0 ∗ and ∗ ∗ ∗ ∗ are admissible (be-
cause (1001)2 = (1011)2 = 7 > m but (1101)2 = (1111)2 = 5 ≤ m, and similarly
for the corresponding negative cases). Let e = 22369 = (101011101100001)2;
the sign-alternating B1-representation of e obtained by the rule b′i = βi−1−βi is
1111100110100011. RL-scanning does not encounter any inadmissible width-Wm

windows; it yields the window constellation

1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 ,

resulting in the B5-representation

1 0 0 0 5 0 0 0 0 0 5 0 0 0 0 1 .
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LR-scanning has to use width wm (= 3) in one instance to avoid the inadmissible
window 1 0 0 1 ; it yields the window constellation

1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 1 ,

resulting in the B5-representation

5 1 0 0 0 0 0 5 0 0 0 0 1 .

It is easy to see that this procedure with RL-scanning will always determine
the same Bm-representation as the algorithms shown in Section 2 (ignoring any
leading zeros); that is, this is just another way to view the RL-SFW technique.
With LR-scanning, this is a new technique, giving us a left-to-right signed frac-
tional window (LR-SFW) representation of e, the m-LR-SFW representation.

So far we have seen how to obtain LR-SFW representations using an in-
termediate sign-alternating B1-representation (following [17] with appropriate
changes for fractional windows). This intermediate step is helpful for describing
and analyzing the method, but it is not necessary for implementation. Instead,
the algorithm in Fig. 4 (following [1] with appropriate changes for fractional win-
dows) can be used to obtain the m-LR-SFW representation b� . . . b0 of a positive
integer directly from the binary representation βλ . . . β0. The algorithm as writ-
ten assumes that βλ+1 = 0 and βi = 0 for i < 0; also, all variables bi are initially
zero. In comments, we use b′i as defined above (b′i = βi−1− βi) to show that this
algorithm expresses exactly the LR-transformation that we have introduced in
terms of LR-scanning; to verify the correspondence, observe that for i ≥ h

(b′i . . . b
′
h)2 = (βi−1 . . . βh−1)2 − (βi . . . βh)2

= (βi−1 . . . βh)2 · 2 + βh−1 − βi · 2i−h − (βi−1 . . . βh)2
= −βi · 2i−h + (βi−1 . . . βh)2 + βh−1

= (βiβi−1 . . . βh)2 + βh−1.

3.1 Minimality of Weight

As discussed in Section 1, there are general advantages of LR-transformations
over RL-transformations. A natural question to consider is whether despite of
these advantages, the LR-SFW representation might be worse for exponentiation
than the RL-SFW representation. To address this issue, here we show that for
given m and e, the weight of the m-LR-SFW representation of e is the same as the
weight of the m-RL-SFW representation. Thus, by the result from Section 2.1,
the weight is minimal among all Bm-representations of e. (Later in Section 4 we
will see that the LR-SFW representation actually has advantages beyond the
general advantages of LR-transformations.)

Let �′ be a positive integer and

S =
{
s ∈ {0, ∗}�′ | ∗ occurs an even number of times in s

}
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{LR-transformation: determine the
left-to-right signed fractional window (m-LR-SFW) representation
of (βλ . . . β0)2 on binary input }

i ← λ + 1
	 ← 0

while i ≥ 0 do
if βi = βi−1 then { b′i = 0 }

i ← i − 1
else { b′i �= 0 }

W ← Wm

d ← (βiβi−1 . . . βi−W+1)2 + βi−W

if d is odd ∧ |d| > m then
W ← wm

d ← (βiβi−1 . . . βi−W+1)2 + βi−W

{ d = (b′i. . .b
′
i−W+1)2 }

next i ← i − W
i ← next i + 1
while d is even do

i ← i + 1; d ← d/2
{ d is odd, |d| ≤ m, d = (b′next i+W−1 . . . b′i)2 }
bi ← d
if i > 	 then

	 ← i
i ← next i

return (b�, . . ., b0)

Fig. 4. LR-transformation for fractional windows

the set of all compressed-digit forms of length �′. We can examine the scanning
process in terms of compressed-digit forms. For s ∈ S, let #LRm(s) denote
the number of windows that LR-scanning yields; i.e., #LRm(s) = H(b� . . . b0)
where b� . . . b0 is the m-LR-SFW representation of the integer determined by the
compressed-digit form s. Similarly, let #RLm(s) denote the number of windows
that RL-scanning yields. LR-scanning and RL-scanning are mostly symmetric,
except for admissibility of window width Wm (for example, (b′i+wm

. . . b′i)2 may
be a digit in Bm when (b′i . . . b

′
i+wm

)2 is odd bot not in Bm). However, there is
some symmetry that does respect admissibility: When a window is started and
there are Wm compressed digits to look at (the first one of which in scanning
direction is necessarily a ∗), there are 2wm possibilities what these Wm com-
pressed digits might look like; and both for LR-scanning and for RL-scanning,
window width Wm is admissible for exactly m + 1 of these possibilities and not
admissible for the remaining 2wm −m− 1 possibilities. Thus, there is a bijection

α : S → S
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such that the window structure (i.e., the positioning and width of windows, not
taking into account the actual compressed digits in the windows) obtained by
LR-scanning of any s ∈ S is the exact mirror image of the window structure
obtained by RL-scanning of α(s). This implies #LRm(s) = #RLm

(
α(s)

)
.

Now assume that there was some specific s0 ∈ S such that #LRm(s0) �=
#RLm(s0). By minimality of weight of the RL-SFW representation (Section 2.1),
this would imply

#LRm(s0) > #RLm(s0),

i.e. #RLm

(
α(s0)

)
> #RLm(s0). Since α is a bijection, we have∑

s∈S

#RLm

(
α(s)

)
=

∑
s∈S

#RLm(s),

so furthermore it would follow that there is some s1 ∈ S such that
#RLm

(
α(s1)

)
< #RLm(s1). But this would mean

#LRm(s1) < #RLm(s1),

contradicting the minimality of weight of the RL-SFW representation. Thus
no s0 can exist for which #LRm(s0) differs from #RLm(s0).

4 Length

From Sections 2.1 and 3.1, we know that both the m-RL-SFW representation and
the m-LR-SFW representation are optimal in the sense of having minimal weight
among all Bm-representations. The efficiency of exponentiation given a Bm-
representation b� . . . b0 with b� �= 0 depends not just on the weight H(b� . . . b0),
but also on � (see Section 1). Thus we are interested in representations that pro-
vide not only low weight, but also a short length �+1. Sometimes these goals are
in conflict: for example, for B7-representations of 255 = (10000001)2 = (70071)2,
minimal weight and minimal length exclude each other; one or the other rep-
resentation might provide better efficiency for LR-exponentiation depending on
the relative speed of squarings and general multiplications in the group. We pri-
oritize weight over length and consider only ways to reduce the length that do
not increase the weight.

A first observation is that the LR-SFW representation can never be
longer than the RL-SFW counterpart: Consider the scanning process on sign-
alternating B1-representations as described in Section 3, which yields a Bm-
representation when each window value is expressed through a single non-zero
digit from Bm. The maximal index � of such a Bm-representation is the in-
dex of the right-most non-zero digit within the left-most window over the sign-
alternating B1-representation. For RL-scanning, the left-most (final) window will
cover some number of non-zero digits of the sign-alternating B1-representation,
including its most significant digit. All of these non-zero digits, and possibly
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more, would also be covered by the left-most (first) window obtained by LR-
scanning. Thus, the maximal index � cannot increase for LR-scanning compared
with RL-scanning.

The example in Section 3 has already shown us that the m-LR-SFW repre-
sentation is indeed shorter than the m-RL-SFW representation in some cases. In
fact, the m-LR-SFW representation is advantageous for every m. For example,
for m = 1, the average length saving for m-LR-SFW representations of long
random integers e compared with m-RL-SFW representations is 1/6; for m = 3,
it is 1/2; for m = 7, it is 37/40. (Consider m = 1. If the left-most window over
the sign-alternating B1-representation is 1 0 or 1 , the 1-LR-SFW or 1-RL-SFW
representation will be one digit longer than it is for the window 1 1 . The latter
case happens with probability 1/2 for LR-scanning, but only with probability
about 1/3 for RL-scanning. See Appendix A for more details.)

The m-LR-SFW representation does not guarantee minimal length among all
Bm-representations of minimal weight. Substitution rules resulting in a modified
(right-to-left) signed fractional window representation have been given in [14–
Section 5.1], and these can similarly be applied to the left-to-right case to obtain
shorter representations in some cases. Additional rules not mentioned in [14]
are possible. For example, if 3 ≤ m ≤ 13, the m-LR-SFW and m-RL-SFW
representations both write e = 15 as (10001)2; this can be improved into (303)2,
or even into (55)2 if 5 ≤ m.

No LR-transformation implemented by a finite-state machine can always
ensure minimal length among all minimal-weight Bm-representations; see Ap-
pendix B for examples. With the m-LR-SFW representation and its generally
shorter length, there is less of a need to use modified representations to decrease
the length than with the m-RL-SFW representation, in particular if m is rel-
atively large. However, if program space permits, implementations can include
a table of optimized substitution rules for certain prefixes that can be encoun-
tered in m-LR-SFW representations (such as 1001 $→ 31 and 10001 $→ 303 for
m = 3). While no such table could be complete for arbitrary lengths, this can
help improve the average efficiency at least by a small margin.
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13. Möller, B. Algorithms for multi-exponentiation. In Selected Areas in Cryptogra-
phy – SAC 2001 (2001), S. Vaudenay and A. M. Youssef, Eds., vol. 2259 of Lecture
Notes in Computer Science, pp. 165–180.

14. Möller, B. Improved techniques for fast exponentiation. In Information Security
and Cryptology – ICISC 2002 (2003), P. J. Lee and C. H. Lim, Eds., vol. 2587 of
Lecture Notes in Computer Science, pp. 298–312.

15. Muir, J. A., and Stinson, D. R. Minimality and other properties of the width-
w nonadjacent form. Mathematics of Computation. To appear; preprint available
from http://www.cacr.math.uwaterloo.ca/tech reports.html.

16. Muir, J. A., and Stinson, D. R. New minimal weight representations for left-
to-right window methods. In CT-RSA 2005, Lecture Notes in Computer Science.
To appear; preprint available from http://www.cacr.math.uwaterloo.ca/tech

reports.html.
17. Okeya, K., Schmidt-Samoa, K., Spahn, C., and Takagi, T. Signed binary

representations revisited. In Advances in Cryptology – CRYPTO 2004 (2004),
M. Franklin, Ed., vol. 3152 of Lecture Notes in Computer Science, pp. 123–139.

18. Reitwiesner, G. W. Binary arithmetic. Advances in Computers 1 (1960), 231–
308.

19. Schmidt-Samoa, K., Semay, O., and Takagi, T. Analysis of some efficient
window methods and their application to elliptic curve cryptosystems. Technical
Report TI-3/04, 2004. Available from http://www.informatik.tu-darmstadt.

de/ftp/pub/TI/TR/.



152 B. Möller
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A LR-SFW ersus RL-SFW: Length Comparison

We want to compare the expected lengths of left-to-right and right-to-left signed
fractional window representations of long random integers by looking at LR-
scanning and RL-scanning as described in Section 3. Assume an �′-bit integer e
is given (so that b′�′ = 1 in the sign-alternating B1-representation). By the proba-
bilities below, in the m-LR-SFW representation the expected maximum index �
is �′ − 1/2 for m = 1, �′ − 5/4 for m = 3, and �′ − 17/8 for m = 7; in the
m-RL-SFW representation it is about �′ − 1/3 for m = 1, about �′ − 3/4 for
m = 3, and about �′ − 6/5 for m = 7.

Consider m = 2w − 1 such that windows over the sign-alternating form have
width w + 1. For LR-scanning over random compressed-digit forms of sufficient
length, the left-most window is

– ∗ 0 . . . 0 with probability 2−w;
– ∗ ∗ 0 . . . 0 also with probability 2−w;
– of the form ∗ ? ∗ 0 . . . 0 with probability 21−w;
– . . .;
– of the form ∗ ? . . . ? ∗ with probability 2−1.

As the resulting Bm-representations will be successively shorter (the maximal
index � of the Bm-representation is the index of the right-most non-zero digit
within the left-most window over the compressed-digit form), this is in favor of
generating short Bm-representations. No m ≥ 2w − 1 will have average lengths
longer than this.

For RL-scanning over long random compressed-digit forms, however, the left-
most window is

– ∗ (width 1) with probability about 2/(w + 2);
– ∗ ∗ (width 2) with probability about 1/(w + 2);
– of the form ∗ ? ∗ (width 3) with probability about 1/(w + 2);
– . . .;
– of the form ∗ ? . . . ? ∗ (width w + 1) with probability about 1/(w + 2).

v
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Again the resulting Bm-representations will be successively shorter, but here the
probabilities are in favor of generating long Bm-representations. No m ≤ 2w − 1
will have average lengths shorter than this. (To derive these estimates, assume
that RL-scanning is applied to a long sequence of independently uniformly ran-
dom compressed digits. Any given ∗ in a width-w window well within such a
sequence, after earlier windows have provided plenty of randomization of win-
dow positions, will be at the right-most position of its window with probability
about 2/(w+2), and at any other position of its window with probability about
1/(w + 2) each. This is seen by counting how many of the 2w possibilities for
the content of a width-(w + 1) window in RL-scanning have a ∗ in the respec-
tive position: the right-most position sees twice the proportion of ∗’s as each
other position. Since the start of a window does not depend on what follows, the
left-most ∗ in a [finite but long] compressed-digit form is similar except that the
window abruptly ends there.)

B Limitations of Length Reduction

Let 〈m〉 be a shorthand notation for a digit string consisting of wm − 1 zeros
concatenated with the digit m, and 〈m〉 for wm zeros (e.g. 〈5〉 = 005, 〈5〉 = 000).
Now consider the integers with Bm-representations either of the form

m1 0〈m〉 0〈m〉 . . . 0〈m〉 0〈m〉 〈m〉

or of the form
m1 0〈m〉 0〈m〉 . . . 0〈m〉 0〈m〉 〈m〉.

The m-LR-SFW representation for an integer of the first form is longer than the
above representation and has lower weight; this is a weight minimization that
would not be possible without the length increase. For example, for m = 1,

(11 01 01 . . . 01 01 1)2

is rewritten with lower weight as

(100 10 10 . . . 10 10 1)2.

The m-LR-SFW representation for an integer of the second form is longer as
well, but the weight remains unchanged; the original representation as given
above already has minimal weight. For example,

(11 01 01 . . . 01 01 0)2

has no B1-representation of lower weight. There is no bound on the number of
digits that one might have to examine to distinguish between such cases, so no
finite-state machine could always generate the shortest representation among
those of minimal weight.
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coding and integrate the recoding with the proposed non-inversion tech-
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1 Introduction

Exponentiation algorithms play an important role in most public key cryp-
tosystems, but most exponentiation algorithms when implemented on the smart
IC cards are vulnerable to physical cryptanalysis such as side-channel attacks
(including power analysis attacks [8] and timing attacks [7]) and fault-based
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attacks [1]. Randomized exponentiation algorithms were recently considered ef-
fective software-based countermeasures against most side-channel attacks and
have been widely discussed in the past few years. Randomized algorithms were
considered effective to be resistant to most side-channel attacks since the compu-
tational process is non-deterministic and the measured side-channel information
does not correlate directly to the embedded secret within the device.

For the context of developing countermeasures for computing scalar multipli-
cation on elliptic curve or modular exponentiation, Coron proposed three possi-
ble countermeasures [2], i.e., randomization of the private exponent, blinding on
the base, and randomized projective coordinates. The first two countermeasures
mentioned above are suitable for most cryptosystems based on computation of
modular exponentiation, while the third countermeasure is only suitable for el-
liptic curve cryptosystems. Oswald and Aigner [12] proposed a countermeasure
by exploiting randomization on addition and subtraction chain. Recently, Ha
and Moon [5] proposed a countermeasure based on randomized recoding on the
private exponent prior to performing the exponentiation computation. Both of
Oswald-Aigner and Ha-Moon’s countermeasures employ the technique of signed-
digit representation (say with a digit set consisting of both positive and negative
integers, e.g., the digit set {0, 1,−1}), and require the operation of inversion
(or the operation of division). Unfortunately, the computational overhead of ob-
taining a multiplicative inversion in Zn is basically approaching to an ordinary
modular exponentiation. Therefore, existing countermeasures based on signed-
digit recoding are only applicable to systems with fixed base or systems in which
inversion computation is very efficient. This fact of course limits the applicability
of all existing countermeasures of this category.

The main contribution of this paper is to propose a novel technique that
removes the above mentioned limitation of calculating inversion. The inversion
is no longer required even though the private exponent is signed-digit recoded,
because the signed-digit exponent can be re-recoded into a new one with a
positive digit set. Some configurations of the proposed recoding procedure are
bijective maps except the first few bits of the exponent. Because of the one-to-
one mapping, these “bijective” recoding procedures will not reduce the security
of the original countermeasure.

A useful trick to convert the Ha-Moon method into a left-to-right version is
also proposed. Recall that the original Ha-Moon method recodes the exponent in
the right-to-left approach (i.e., LSB-to-MSB), but the proposed exponentiation
algorithms (in fact, also in many existing exponentiation algorithms reported in
the literature) scan the private exponent from MSB towards LSB. The left-to-
right recoding is more suitable for the left-to-right exponentiation computation.
In addition, the proposed non-inversion algorithm and the left-to-right recoding
can employ the windowing technique. When the window size is two, it always
takes one modular multiplication and two modular squaring operations for pro-
cessing every two bits of the exponent. Therefore, a computational performance
of 1.5n modular operations (including both modular multiplication and modular
squaring) is achieved for an n-bit exponent.
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The rest of this paper is organized as follows. In Sect. 2, some necessary nota-
tions are defined and preliminary of signed-digit based exponentiation algorithm
is briefly reviewed. The original Ha-Moon method and the weakness of it are also
described in this section. Improvements on the Ha-Moon method are proposed
in Sect. 3. Section 4 provides randomized recoding schemes motivated from the
Ha-Moon method. The proposed schemes are integrated solutions obtained by
combining the left-to-right version of the Ha-Moon method and the proposed
non-inversion technique. Security analysis of the proposed schemes is given in
Sect. 5. Finally, Sect. 6 concludes this paper.

2 Notations and Preliminaries

Necessary notations are defined in the following.
Suppose K is the n-bit private exponent and (kn−1 kn−2 · · · k1 k0)2 denotes

K’s binary representation. Let D = (dn dn−1 · · · d1 d0)SD2 be one of K’s possible
signed-digit representation. Notice that signed-digit representation is not unique
for usual cases. In addition, Ki denotes the bit string of (n − 1)th to ith bits
of K, and Di denotes the signed-digit bit string of nth to ith bits of D. The
subscripts ( )2 and ( )SD2 indicate that the numbers in the bracket are binary (0 or
1) and signed-digit binary (−1, 0, or 1) represented, respectively. The following
summarize the above definitions.

K = (kn−1 kn−2 · · · k1 k0)2 Ki = (kn−1 · · · ki)2
D = (dn dn−1 · · · d1 d0)SD2 Di = (dn · · · di)SD2

2.1 Signed-Digit Based Exponentiation Algorithms

Randomized recoding on the private exponent by signed-digit representation is
a straightforward approach to randomize an exponentiation computation. The
above approach was considered as a countermeasure against most side-channel
attacks because of its non-deterministic computational process. The basic algo-
rithm for computing exponentiation with signed-digit represented exponent can
be in a similar approach as in the conventional exponentiation except that an
inverse element has to be prepared prior to the main computation.

The algorithm in Fig. 1 computes the exponentiation with exponent D in
signed-digit representation. Within the algorithm, a division operation is carried
out when encountering a negative bit in D. By another approach, this division
can be replaced by multiplying the inverse of the base g. However, the computa-
tional complexity of finding g−1 in Zn is roughly of the same order of computing
a modular exponentiation, and this makes the algorithm be inefficient1, espe-

1 Of course, extended Euclidian-like algorithms may slightly speed up the computa-
tion, but those auxiliary algorithms themselves are somewhat complicated and need
some additional temporary storages. This brings storage overhead for small device
implementation, e.g., IC card.
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INPUT: g, D = (dn · · · d0)SD2 where dn = 1
OUTPUT: gD

01 Precomputation: g−1

02 R = 1
03 for i from n downto 0 do

04 R = R2

05 if di �= 0 then R = R × gdi

06 return R

Fig. 1. Exponentiation with signed-digit represented exponent

cially for the cases that the base g is not a constant value. Pre-computation of
the inverse g−1 is the primary disadvantage of the above randomized algorithm.
This category of countermeasures only benefits those systems whose base integer
is a constant or in systems computation of the inverse is very efficient.

2.2 Randomized Exponentiation Proposed by Ha and Moon

Ha and Moon proposed a randomized elliptic curve scalar multiplication algo-
rithm in CHES 2002 [5]. It randomly recodes the original binary scalar (simi-
lar to the exponent in exponentiation computations) into a signed-digit scalar
from LSB towards MSB. In the Ha-Moon method, the original scalar K =
(kn−1 · · · k0)2 (kn−1 = 1 since K is assumed to be an integer of n bits represented
in binary form), is randomly recoded into a signed-digit scalar D = (dn · · · d0)SD2
by the following equations

di + 2ci+1 = ci + ki (1)
(ki−1 ki−2 · · · k1 k0)2 = (ci di−1 di−2 · · · d1 d0)SD2. (2)

In the above equations, ci is the carry bit (ci∈ [0, 1], c0 = 0, and ci = 0 ∀i ≥ n+1)
and ci2i is the difference between the values of (ki−1 · · · k0)2 and (di−1 · · · d0)SD2.
The Ha-Moon method recodes the exponent from LSB towards MSB, i.e., it
solves di and ci+1 from ci and ki in Eq (1). Table 1 lists the solutions of Eq (1)
with various ci and ki. When there are two possible solutions in Eq (1), one of
them will be selected randomly depending on the result of ki+1 ⊕ ri where ri is
a random bit.

Table 1. The Ha-Moon randomized recoding method

ci ki ki+1 ⊕ ri (ci+1, di)

0 0 × (0, 0)

0 1 0 (0, 1)

0 1 1 (1,−1)

1 0 0 (0, 1)

1 0 1 (1,−1)

1 1 × (1, 0)
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Proposition 1. The Ha-Moon method generates all possible signed-digit recoded
scalars of the original scalar. The output (the probability distribution) of the Ha-
Moon method is identical to the output of the following steps:

1. For the n-bit scalar K, select an n-bit random number R = (rn−1 · · · r0)2.
2. Adding a random number R to the scalar K makes a temporary result T .
3. Subtract the random number R from the temporary result T by the “signed-

digit subtraction” and get the output D where the signed-digit subtraction
means a subtraction with no borrow, e.g., (100)2 − (010)2 = (1 −1 0)SD2.

2.3 Disadvantages of the Ha-Moon Method

There are several disadvantages and weaknesses in the Ha-Moon method. The
main disadvantage is the requirement of the inverse operation. This is also the
case in most randomized exponentiation algorithms based on the signed-digit
representation. Since the computation of finding the multiplicative inverse is
inefficient in Zn, only the elliptic curve cryptosystem is considered in the Ha-
Moon method.

In addition, the Ha-Moon method recodes the scalar from LSB towards MSB,
however the scalar multiplication algorithm performs inconsistently by scanning
the bits of the recoded scalar from MSB towards LSB. The disadvantage is
twofold: it disables simultaneous computation for recoding and scalar multipli-
cation and it also needs additional memory to store the recoded scalar.

2.4 Security Weaknesses of the Ha-Moon Method

Several attacks against the Ha-Moon method were proposed and can be divided
into two categories. One focuses on the Addition-Doubling (AD) sequence, and
the other one focuses on the distribution of the intermediate results.

The scalar is recoded into a signed-digit representation in the Ha-Moon
method. When the recoded scalar is employed in the scalar multiplication algo-
rithm (similar to the algorithm in Fig. 1), a sequence of addition and doubling
operations will be carried out. Because both of 1 and −1 in the recoded scalar
cause an addition operation, the attacker cannot directly retrieve the private
scalar even if he can distinguish addition and doubling operations.

However, the AD sequence still reveals partial information about the pri-
vate scalar. The private scalar can be derived from several (less than ten in
most cases) AD sequences corresponding to it. Several SPA attacks based on
this weakness were proposed [6, 10, 11]. The “doubling and addition always” al-
gorithm illustrated in Ha and Moon’s paper can prevent those attacks because
the AD sequence is independent of the private scalar. However, those dummy
operations unfortunately may benefit another potential and practical physical
attack, i.e., the safe-error attack [13]. The attacker can identify those dummy
operations because faults induced on those dummy operations will not change
the final result.

Another weakness of the Ha-Moon method is the monotone distribution of the
intermediate results. When executing from right to left, the intermediate result
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(di · · · d0)SD2×P always equals to (ki · · · k0)SD2×P or ((ki · · · k0)SD2− 2i+1)×P .
Similarly, the intermediate result Di×P always equals to Ki×P or (Ki +1)×P
when executing from left to right. This monotone distribution results in some
attacks [3, 4]. It is not easy to completely prevent from attacks based on this
weakness, but it is relatively easy to increase the complexity of those attacks by
enlarging the set of all possible intermediate results. For example, considering
the ZEMD (zero-exponentiation multiple data) attack [9] on the randomized
exponentiation, half of the samples are meaningful and the others can be treated
as noise when the size of the possible distribution is two. The rate of efficient
samples can be cut down by enlarging the size of the possible distribution.

3 Improvements on the Ha-Moon Method

In this section, three improvements are proposed. The first one is the left-to-right
recoding that allows the recoding algorithm and the left-to-right exponentiation
algorithm to execute simultaneously. The second is the non-inversion technique
that removes the requirement of inversion by transforming the signed-digit bi-
nary exponent into another form with a positive digit set. The last one is the
windowing method which improves the performance.

3.1 Left-to-Right Recoding

The original Ha-Moon method recodes the exponent (or scalar in ECC) from
right to left. In the following, the right-to-left recoding will be transformed into
a left-to-right version by modifying Eq (1) and Eq (2) into the following forms

ci − di = 2ci+1 − ki

(kn−1 kn−2 · · · ki+1 ki)2 + ci = (dn dn−1 · · · di+1 di)SD2

where the carry bit cn+1 is initialized to be cn+1 = 0. The recoded di and carry
bit ci are solved from ki and ci+1, i.e., the exponent is recoded from MSB towards
LSB. The solutions of ci+1 and ki are listed in Table 2 in which if there are two
possible solutions, then one of them will be selected randomly.

In the Ha-Moon method, the carry bit always ends with cn+1 = 0, but in
the left-to-right recoding, the carry bit may end with c0 = 0 or 1. When c0 = 1

Table 2. Left-to-right randomized recoding

ci+1 ki (ci, di)

0 0 (0, 0) or (1, 1)

0 1 (0, 1)

1 0 (1,−1)

1 1 (0,−1) or (1, 0)



160 S.-M. Yen et al.

occurs, the recoded exponent is greater than the original exponent, and a division
(multiplication by the inverse of the base) is required when implementation the
exponentiation algorithm. This can be avoided by replacing the original K by
K ′ = K − 1, but an extra multiplication is required when c0 = 0.

Similar to the Ha-Moon method, the proposed recoding generates all possible
signed-digit exponents equaling to the original exponent K, but it also generates
some signed-digit exponents equaling to K + 1.

3.2 Non-inversion Technique

Basic idea of the proposed non-inversion technique is to reserve a small value bi

(called the pre-borrow) from the higher priority digit to the lower priority digit to
prevent the possibility of inversion (division in Zn) occurred at the lower priority
digit when executing the exponentiation. When an inversion occurs (i.e., di = −1
in D), it can be removed or replaced by a multiplication. For example, if di = −1
and a pre-borrow of “one” from its higher priority digit (i.e., bi+1 = −1), then the
expected value at digit i becomes di − bi+1 × 2 = 1 and we have the re-recoded
d′i = 1.

One of the main consideration when developing the above management on
recoding di into d′i (to be a non-negative value) and deciding bi as soon as given
the previous bi+1 and di is that the value of d′i should be limited within a pre-
determined range. The size of this mentioned range determines the storage cost
of a look-up table required in the exponentiation algorithm. Necessary param-
eters and mathematical relationship within the above idea are described in the
following.

Di = 2Di+1 + di

D′
i = Di + bi = 2(Di+1 + bi+1) + (bi − 2bi+1 + di)
= 2D′

i+1 + d′i
d′i − bi = di − 2bi+1 (or d′i = di − 2bi+1 + bi) (3)

In the proposed technique, gDi = (gDi+1)2 × gdi (the temporary result when
computing from MSB to di) will not be computed directly. Instead, gD′

i =
(gD′

i+1)2 × gd′
i is computed. The difference (or more precisely the quotient) be-

tween gDi and gD′
i is g−bi at any iteration i. It is interesting to notice that there

will be no division occurred in this exponentiation algorithm since the re-recoded
d′i is always a non-negative integer.

Based on our previous derivation, the original digit di, the re-recoded digit
d′i, and the two consecutive pre-borrow bi+1, and bi should satisfy Eq (3). The
pre-borrow and the re-recoded digit are calculated from MSB towards LSB by
a function (bi, d

′
i) = F(bi+1, di). The exact definition of F( ) depends on imple-

mentations, and some definitions will be provided in Sect. 3.3. In some imple-
mentations, there might be more than one possible pair (bi, d

′
i) satisfying Eq (3),

and the algorithm can randomly select one of them as the output of function
F( ). The size of the pre-computation table (look-up table) depends on the size
of set {d′i}.



Improvement on Ha-Moon Randomized Exponentiation Algorithm 161

3.3 Suggested Parameters for the Non-inversion Technique

Two definitions of F( ) are provided. The first one is a simplified version with the
fixed pre-borrow bi = −2, and the second has two possible pre-borrows bi = −2
or −3. In order to avoid the division operation, d′i is non-negative in both of the
proposed parameters.

In the first proposed parameter, the re-recoded d′i equals to di + 2 for all
0 ≤ i ≤ n−3, because the pre-borrow is fixed to −2 and d′i = di−2bi+1 +bi. The
re-recoding procedure subtracts two from the first three bit (dn dn−1 dn−2)SD2
and replaces other di by d′i = di + 2. The definition of F( ) is described below.

(d′n d′n−1 d
′
n−2) = (dndn−1dn−2)SD2 − 2, bn−2 = −2,

(bi, d
′
i) = F(bi+1 = −2, di) = (−2, di + 2) ∀ 0 ≤ i ≤ n− 3.

It is easy to verify that (dn dn−1 dn−2)SD2 is greater than two because the expo-
nent D is greater than 2n−1.

When the non-inversion technique with the first proposed parameter is in-
tegrated with the original Ha-Moon method, there exists a bijective mapping
between the re-recoded exponent and the original signed-digit exponent except
the first three bits (d′n d′n−1 d

′
n−2). Thus, the re-recoded exponent will keep the

original properties because of the bijective mapping.
In the second proposed parameter, the pre-borrow bi equals to −2 or −3.

Table 3 provides a suggested definition of the function F( ) to generate the pair
(bi, d

′
i) from the given values bi+1 and di. There are four distinct values of d′i,

and this design requires three pre-computation values g2, g3, and g4, where g is
the base integer of the exponentiation.

Table 3. Proposed function F( ) for bi = −2 or −3

bi+1 di (bi, d
′
i) = F(bi+1, di)

−1 0 (−2, 0)

−1 1 (−2, 1) or (−3, 0)

−2 −1 (−2, 1)

−2 0 (−2, 2) or (−3, 1)

−2 1 (−2, 3) or (−3, 2)

−3 −1 (−2, 3) or (−3, 2)

−3 0 (−2, 4) or (−3, 3)

−3 1 (−3, 4)

The proposed exponentiation algorithm is given in Fig. 2 where the variable b
is initially set to −(dn dn−1)SD2. Notice that (dn dn−1)SD2 is always non-negative
because the exponent D is positive. Since the temporary result R after executing
the for loop equals to gD′

0 = gD0 × gb0 , therefore the final result gD should be
gD0 = gD′

0 × g−b0 (where D0 = D). Recall that b0 is a non-positive integer, so
multiplication with g−b0 is not a division operation.
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In Table 3, the conditions of (bi+1, di) = (−1, 0) and (−1, 1) are called the
initial transient state. Due to the fact of 2n−1 ≤ D ≤ 2n− 1, it implies that 1 ≤
(dn dn−1)SD2 ≤ 2 and 2 ≤ (dn dn−1 dn−2)SD2 ≤ 4. There are only six possibilities
of such (dn dn−1 dn−2)SD2, i.e., (0 1 0), (1 −1 0), (0 1 1), (1 0 −1), (1 −1 1), and
(1 0 0). Given the above result, it can be proven easily that after processing the
first 3 bits in D, this proposed algorithm will fall into the usual state (say, all
cases exclude the initial transient state). The reason is that in the usual state,
values of the pre-borrow will never be “−1” again.

INPUT: g, D = (dn · · · d0)SD2 where 2n−1 ≤ D ≤ 2n − 1
OUTPUT: gD

01 Precomputation: all values of gd′
i

02 R = 1
03 b = −(dn dn−1)SD2
04 for i from n − 2 downto 0 do

05 (b, d′) = F(b, di)
06 R = R2

07 R = R × gd′

08 R = R × g−b

09 return R

Fig. 2. Exponentiation without division

If there are two possible output pairs (bi, d
′
i) for some given pairs (bi+1, di),

these two pairs can be randomly selected each time. So, this may lead to a ran-
domized algorithm and provides further security in the context of considering
side-channel attacks. Totally, the algorithm requires n squarings and n multipli-
cations for a given n-bit exponent.

3.4 The Windowing Technique

The proposed non-inversion technique can incorporate with the windowing
method to improve the performance. Necessary mathematical relationships with
window size of two are provided in the following.

Di = 4Di+2 + (di+1 di)SD2
D′

i = Di + bi = 4(Di+2 + bi+2) + (bi − 4bi+2 + (di+1 di)SD2)
= 4D′

i+2 + d′i
d′i − bi = (di+1 di)SD2 − 4bi+2 (or d′i = (di+1 di)SD2 − 4bi+2 + bi) (4)

gD′
i = (gD′

i+2)4 × gd′
i

This algorithm requires two squarings and one multiplication (if d′i �= 0) for every
two bits of the exponent. Given the previous pre-borrow bi+2 and the two bits
(di+1, di)SD2 in present window block, the new pre-borrow bi and the re-recoded
digit d′i should follow the rule provided in Eq (4).



Improvement on Ha-Moon Randomized Exponentiation Algorithm 163

Moderately increasing the window size may improve the performance, but
this also increases the storage requirement for the look-up table. It is there-
fore a trade-off between computational performance and storage cost. For most
practical applications (say with reasonable storage cost and also acceptable per-
formance), in this paper we only concentrate on the non-windowing version (or
windowing version with window size of one) and the windowing version with
window size of two.

4 Randomized Exponentiation Without Inversion

In this section, the proposed non-inversion technique is integrated with the left-
to-right version of the Ha-Moon method by combining the carry and the pre-
borrow. By integrating these two algorithms, we obtain

d′i − bi = −2bi+1 + di

= −2bi+1 + (ci − 2ci+1 + ki)
d′i − si = d′i − (bi + ci) = ki − 2(bi+1 + ci+1) = ki − 2si+1,

where si is the sum of the carry ci and the pre-borrow bi.
The originally proposed non-inversion technique requires the randomly re-

coded signed-digit exponent as its input parameter, but in the above integrated
version, the randomized exponent recoding and the non-inversion technique per-
form simultaneously. Table 4 provides one recoding rule with si = −2 or −3.
During executing the algorithm from MSB towards LSB, the algorithm ran-
domly selects (si, d

′
i) pair from the two possible pairs within Table 4.

Table 4. Proposed parameters for integrated algorithm

si+1 ki (si, d
′
i)

−2 0 (−3, 1) or (−2, 2)

−2 1 (−3, 2) or (−2, 3)

−3 0 (−3, 3) or (−2, 4)

−3 1 (−3, 4) or (−2, 5)

This integrated algorithm can also incorporate with the windowing method
to improve the performance. Details of the algorithm with 2-bit window are given
in Table 5 and Fig. 3. In Fig. 3, the variable s is initialized to s = −(kn−1 kn−2)2
in Step 03 and is updated by a random number between −1 and −3 in Step
06. After each iteration, the temporary result R[0] equals to g(kn−1···ki)2 × gs.
Therefore, after executing the for loop, R[0] equals to gK×gs and the expected
result gK can be obtained by R[0] × g−s. Notice again that the multiplication
with g−s is not a division since s is non-positive.
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Table 5. Proposed parameters for integrated algorithm with 2-bit window

si+2 (ki+1 ki)2 (si, d
′
i)

−1 0 (−3, 1), (−2, 2), or (−1, 3)

−1 1 (−3, 2), (−2, 3), or (−1, 4)

−1 2 (−3, 3), (−2, 4), or (−1, 5)

−1 3 (−3, 4), (−2, 5), or (−1, 6)

−2 0 (−3, 5), (−2, 6), or (−1, 7)

−2 1 (−3, 6), (−2, 7), or (−1, 8)

−2 2 (−3, 7), (−2, 8), or (−1, 9)

−2 3 (−3, 8), (−2, 9), or (−1, 10)

−3 0 (−3, 9), (−2, 10), or (−1, 11)

−3 1 (−3, 10), (−2, 11), or (−1, 12)

−3 2 (−3, 11), (−2, 12), or (−1, 13)

−3 3 (−3, 12), (−2, 13), or (−1, 14)

INPUT: g, K = (kn−1, · · · , k0)2
where n is even and (kn−1kn−2)2 = (01)2, (10)2, or (11)2

OUTPUT: gK

01 R[0] = 1; R[1] = g
02 Precomputation: R[2] = g2, · · · , R[14] = g14

03 s = −(kn−1kn−2)2
04 for i from n − 4 downto 0 step −2 do

05 d = −4s
06 s = RandomInteger(−1,−3)
07 R[0] = R[0]4

08 R[0] = R[0] × R[d + s + (ki+1ki)2]
09 R[0] = R[0] × R[−s]
10 output R[0]

Fig. 3. Randomized exponentiation without division

This algorithm requires thirteen pre-computation values g2 ∼ g14 and have
three intermediate states, s = −1, −2, or −3. Since d′i is a positive integer for all i,
this algorithm always has two modular squarings and one modular multiplication
in each iteration.

5 Security Analysis

5.1 SPA by Distinguishability Between Squaring and
Multiplication

Several analysis on randomized scalar multiplication over elliptic curve (or prob-
ably also applicable to exponentiation) have been reported based on the distin-
guishability between doubling and addition over elliptic curve (or squaring and
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multiplication if some specific methods are employed to speed up the computa-
tion of squaring) [6, 10, 11]. If the attacker can distinguish doubling and addition
(squaring and multiplication) by analyzing a given power consumption trace,
then he might be able to deduce the secret key from the collected doubling and
addition (squaring and multiplication) sequence.

The proposed algorithm in Sect. 4 is highly regular and makes the attacker
be impossible to deduce the private exponent from the collected (if possible)
squaring and multiplication sequence. The reason is obvious because there will
be always two (one in the non-windowing version) squarings followed by a mul-
tiplication in each iteration whatever the private exponent will be. Therefore,
the algorithm in Sect. 4 is immune to SPA by distinguishing the squaring and
multiplication. In addition, there is no dummy operation within the proposed
algorithm. It will not benefit the safe-error attack [13].

5.2 DPA on Intermediate Results

Differential power analysis (DPA) requires the target implementation under at-
tack be a deterministic algorithm, e.g., the private exponent of RSA is uniquely
represented but the base integers can be different for each computation. The
proposed algorithm in Fig. 3 generates s randomly (and accordingly also for d)
in each iteration. This randomization result makes the original DPA infeasible.

However, there are still some weaknesses, because the intermediate results of
the algorithm in Fig. 3 always equal to g(kn−1···ki)2+s with s = −1, −2, or −3.
When an attacker has retrieved the (n − 1)th to (i + 2)th bit of the exponent,
he can detect the occurrence of g4(kn−1···ki+2)2−3 by DPA, because this values
only occurs when (ki+1 ki)2 = 0. (This value will not appear in the intermediate
results when (ki+1 ki)2 = 1, 2, or 3.) Similarly, he can detect the occurrence of
g4(kn−1···ki+2)2+2 because it only occurs when (ki+1 ki)2 = 3.

This attack can be avoid by only selecting s = −1 or −2 when (ki+1 ki)2 = 0
and 2 as well as only selecting s = −2 or −3 when (ki+1 ki)2 = 1 or 3, because
(ki+1 ki)2 = 0 and 1 (2 and 3) will become indistinguishable under this attack.

Enlarging the range of the intermediate result will increase the complexity of
attacks on this weakness but it will also enlarge the size of the pre-computation
table.

6 Conclusions

Randomized recoding on private exponent (private key) of exponentiation com-
putation was previously considered as possible countermeasures against some
side-channel attacks. However, this category of countermeasures is not applica-
ble for implementing systems with varying base integer like RSA.

Based on the proposed concept of pre-borrow from the higher priority digits
towards the lower priority digits, a new class of inversion-free exponentiation
algorithms is developed in this paper. This category of new algorithms can be
applicable for implementing important cryptosystems with varying base inte-
ger during modular exponentiation computation, e.g., the RSA cryptosystem.
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The proposed basic version of inversion-free exponentiation is also enhanced by
combining both randomized exponent recoding and windowing technique. The
result leads to a secure and efficient countermeasure of implementing cryptosys-
tems based on exponentiation computation over Zn against most side-channel
attacks. The proposed algorithm can defeat the original DPA because of the
varying computational process (sequence of operation) and it can also defeat
SPA because of its highly regular computational behavior. Moreover, the en-
larged set of possible intermediate results can increase the complexity of most
advanced DPA attacks.

The computational performance is that the average number of operations
(including both multiplication and squaring) for an n-bit exponent and with
window size of two is 1.5n.
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Abstract. We consider the use of Jacobian coordinates for Tate pair-
ing over general characteristics. The idea of encapsulated double-and-
line computation and add-and-line computation has been introduced.
We also describe the encapsulated version of iterated doubling. Detailed
algorithms are presented in each case and memory requirement has been
considered. The inherent parallelism in each of the algorithms have been
identified leading to optimal two-multiplier algorithm. The cost compar-
ison of our algorithm with previously best known algorithms shows an
efficiency improvement of around 33% in the general case and an effi-
ciency improvement of 20% for the case of the curve parameter a = −3.

Keywords: Tate pairing, Jacobian coordinate, efficient implementation.

1 Introduction

Pairing based cryptography is a new way of constructing public key protocols.
Initially, bilinear maps were used for attacking the discrete logarithm problem on
elliptic curve groups [14, 5]. Starting with the initial work of Joux [10], Boneh-
Franklin [2], etc. design of pairing based public key protocols have received a
great deal of attention from the research community. See [3] for a recent survey
of such protocols.

Implementation of pairing based protocols require efficient algorithms for
computing pairings. An initial breakthrough in this direction has been made
in [1] and [6], which introduced some nice optimisation ideas leading to dramatic
improvement in pairing computation time. Since then, there have been quite a
few papers on implementation aspects. Almost all of the implementation work
have focussed on Tate pairing as it is faster than Weil pairing.

Our Contributions: We consider elliptic curves over large prime fields having
embedding degree 2. For such fields, we consider the use of Jacobian coordi-
nates for Tate pairing computation. The new idea that we introduce is encapsu-

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 168–181, 2005.
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lated double-and-line computation and encapsulate add-and-line computation.
We also describe encapsulated version of iterated double and line computation.
From an implementation point of view, we divide curves of the form y2 =
x3 + ax + b into three cases – small a, a = −3 and the case where a is a
general element of the field. In each case, we present detailed algorithm for pair-
ing computation. To the best of our knowledge, such a detailed presentation of
projective coordinate algorithms have not been reported earlier. We consider the
memory requirement for our algorithms, a feature which has not been seriously
considered earlier.

For hardware applications having special purpose crypto co-processors, it
might be desirable to consider parallel versions of the algorithms. We identify
the inherent parallelism in our algorithms and two-multiplier parallel version of
our algorithms are optimal with respect to the number of parallel rounds.

In comparison with earlier work, we are able to obtain approximately 33%
speed-up over the best known algorithm [8] for the case of general a. In the case
a = −3 and for non-supersingular curves, the recent work by Scott [16] provides
the most efficient algorithm. In comparison, for the case a = −3, we are able to
obtain approximately 20% speed-up over the algorithm in [16].
Related Work: The important work in [1] and [6] has been mentioned be-
fore. Projective coordinates were seriously considered by Izu and Takagi [8],
where mainly non-supersingular curves with large embedding degrees were con-
sidered. Further, projective coordinates in conjunction with non-supersingular
curves with embedding degree 2 were also considered in the work by Scott [16]
mentioned earlier. A recent work by Scott and Baretto [17] considers the issue
of computing trace of pairings. This paper also describes a laddering algorithm
for exponentiation in IFp2 based on Lucas sequences. For general characteristics,
this exponentiation algorithm is the fastest known and has to be used with the
algorithm that we develop. The algorithm proposed by Eisenträerger et. al. [4]
uses the double-add trick with parabolas for fast computation of pairing in affine
coordinates. There are several other works on Tate pairing computation. How-
ever, most of these work with affine coordinates and over characteristic three.
Hence, they are not much relevant in the present context and therefore are not
discussed here.

2 Preliminaries

We discuss background material for Tate pairing, choice of curves and NAF
representation.

2.1 The Tate Pairing

We first discuss how to compute the (modified) Tate pairing. Let p be an odd
prime, IFp the corresponding finite field with p elements, E is an elliptic curve
over IFp. Let r be a large prime divisor of (p + 1), such that r is coprime to
p and for some k > 0, r|pk − 1 but r � |ps − 1 for any 1 ≤ s < k; k is called
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the embedding degree (MOV degree). Suppose P is a point of order r on the
elliptic curve E(IFp) and Q is a point of same order on the elliptic curve E(IFpk),
linearly independent of P . We denote the (modified) Tate pairing of order r as
er(P,Q) ∈ IFpk .

er(P,Q) is defined in terms of divisors of a rational function. A divisor is a
formal sum: D =

∑
P∈E aP 〈P 〉, where P ∈ E(IFp). The degree of a divisor D is

deg(D) =
∑

P∈E aP . The set of divisors forms an abelian group by the addition
of their coefficients in the formal sum. Let f be a (rational) function on E, then
the divisor of f , 〈f〉 =

∑
P ordP (f)〈P 〉, where ordP (f) is the order of the zero

or pole of f at P . A divisor D =
∑

P∈E aP 〈P 〉 is called a principal divisor if
and only if it is a divisor of degree 0 (zero divisor) and

∑
P∈E aPP = O. If D

is principal then there is some function f such that D = 〈f〉. Two divisors D1

and D2 are said to be equivalent if D1 −D2 is a principal divisor. Let AP be a
divisor equivalent to 〈P 〉−〈O〉 (similarly AQ). Then it is easy to see that rAP is
principal; thus there is a rational function fP with 〈fP 〉 = rAP = r〈P 〉 − r〈O〉.
The (modified) Tate pairing of order r is defined as –

er(P,Q) = fP (AQ)(p
k−1)/r.

To compute fP (AQ), Q �= O one uses Miller’s algorithm [12]. Let fa be a (ra-
tional) function with divisor 〈fa〉 = a〈P 〉 − 〈aP 〉 − (a − 1)〈O〉, a ∈ Z. It can
be shown that f2a(Q) = fa(Q)2.haP,aP (Q)/h2aP (Q) where, haP,aP is the line
tangent to E(IFp) at aP , it intersects E(IFp) at the point −2aP , and h2aP

is the (vertical) line that intersects E(IFp) at 2aP and −2aP . Now, 〈fr〉 =
r〈P 〉 − 〈rP 〉 − (r − 1)〈O〉 = 〈fP 〉, since rP = O. Given P and the binary
representation of r, Miller’s algorithm computes fP (Q) = fr(Q) in lg r steps
by the standard double-and-add through line-and-tangent method for elliptic
curve scalar multiplication. Under the condition, r � |(p− 1) we can further have
er(P,Q) = fP (Q)(p

k−1)/r for Q �= O, as long as k > 1.

In the implementation of Tate pairing over E(IFp), the usual practice is to
take Q ∈ E(IFp) of order r and then use a distortion map φ(), to get a point
φ(Q) ∈ E(IFpk) of order r which is linearly independent of P . A major finding in
[1] is that, for particular choices of the curve parameters and distortion map φ()
we can freely multiply or divide the intermediate result of pairing computation
by any IFp element and consequently completely ignore the denominator part in
the computation of Tate pairing.

2.2 Choice of Curves

Let E1 be the elliptic curve given by the equation

y2 = x3 + ax

over IFp. E1 is super-singular if p ≡ 3 mod 4. For these curves, the curve order is
#E1(IFp) = p + 1 and embedding degree is k = 2. For such curves, a distortion
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map [1] is φ(x, y) = (−x, iy) ∈ IFp2 × IFp2 with i2 = −1. Let r be the integer, for
which we wish to compute er(, ). Then r|(p + 1) and the final powering in Tate
pairing computation is of the form (p2 − 1)/r. As observed in [1], this implies
(p− 1) divides the final powering exponent.

Let, E2 be the elliptic curve given by the equation

y2 = x3 − 3x + B

over IFp, p ≡ 3 mod 4. Scott in his recent paper [16] considered this form of non
super-singular EC with embedding degree, k = 2 with #E2(IFp) = p + 1 − t,
where t is the trace of Frobenius [11]. It is shown in [16] that the r for which
er(, ) is computed over E2 also satisfies r|(p + 1) and hence again p− 1 divides
the final powering exponent of Tate pairing.

Thus for both E1 and E2 the following observation holds. Since xp−1 = 1 for
any x ∈ IFp, this implies that we can freely multiply or divide any intermediate
Tate pairing result by any nonzero element of IFp. This has been previously used
to improve the efficiency of Tate pairing computation in affine coordinates. In
Section 3, we point out the importance of this observation in the context of
projective coordinates.

Note that, for E1 as well as E2, the embedding degree is k = 2 and the
elements of the quadratic extension field (IFp2) is represented as a + ib, where
a, b ∈ IFp and i is the square root of a quadratic non-residue. For p ≡ 3 mod 4
we can further have i2 = −1. Essentially, the same algorithm that we develop
for E1 also applies to E2 by evaluating e(, ) at P and (−xQ, iyQ).

2.3 Non-adjacent Form Representation

The Non-Adjacent Form (NAF) representation of an integer has been suggested
for elliptic curve scalar multiplication. In this representation, the digits {0,±1}
are used to represent an integer with the property that no two adjacent digits are
non-zero. The advantage is that, on an average, the number of non-zero digits
is one-third of the length of the representation, while it is one-half in the case
of binary representation. For details of NAF representation we refer the reader
to [7].

For Tate pairing applications, the representation of r should be sparse, i.e.,
the number of non-zero digits should be small. The NAF representation is sparser
than the corresponding binary representation. Hence in our algorithms, we work
entirely with the NAF representation.

3 Encapsulated Computation

In the computation of Tate pairing one needs to perform an implicit scalar mul-
tiplication of the EC point P . For this, as well as for computation of the line
function haP,aP () one requires to perform base field inversion. But inversion for
large characteristic is quite costly. The standard method to avoid inversion is
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to move from affine to projective coordinate system. Among the different avail-
able projective coordinate systems, the Jacobian gives the best result. In [8] the
authors suggested to take the so called simplified Jacobian-Chudnovsky cordi-
nate Js as they store (X,Y,Z, Z2) instead of (X,Y,Z). However, we have found
out that if one encapsulates EC addition/doubling with line computation then
there is no need to additionally store Z2 – one can simply work in the Jacobian
coordinate. Here we give the explicit formulae required for the encapsulated com-
putation of double/add-and-line computation. In what follows, by [M] and [S],
we respectively denote the cost of one multiplication and one squaring in IFp.

3.1 Encapsulated Point Doubling and Line Computation

Here P = (X1, Y1, Z1) correspond to (X1/Z
2
1 , Y1/Z

3
1 ) in affine coordinate. We

encapsulate the computation of 2P given P together with the computation cor-
responding to the associated line.

Point Doubling: From the EC point doubling rule we have the following for-
mula:

X ′
3 =

(3X2
1 + aZ4

1 )2 − 8X1Y
2
1

4Y 2
1 Z

2
1

Y ′
3 =

3X2
1 + aZ4

1

2Y1Z1
(
X1

Z2
1

−X ′
3)−

Y1

Z3
1

X3 = (3X2
1 + aZ4

1 )2 − 8X1Y
2
1

Y3 = (3X2
1 + aZ4

1 )(4X1Y
2
1 −X3)− 8Y 4

1

Z3 = 2Y1Z1

Using temporary variables, we compute:

1. t1 = Y 2
1 ; 2. t2 = 4X1t1; 3. t3 = 8t21;

4. t4 = Z2
1 ; 5. t5 = 3X2

1 + aZ4
1 ; 6. X3 = t25 − 2t2;

7. Y3 = t5(t2 −X3)− t3; 8. Z3 = 2Y1Z1.

So, we require 6[S] + 4[M] for EC doubling. Now consider t5. If a is a general
element of IFp, then we have to count the multiplication a × (Z4

1 ). However, if
a is small, i.e., it can be represented using only a few (say ≤ 8) bits, then we
do not count this multiplication. In this case, aZ4

1 can be obtained summing Z4
1

a total of a times. This reduces the operation count to 6[S]+3[M]. Further, if
a = −3, then t5 = 3(X1−Z2

1 )(X1 +Z2
1 ) = 3(X1− t4)(X1 + t4) and the operation

count reduces to 4[S]+4[M]. These facts are known and can be found in [7].

Line Computation: Note that, the slope μ of hP,P , the line through P and
−2P , is μ = t5/Z3. So,

hP,P (x, y) = (y − Y1

Z3
1

)− μ(x− X1

Z2
1

).

Hence, hP,P (−xQ, iyQ) = (yQi− Y1
Z3

1
) + μ(xQ + X1

Z2
1
).
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By defining gP,P (x, y) = (2Y1Z
3
1 )hP,P (x, y), we get,

gP,P (−xQ, iyQ) = (2Y1Z1)Z2
1yQi− 2Y 2

1 + (3X2
1 + aZ4

1 )(Z2
1xQ + X1)

= Z3t4yQi− (2t1 − t5(t4xQ + X1))

The ultimate result is raised to the power (p2 − 1)/r, where r|(p + 1) (see Sec-
tion 2.1). Thus we have to compute

(hP,P (−xQ, iyQ))(p
2−1)/r = ((hP,P (−xQ, iyQ))(p−1))(p+1)/r

= ((gP,P (−xQ, iyQ)/(2Y1Z
3
1 ))(p−1))(p+1)/r

= ((gP,P (−xQ, iyQ))(p−1))(p+1)/r.

The last equation holds since (2Y1Z
3
1 ) ∈ IFp and consequently (2Y1Z

3
1 )p−1 =

1. Thus, we can work entirely with gP,P (−xQ, iyQ) instead of hP,P (−xQ, iyQ).
Since t1, t4 and t5 have already been computed, gP,P (−xQ, iyQ) can be obtained
using 4 additional multiplications.

Hence, encapsulated point doubling and line computation requires 8[M] + 6[S].
In the case a is small, this cost is 7[M]+6[S] and for the case a = −3, this cost
is 8[M]+4[S].

3.2 Encapsulated (Mixed) Point Addition and Line Computation

We encapsulate the computation of P + R given P in affine and R in Jacobian
together with the computation corresponding to the associated line.

Mixed Addition: Given R = (X1, Y1, Z1) and P = (X,Y, 1) we compute R +
P = (X3, Y3, Z3) as follows.

X ′
3 =

(
Y − Y1

Z3
1

X − X1
Z2

1

)2

− X1

Z2
1

−X

=
(

Y Z3
1 − Y1

(XZ2
1 −X1)Z1

)2

− X1

Z2
1

−X

Y ′
3 =

(
Y Z3

1 − Y1

(XZ2
1 −X1)Z1

)
(
X1

Z2
1

−X ′
3)−

Y1

Z3
1

X3 = X ′
3Z3

= (Y Z3
1 − Y1)2 −X1(XZ2

1 −X1)2 −X(XZ2
1 −X1)2Z2

1

= (Y Z3
1 − Y1)2 − (XZ2

1 −X1)2(X1 + XZ2
1 )

Y3 = Y ′
3Z3

= (Y Z3
1 − Y1)((XZ2

1 −X1)2X1 −X3)− Y1(XZ2
1 −X1)3

Z3 = (XZ2
1 −X1)Z1
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Using temporary variables we compute:

1. t1 = Z2
1 ; 2. t2 = Z1t1; 3. t3 = Xt1;

4. t4 = Y t2; 5. t5 = t3 −X1; 6. t6 = t4 − Y1;
7. t7 = t25; 8. t8 = t5t7; 9. t9 = X1t7;
10. X3 = t26 − (t8 + 2t9); 11. Y3 = t6(t9 −X3)− Y1t8; 12. Z3 = Z1t5.

Hence, we require 3[S] + 8[M] for EC point addition. See [7] for details.

Line Computation: Note that, the slope μ of hR,P , the line through R and P
is μ = t6/Z3. So,

hR,P (x, y) = (y − Y )− μ(x−X).

Hence, hR,P (−xQ, iyQ) = (yQi − Y ) + μ(xQ + X). Define g(x, y) as g(x, y) =
Z3hR,P (x, y). Thus, we get

gR,P (−xQ, iyQ) = Z3yQi− (Z3Y − t6(xQ + X))

As explained in the case of doubling, we can simply work with gR,P instead
of hR,P . Since we have already computed t6 and Z3 during point addition,
gR,P (−xQ, iyQ) can be computed using additional three multiplications. Hence,
encapsulated point addition and line computation requires 11[M] + 3[S].

4 Algorithm

We consider three situations: a = −3; a small (i.e., multiplication by a need not
be counted); and the case where a is a general element of IFp. For the first two
cases, double-and-add algorithm is considered. For the general case, we adopt
an iterated doubling technique used by Izu and Takagi [8].

4.1 Double-and-Add

We slightly modify the Miller’s algorithm as improved in [1]. We will call this al-
gorithm the modified BKLS algorithm. In the algorithm the NAF representation
of r is taken to be rt = 1, rt−1, . . . , r0.

Algorithm 1 (Modified BKLS Algorithm):
1. set f = 1 and V = P
2. for i = t− 1 downto 0 do
3. (u, V ) = EncDL(V );
4. set f = f2 × u;
5. if ri �= 0, then
6. (u, V ) = EncAL(V, ri);
7. set f = f × u;
8. end if;
9. end for;
10. return f ;
end Algorithm 1.
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The subroutine EncDL(V ) performs the computation of Section 3.1 and returns
(gV,V (φ(Q)),2V ). The subroutine EncAL(V, ri) takes V and ri as input. If ri = 1,
it performs the computation of Section 3.2 and returns (gV,P (φ(Q)),V + P ); if
ri = −1, it first negates the point P = (α, β) to obtain P ′ = −P = (α,−β),
then it performs the computation of Section 3.2 with P ′ instead of P and returns
(gV,−P (φ(Q)),V − P ). The correctness of the algorithm follows easily from the
correctness of the original BKLS algorithm.

We consider the cost. The subroutine EncDL is invoked a total of t times while
EncAL is invoked a total of s times where s is the Hamming weight of rt−1 . . . r0.
The cost of updation in Line 4 is one IFp2 squaring and one IFp2 multiplication.
These operations can be completed in five IFp multiplications (see [17]). The cost
of updation in Line 7 is three IFp multiplications.

The cost of EncDL depends upon the value of the curve parameter a. We
analyse the total cost for the following two cases.

Case a = −3:

– Cost of EncDL is 8[M]+4[S].
– Cost of update in line 4 is 5[M].
– Cost of EncAL is 11[M]+3[S].
– Cost of update in line 7 is 3[M].
– Total cost is t(13[M]+4[S]) + s(14[M]+3[S]).

Case a is small:

– Cost of EncDL is 7[M]+6[S].
– Cost of update in line 4 is 5[M].
– Cost of EncAL is 11[M]+3[S].
– Cost of update in line 7 is 3[M].
– Total cost is t(12[M]+6[S]) + s(14[M]+3[S]).

4.2 Iterated Doubling

In the case where we have to consider the multiplication by the curve parameter
a, we employ the technique of iterated doubling to reduce the total number of
operations. As before we consider the NAF representation of r. We write the
NAF representation of r as

(rt = 1, rt−1, . . . , r0) = (ls = 1, 0ws−1 , ls−1, . . . , 0w0 , l0)

where the li’s are ±1. The following algorithm is an iterated doubling version
of the modified BKLS algorithm described in Section 4.1. The points P = (α, β)
and Q = (xQ, yQ) are globally available.

Algorithm 2 (iterated doubling):
Input: P = (α, β, 1) in Jacobian coordinates; Q = (xQ, yQ).
Output: fP (φ(Q)).
1. Set f = 1; g = 1;
2. X = α; Y = β; Z = 1; set R = (X,Y,Z);
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3. for j = s− 1 down to 0
4. (f,R) = EncIdbl(f,R,wj);
5. (g,R) = EncAL(R, lj);
6. f = f × g;
7. end for;
8. return f ;
end Algorithm 2.

The Subroutine EncAL has already been discussed in Section 4.1. We now de-
scribe Subroutine EncIdbl.

Subroutine EncIdbl
Input: R = (X,Y,Z), f and w.
Output: updated f and 2w+1R.
1. t1 = Y 2; t2 = 4Xt1; t3 = 8t21; t4 = Z2; w = aZ4; t5 = 3X2 + w;
2. A = −(2t1 + t5(t4xQ −X)); X = t25 − 2t2;

Y = t5(t2 −X)− t3; Z = 2Y Z; B = Zt4yQ;
3. f = f2 × (A + iB);
4. for j = 1 to w do
5. w = 2t3w; t1 = Y 2; t2 = 4Xt1; t3 = 8t21; t4 = Z2; t5 = 3X2 + w;
6. A = −(2t1 + t5(t4xQ −X)); X = t25 − 2t2;

Y = t5(t2 −X)− t3; Z = 2Y Z; B = Zt4yQ;
7. f = f2 × (A + iB);
8. end for;
9. R = (X,Y,Z);
9. return (f , R);
end Subroutine EncIdbl.

Algorithm 2 is essentially the same as Algorithm 1 except for the use of iterated
doubling. The technique of iterated doubling is considered to reduce computation
cost but does not affect the correctness of the algorithm. We consider the cost
of the algorithm. As before let the Hamming weight of rt−1, . . . , r0 be s.

– Steps 5 and 6 of Algorithm 2 are invoked s times. The total cost of these
two steps is s(14[M]+3[S]).

– Step 4 of Algorithm 2 is invoked a total of s times. The cost of the jth
invocation of Step 4 is computed as follows:

• Cost of Steps 3 and 7 in EncIdbl is 5[M].
• Cost of Steps 1 and 2 in EncIdbl is 8[M]+6[S].
• Cost of Steps 5 and 6 in EncIdbl is 8[M]+5[S].
• Total cost of jth invocation of EncIdbl is

13[M]+6[S]+wj(13[M]+5[S])=1[S]+(wj + 1)(13[M]+5[S]).

– Total cost of Algorithm 2 is
s(14[M]+3[S])+

∑s−1
j=0(1[S]+(wj + 1)(13[M]+5[S]))

=s(14[M]+4[S])+t(13[M]+5[S]).
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4.3 Memory Requirement

The memory requirement of Algorithm 1 and Algorithm 2 are similar with Algo-
rithm 2 requiring slightly more memory. We consider the memory requirement
of Algorithm 2. To find the minimum memory requirement, first note that in
Algorithm 2 we have to store and update f ∈ IFp2 and X,Y,Z ∈ IFp – they
require 5 IFp storage space. We also need to store Q = (xQ, yQ). In addition,
we require some temporary variables to keep the intermediate results produced
in the subroutines EncIdbl and EncAL. These subroutines are called one after
another – we first call EncIdbl and update f together with X,Y,Z, release the
temporary variables and then call EncAL where these temporary variables can
be reused. The maximum of the number of temporary variables required by the
two subroutines determines the number of temporary variables required in Al-
gorithm 2. We ran a computer program to separately find these requirements.
Given a straight line code what the program essentially does is to exhaustively
search (with some optimisations) for all possible execution paths and output the
path pertaining to minimum number of temporary variables. This turns out to
be 9 for EncIdbl, while it is 7 for EncAL. So, at most we require to store 16 IFp

elements.

4.4 Parallelism

We first consider the parallelism in the encapsulated computations of Sections 3.1
and 3.2. While considering parallelism, we assume that a multiplier is used to
perform squaring.

First we consider the case of encapsulated double and line computation. The
situation in Section 3.1 has three cases – small a, a = −3 and general a. For the
last case we use the iterated doubling technique of Section 4.2. We separately
describe parallelism for the three cases. In each case, we first need to identify
the multiplications which can be performed together. This then easily leads to
parallel algorithms with a fixed number of multipliers.

Small a. In this case, multiplication by a will be performed as additions. The
multiplication levels are as follows.

Level 1 : t1 = Y 2
1 ; t4 = Z2

1 ; X2
1 ; Z3 = 2Y1Z1; square f ;

Level 2 : t2 = 4X1t1; t3 = 8t21; t5 = 3X2
1 + aZ4

1 ; t6 = t4xQ; t7 = t4yQ;
Level 3 : −(2t1 + t5(t6 −X1)); X3 = t25 − 2t2; Y3 = t5(t2 −X3)− t3; Z3t7;
Level 4 : update f .

Case a = −3. In this case, t5 = 3(X2
1 − Z4

1 ) = 3(X1 − Z2
1 )(X1 + Z2

1 ). The
multiplication levels are as follows.

Level 1 : t1 = Y 2
1 ; t4 = Z2

1 ; Z32Y1Z1; square f ;
Level 2 : t2 = 4X1t1; t3 = 8t21; t5 = 3(X1 − t4)(X1 + t4); t6 = t4xQ; t7 = t4yQ;
Level 3 : −(2t1 + t5(t6 −X1)); X3 = t25 − 2t2; Y3 = t5(t2 −X3)− t3; Z3t7;
Level 4 : update f .
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General a. In this case, Subroutine EncIdbl is used. This consists of an initial
part plus computation inside the for loop. The parallel version of both these
parts are similar and we describe the parallel version of the loop computation.
The multiplication levels are as follows.

Level 1 : w = 2t3w; t1 = Y 2; t4 = Z2; X2; Z3 = 2Y Z; square f ;
Level 2 : t2 = 4Xt1; t3 = 8t21; t5 = 3X2 + w; t6 = t4xQ; t7 = t4yQ;
Level 3 : A = −(2t1 + t5(t6 −X)); X = t25 − 2t2; Y = t5(t2 −X)− t3; Z3t7;
Level 4 : update f .

In each of the above cases, with two multipliers the entire operation can be per-
formed in 9 rounds and with four multipliers it can be performed in 5 rounds.
Since the total number of operations is either 17 or 18 squarings and multiplica-
tions, the number of rounds is optimal for the given number of operations and
given number of multipliers.

Addition. We now consider the case of encapsulated add-and-line computation.
See Section 3.2 for the details of the temporary variables and the operations. Here
we mainly list the multiplication/squaring operations.

Level 1 : t1 = Z2
1 ;

Level 2 : t2 = Z1t1; t3 = Xt1;
Level 3 : t4 = Y t2; t7 = t25; Z3 = Z1t5;
Level 4 : t8 = t5t7; t9 = X1t7; X3 = t26 − (t8 + 2t9); Z3yQ; Z3Y ; t6(xQ −X);
Level 5 : Y3 = t6(t9 −X3)− Y1t8; update f ;

There are a total of 17 multipications including the update operation. Using two
multipliers, these can be performed in 9 rounds. On the other hand, the four
multiplier algorithm is sub-optimal in the number of rounds.

Thus, for parallel version of pairing computation algorithm, one obtains opti-
mal two-multiplier algorithms for both doubling and addition. For doubling, the
four multiplier algorithm is optimal, while for addition, the four multiplier algo-
rithm is sub-optimal. However, the Hamming weight of r will be small and hence
if we use four multipliers then the sub-optimal performance will be amortized
over the length of the representation of r and will not be significantly reflected
in the final cost analysis.

5 Comparison

For the purpose of comparison, we assume that r = (rt = 1, rt−1, . . . , r0) is
represented in NAF having length t and Hamming weight s.

The irrelevant denominator optimisation was introduced in [1]. Further, [1]
uses affine representation. The total cost including point/line computation and
updation is t(1[I]+8[M]+2[S])+s(1[I]+6[M]+1[S]), where [I] is the cost of inver-
sion over IFp and is at least 30[M], see [15].
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Izu-Takagi [8] uses projective coordinates for pairing computation in gen-
eral characteristics for large embedding degree k. They also consider the BKLS
optimisations for supersingular curves with embedding degree k = 2 for gen-
eral a. They assume that one IFpk multiplication takes k2[M]. For k = 2, this
can be improved to 3[M]. In the following calculation, we use this fact. Their
cost for w-iterated doubling is 6w[M]+4w[S]+13w[M]+(5w + 1)[S] and addition
is 6[M]+16[M]+3[S]. Summing over w’s, the total cost comes to t(19[M]+9[S])
+s(22[M]+4[S]).

The recent paper by Scott [16], also proposes the use of projective coordinates
in the case a = −3 for certain non-supersingular curves. The paper does not dis-
tinguish between multiplication and squaring. The total cost is 21t[M]+22s[M].
In Table 1, we summarize the above costs along with the costs obtained by
our algorithms for the various cases for the curve parameter a. The best case

Table 1. Cost Comparison. Note 1[I]≥ 30[M] [15]

Method Cost

BKLS [1] (affine) t(1[I]+8[M]+2[S])+s(1[I]+6[M]+1[S])

Izu-Takagi [8] (general a) t(19[M]+9[S])+s(22[M]+4[S])

Scott [16] (a = −3) 21t[M]+22s[M]

Algorithm 1 (a small) t(12[M]+6[S])+s(14[M]+3[S])

Algorithm 1 (a = −3) t(13[M]+4[S])+s(14[M]+3[S])

Algorithm 2 (general a) t(13[M]+5[S])+s(14[M]+4[S])

occurs for Algorithm 1 with a = −3. Also the cases for Algorithm 1 for small
a and Algorithm 2 are marginally slower than the best case. However, all three
of these cases are much more efficient than any of the previous algorithms. The
algorithms of Izu-Takagi [8] and Scott [16] are more efficient than the basic BKLS
algorithm with affine coordinates.

For Tate pairing applications, r is generally chosen so that the Hamming
weight s is small. On the other hand, for a general r, the Hamming weight s
is approximately s = t/3. In either of these two situations, we summarize the
superiority of our method as follows.

– Algorithm 1 with a = −3 is approximately 20% faster compared to the
algorithm by Scott.

– Algorithm 2 is approximately 33% faster compared to the algorithm by Izu
and Takagi.

We consider the cost comparison to EC scalar multiplication. For the purpose
of security, scalar multiplication has to be resistant to side channel attacks. One
simple method of attaining resistance to simple power analysis is to use Coron’s
dummy addition using binary representation of multiplier. Under the (realis-
tic) assumption that the length of the binary representation of the multiplier is
equal to the length of the NAF representation of r for Tate pairing, the cost of
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dummy-addition countermeasure is t(2[M]+7[S]) for the case of a = −3. This
cost is comparable to the cost of Algorithm 1 for a = −3 when s is at most around
t/8. Again for practical situation r can usually be chosen so that s ≤ t/8. Thus
the efficiency of our algorithm is almost comparable to the efficiency of sim-
ple SPA resistant EC scalar multiplication. On the other hand, there is a wide
variety of techniques for EC scalar multiplication providing very efficient algo-
rithms. Whether the cost of Tate pairing computation can be made comparable
to the most efficient EC scalar multiplication is currently a challenging research
problem.

6 Conclusion

In this paper, we have considered the use of Jacobian coordinates for Tate pairing
computation in general characteristics. The main idea that we have introduced is
encapsulated double-and-line computation and encapsulated add-and-line com-
putation. We have also developed encapsulated version of iterated double al-
gorithm. The algorithms are presented in details and memory requirement has
been considered. Inherent parallelism in these algorithms have been identified
leading to optimal two-multiplier parallel algorithms. Our algorithms lead to
an improvement of around 33% over best known algorithm for the general case
where the curve parameter a is an arbitrary field element. In the special case
where a = −3, our techniques provide an efficieny improvement of around 20%
over the previously best known algorithm.
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Abstract. Subliminal channels in randomized signature algorithms like
the DSA are well-known. However, much less seems to be known about
this issue when dealing with deterministic schemes. Using some known
signature schemes like ESIGN-D and SFLASHv3 as example, we illus-
trate the problem of subliminal channels in non-interactive deterministic
signature algorithms. Based on an appropriate formalization, a deter-
ministic variant of RSA-PSS is shown to be subliminal free.

Keywords: subliminal channels, deterministic signature schemes.

1 Introduction

Basically, a subliminal channel in a signature scheme allows a signing party to
send a covert message to an authorized receiver of signed messages. Without
additional knowledge, the covert message cannot be detected, i.e., the derived
signatures are indistinguishable from those not containing a subliminal mes-
sage. Simmons introduced subliminal channels in [Sim84] as a solution to the
prisoner’s problem: A warden allows two prisoners to exchange authenticated
(signed) messages but monitors their communication. The prisoners seek for a
way to communicate unnoticeable to the warden and can use a subliminal chan-
nel to hide a secret message in the authenticator of a “harmless” message.

The first subliminal channels in signature schemes were pointed out by Sim-
mons in the ElGamal signature scheme [Sim85] as well as in the DSA [Sim94].
Subsequently such channels have been discovered in many signature schemes, re-
cently by Zhang et al. [ZLK03]. Typically, for implementing a subliminal channel,
random values in the signing procedure are replaced with (symmetric) encryp-
tions of a covert message. The intended receiver knows the symmetric key used
(and possibly also the signing key, if this is necessary to reconstruct the “ran-
dom” choices used in the signing procedure). A seemingly obvious method to
prevent subliminal communication within signatures is the use of determinis-
tic schemes: If there are no random choices in the signing algorithm, it seems
that the signature leaves no “space” for placing a subliminal message. But the
deterministic generation of the signature does not mean that this signature is
the only one that passes the verification. The only published work about sub-
liminal communication in this context we are aware of, is a short paragraph in

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 182–194, 2005.
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the meeting minutes [IEE01]: “. . . the verifier has no way of telling whether
the signature was generated deterministically or not.” The same paragraph also
indicates an obvious limitation for implementing subliminal communication by
means of deterministic signature schemes: “. . . if the same message is signed
twice and produces two different signatures, the verifier knows that the signing
was not deterministic.”

In this contribution we suggest a formalization of subliminal channels and
subliminal freeness in non-interactive signature schemes, which is formulated
in terms of a game similar to those typically used in connection with provable
security. As in practical applications non-interactive signature schemes without
message recovery are prevalent, we do not consider interactive signature schemes
or signature schemes with message recovery. The setting for (ab)uses of sublim-
inal channels we have in mind is that the (malicious) signer has no influence
on the cover message, thus ruling out steganography in the cover message. An
example for such a scenario is a malicious black-box signing device that leaks the
private signing key as considered in [YY96]: Upon input of the user’s signing key
and a cover message, the device signs the message so that the the user’s signing
key can be recovered from his signatures. This recovery remains unnoticeable to
the legitimate signer. Other applications are digital identification cards where
the issuer cannot choose the contents of the message to be signed, since it is
given, e. g., by name and address.

Albeit having clear limitations—e. g., not capturing intuitively present sub-
liminal channels in “non-scalable” schemes—the proposed definition allows for
a satisfactory discussion of a significant class of subliminal communication. Sec-
tion 3 exhibits (both in an informal and in a more formal manner) subliminal
channels in several deterministic signature schemes, including ESIGN-D, a de-
terministic version of RSA-PSS, and SFLASHv3. Further on, it is shown that
when being combined with a suitable key verification the already mentioned
deterministic version of RSA-PSS is subliminal free.

2 Subliminal Channels in Signature Schemes

A non-interactive signature scheme is typically formalized as a tuple of algo-
rithms for key generation, signature generation and signature verification. For
taking into account subliminal channels, some modifications to this definition
are needed, and thus we start by fixing some appropriate terminology.

2.1 Basic Definitions

Let us first recall the basic ingredients of an ordinary signature scheme:

Definition 1. A signature scheme S = (Gen,Sig,Ver) is a triple of algorithms,
where
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– Gen is a probabilistic polynomial time (pptm) algorithm that takes the se-
curity parameter k as input and returns a pair of public and secret keys
(pk, sk).

– Sig is a pptm algorithm that takes a message M and the secret key sk as
input and produces a valid signature σ for M under sk.

– Ver is a deterministic polynomial time algorithm that takes a message M , a
signature σ and the public verification key pk as input and returns valid if σ
is a valid signature for M w. r. t. pk, and invalid otherwise.

In a signature scheme with subliminal channel, the key generation algorithm
does not only provide a private signing and a public verification key, but also
a subliminal secret key which is shared between the subliminal sender and the
subliminal receiver. Although we do not require the subliminal key generation
to follow the steps of the original key generation, we require the distribution of
(public key, secret key)-pairs to be indistinguishable from the original one. The
subliminal secret key may well depend on or even contain the secret signing key:
We are interested in settings, where the possibility of subliminal communication
is more important than the unforgeability of the subliminal sender’s signatures.

In addition to the standard signature algorithm we need an “alternative”
signature algorithm that allows to hide a subliminal message inside a signature.
To implement a secure subliminal channel, a warden must not be able to dis-
tinguish (with non-negligible probability) which of the two key generation and
signature algorithms has been used, even when he is able to choose the messages
to be signed himself. Finally, an additional algorithm for extracting subliminal
messages from received signatures is needed:

Definition 2. A signature scheme with subliminal channel

S = (Gen,Sig,Ver,SubGen,SubSig,SubVer)

is a tuple of algorithms, where Gen, Sig, Ver are as in Definition 1 and

– SubGen is a pptm algorithm that takes the security parameter k as input and
outputs a pair of public and secret keys pk, sk along with a subliminal secret
key ssk that is to be used for subliminal communication.
The resulting distribution of (pk, sk)-pairs is required to be indistinguishable
from that produced by Gen.

– SubSig is a pptm algorithm that takes a message M , a subliminal message
m, the secret key sk, and the state information s output in the last activation
(initially we set s := ssk) as input and outputs new state information s along
with a signature σ for M , such that σ hides the subliminal message m.

– SubVer is a deterministic polynomial time algorithm that takes the message
M , a signature σ, the public verification key pk, and the subliminal secret key
ssk as input. Ver applied to M , σ, and pk returns invalid if and only if SubVer
returns invalid. For a valid signature, the subliminal message embedded by
SubSig is recovered by means of ssk. At this, we require that in a single
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application of the signature scheme, an embedded message can be recovered
with overwhelming probability, i. e.,

P

⎡⎣ (pk, sk, ssk) ← SubGen(1k),M ←M,m←Ms,
(., σ) ← SubSig(M,m, sk, ssk);

SubVer(M,σ, pk, ssk) = (valid,m)

⎤⎦ ≥ 1− negl(k),

with the probability being over the random choices of SubGen and SubSig and
the messages M and m being chosen independently from the corresponding
finite message space M = M(k) resp. finite subliminal message space Ms =
Ms(k) according to some (application) specific probability distributions.
For all values of k, the subliminal message space must contain at least 2
different messages, and for all pptm algorithms W (wardens) we require∣∣∣P [Expward−ind−1(k) = 1]− P [Expward−ind−0(k) = 1]

∣∣∣ ≤ negl(k)

where for b ∈ {0, 1} the experiment Expward−ind−b(·) is defined as follows:

Experiment Expward−ind−0(k) :
(pk, sk) ← Gen(1k);
d←WSsk(·,·)(pk);
return d;

Experiment Expward−ind−1(k) :
(pk, sk, ssk) ← SubGen(1k);
d←WSsk,s(·,·)(pk);
return d;

with Ssk(·, ·) an oracle which on input (M,m) returns σ ← Sig(M, sk) and
Ssk,s(·, ·) an oracle which returns σ with (σ, s) ← SubSig(M,m, sk, s) and
updates its internal state s (initially equal to ssk) accordingly.

If the signature scheme is malleable, a warden may be able to derive another
valid signature for a message M that has been (subliminally) signed already.
If in this case the subliminal message can still be extracted or if the signature
scheme is not malleable, a subliminal channel can be regarded as “robust”. In
this contribution, we do not dwell on the question of robustness any further, and
thus omit a formal definition.

Remark 1. For implementing a subliminal channel on basis of a deterministic
signature scheme, allowing SubSig to have state is crucial: Once a subliminal
message m1 ∈Ms has been hidden in a signature of some M ∈M, this message
M cannot be (re)used to hide an m2 ∈ Ms \ {m1}.—Otherwise the use of the
subliminal channel becomes obvious.

So far we only considered to transmit a subliminal message in a single ap-
plication of the (subliminal) signing algorithm. We introduce the capacity of a
subliminal channel to quantify the subliminal information that can be transmit-
ted over time.

Definition 3. Denote by Ms = Ms(k) the subliminal message space of a sig-
nature scheme with subliminal channel S and by PMs

a probability distribution
on Ms. Then the average information in a subliminal message is

H(Ms) = −
∑

m∈Ms

PMs
(m) log2(PMs

(m)) (measured in bit per signature),
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the entropy of the source of the subliminal messages. Let SS be the set of sub-
liminal signature schemes that are, except for the subliminal message space Ms,
identical to S.

If, for any polynomial number of executions of SubSig, we can hide a sub-
liminal message in every signature with overwhelming probability1, we refer to
C(S) := maxSS

H(Ms) as capacity of the subliminal channel. Similarly as in
[Sim98], we call the subliminal channel broadband if its bandwidth grows at least
linearly in k, i. e., C(S) ∈ Ω(k). We call the subliminal channel narrowband, if
its bandwidth grows no more than logarithmically in k, i. e., C(S) ∈ O(log2(k)).

For deterministic signature schemes the situation is different since in general a
message can only once be signed subliminally without being recognized by the
warden. Thus, in the deterministic case we obtain a sequence B = (Bi)i∈N ∈ RN,
with Bi bounding the average information that can be transmitted subliminally
in the i-th signature, using the probability that we get a message M that was
not previously signed:

Bi = C(S) ·
∑

M∈M
(1− PM(M))i−1PM(M)

For some applications of signatures it is desired to prevent any subliminal
communication through valid signatures once the public verification key has
been fixed, and it is desirable to have signature schemes which are provably
subliminal free in this sense. The following definition tries to capture this idea:

Definition 4. Let S = (Gen,Sig,Ver) be a signature scheme. We call S sublimi-
nal free if for all pptm algorithms SubGen, GetCoverMessage, BadSign, BadVerify
we have ∣∣P [Expsigner−1(k) = 1]− P [Expsigner−0(k) = 1]

∣∣ ≤ negl(k).

At this, SubGen obeys the restrictions in Definition 2, and for b = 0, 1 the ex-
periment Expsigner−b is defined as follows:

Experiment Expsigner−b :
(pk, sk, ssk) ← SubGen(1k);
(M, s) ← GetCoverMessage(ssk, pk); (with M ∈M, s aux. information)
σ ← BadSign(M, b, sk, s); (a signature σ with Ver(M,σ, pk) = valid);
d← BadVerify(M,σ, pk, s); (a guess d for the hidden bit b)
return d;

2.2 Encrypting Subliminal Messages

We begin by studying how to encrypt subliminal messages in probabilistic sig-
nature schemes. In a sense, Remark 1 is dual to probabilistic schemes which

1 Note that deterministic schemes do not satisfy this requirement.
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allow superpolynomially many signatures for the same message: In the latter
case, obtaining twice the same signature for the same message is suspicious.

In other words, for a probabilistic signature scheme it is important that repeat-
edly sending the same subliminal message does not yield the same “random” num-
ber to be used during signing. Typically, we want to replace a random bitstring r
of length linear in the security parameter with the encryption of a subliminal mes-
sage. And, when signing repeatedly the same message and hiding the same sub-
liminal message, we must be able to produce enough different signatures.

Depending on the specific application context, different approaches for produc-
ing suitable ciphertexts are possible.One approach is the following: LetΔbe a fixed
bitstring of superlogarithmic length which is part of the subliminal secret key ssk
and let MGF(·, ·) be some mask generation function which upon input of a seed
value z and a positive integer � outputs a pseudorandom bitstring of length �—for
practical purposes we may think of a construction as in [Lab02–Appendix B.2].
Then a subliminal message m of length |m| is encrypted as

c = Ξ‖[m⊕MGF(Δ‖Ξ, |m|)],

where Ξ is a uniformly chosen random bitstring of superlogarithmic length, ‖ de-
notes the concatenation of bitstrings and ⊕ stands for bit-wise XOR.

For the subliminal receiver decryption is straightforward and, interpreting
MGF(·, |m|) as a random oracle, it is not hard to see that for a pptm warden the
resulting ciphertexts are indistinguishable from uniformly chosen random |Ξ|+
|m|-bit strings. Note that for applying this construction, the number of possible
signatures of a cover message M ∈ M into which we embed the subliminal
messages must grow superpolynomially in k, so that enough random choices for
Ξ are available and therewith a pptm warden is not able to find out that we
exhaust only a proper subset of all possible signatures.

If we restrict the warden so that he may request the oracle just once for
every (cover) message M we can omit the variable secret Ξ and replace it in
the input of MGF by the now for every signature distinct message M . Thereby
the number of possible signatures per message does not need to grow in k at all.
The situation in deterministic schemes is similar to this, since we only hide a
subliminal message when signing a (cover) message for the first time.

Alternatively, we can avoid the need to have superpolynomially many signa-
tures if we allow SubVer to be stateful and presume that the subliminal receiver
can recognize the chronological order of the signatures. In this case we can use
a one time pad encryption.

3 Application to Some Proposed Signature Schemes

For some signature schemes (like SFLASHv3 considered in Section 3.3) param-
eters have not been specified for an arbitrary security parameter k, and only
some fixed set of parameters has been proposed. From the practical point of
view this usually causes no problem, but an asymptotic description as used
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above is not suitable for describing an “intuitive” subliminal channel in such
a scheme. Depending on what allows for a more convenient exposition, for the
concrete signature schemes considered in the sequel, we make use of both more
formal and more informal descriptions of subliminal channels.

3.1 A Deterministic Braid-Based Scheme

In [KCCL02] Ko et al. propose an interesting signature scheme based on braid
groups. Albeit being a proposal at a more conceptual level, for our purposes it is
worthwhile to take a closer look at this scheme, since it shows a nice way to hide
a subliminal message as well as a noteworthy method to discover a subliminal
communication.

Given a braid group Bn, two elements x, y ∈ Bn are said to be conjugate,
written x ∼ y, if there is an element a ∈ Bn such that y = a−1xa. Given
x, y ∈ Bn the conjugacy decision problem (CDP) is to decide if x ∼ y, and
the conjugator search problem (CSP) is to find an element a ∈ Bn such that
y = a−1xa.

Now, the signature scheme from [KCCL02] we want to look at is based on
the gap assumption that for the underlying braid group the CDP is feasible
whereas the CSP is infeasible. Further on, we need a cryptographic hash function
h : {0, 1}∗ −→ Bn mapping a message to an element of the braid group. The
secret key for the signature scheme is a braid a ∈ Bn and the public key a
CSP-hard pair (x, x′) ∈ B2

n with x′ = a−1xa. Finally, a signature for a message
M ∈ {0, 1}∗ is given by σ = a−1ya, where y = h(M) is the hash value of M .
The verification procedure checks if σ ∼ y and x′σ ∼ xy hold and returns valid
if and only if both conjugacies are true.

By construction, this signature scheme is deterministic. Further on, it is not
subliminal free according to Definition 4: Consider any message M with y =
h(M) not commuting with x. Then, instead of the signature σ = a−1ya the
signer can also compute σ′ = (xa)−1y(xa); σ′ is a valid signature for M , because
of σ′ ∼ y and

x′σ′ = a−1xaa−1x−1yxa = a−1yxa = a−1x−1xyxa = (xa)−1xy(xa) ∼ xy.

A subliminal receiver can easily distinguish σ and σ′ if he is given the secret key
a. However, the signature scheme does not provide a subliminal channel if used in
this way: Given two signatures containing different subliminal bits, a warden can
notice the subliminal communication by comparing the two signatures. Namely,
if the signature scheme is used correctly for both computing a signature σ1

of M1 and σ2 of M2, with y1 = h(M1) and y2 = h(M2) we obtain σ1σ2 =
a−1y1aa

−1y2a ∼ y1y2. On the other hand, if the first signature was chosen to
be σ′

1 = (xa)−1y1(xa), then σ′
1σ2 = a−1x−1y1xaa

−1y2a = a−1x−1y1xy2a will
generally not be conjugated to y1y2.

3.2 (Non-)Deterministic RSA-PSS

RSA-PSS [con03] is a signature scheme with appendix comprised of the basic
RSA signature algorithm and a(n in general) randomized padding, the PSS-
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encoding. For our purposes, it is important to note that the PSS-encoding can
also be used in a deterministic variant; below, we will see that the deterministic
variant of RSA-PSS in conjunction with a key verification procedure is subliminal
free in the sense of Definition 4.

We commence by recalling the main ingredients of the PSS-encoding: Next
to a cryptographic hash function H(·), a mask generation function MGF(·, ·) is
to be specified. To encode a message M , the signer chooses a random salt of a
specified length for the randomization—there is no clear recommendation for the
salt length in the PSS-specification, but the PSS-description mentions a typical
length of the salt would be hLen, the length of the output of the hash function
H(·), or 0. Since the length of the PSS-encoding is the length of the modulus
n and thus the security parameter k, it is not implausible to choose the length
of the salt to grow linearly in k. However, this enables the implementation of a
broadband subliminal channel. To see this, recall the format of the PSS-encoding
EM of a message M :

EM = [(0 . . . 0‖1‖salt)⊕MGF(H0, emLen − hLen − 1)]‖H0‖bc,

with
H0 = H(0 . . . 0︸ ︷︷ ︸

8 octets

||H(M)‖salt)

a hash value of length hLen, emLen the length of the string EM in octets, and bc
an octet with the hexadecimal value bc. The signature σ is produced by applying
the plain RSA signature algorithm to EM .

For signature verification, the verifier recovers the PSS-encoded message EM
by applying the basic RSA algorithm. Then he has to check the correctness of
the PSS-encoding. Reading off H0 from the encoded message, he can compute
MGF(H0, emLen − hLen − 1). With this, he can extract the random salt from
the encoded message EM and verify the equality H(0 . . . 0‖H(M)‖salt) = H0.

A broadband channel in RSA-PSS with randomized padding. As already pointed
out in [BW02], in its randomized form RSA-PSS allows for a subliminal channel
where the subliminal signer and verifier do not need to share parts of the secret
signing key. Thus, in contrast to a well-known subliminal channel in the DSA,
for RSA-PSS the subliminal receiver gains no advantage in forging a signature.

Proposition 1. If the salt length grows linearly in the security parameter, then
the RSA-PSS signature scheme provides a broadband subliminal channel.

Proof. Already the original verification procedure recovers the complete salt
value. Consequently, for implementing a subliminal channel it is sufficient to use
an encryption procedure like the one described in Section 2.2, where the obtained
ciphertexts are indistinguishable from random bitstrings. For implementing a
broadband subliminal channel, we may choose both |Ξ| and the length of the
subliminal messages to grow linearly in k. 
�
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A different method for subliminal communication in RSA-PSS. By default, the
public key (n, e) in an RSA-based scheme satisfies the condition gcd(φ(n), e) = 1.
However, given only the pair (n, e) we are not aware of an efficient procedure
which allows a warden to verify that φ(n) and e are indeed coprime. Thus, assume
that a subliminal key generation procedure chooses a public verification key (n, e)
such that gcd(φ(n), e) = 3 holds, i. e., for elements in Z×

n there will be three or
no e-th roots available. In this case, there exists no secret exponent d with de ≡ 1
(mod φ(n)), but computing the e-th roots is nevertheless feasible, provided they
exist. Unfortunately, already among the elements in Z×

n only 1/3 has e-th roots,
and thus it is a priori not possible to sign arbitrary messages. Nevertheless, with
a randomized padding there is a high probability to find a padding so that the
encoded message corresponds to an element in Z×

n having e-th roots. Then the
signer can compute these roots and embed one of three subliminal messages
by choosing the least, medium, or greatest root as signature. For being able to
receive such subliminal messages, the subliminal receiver is also equipped with
an algorithm for computing e-th roots modulo n, i. e., the subliminal receiver
may well forge signatures.

Subliminal-freeness of deterministic RSA-PSS with key verification. Omitting
the random salt, the RSA-PSS signature scheme can be used as a deterministic
signature scheme. The PSS-encoding operation is then acting as a full domain
hash function. Although in this case the security proof given in [BR96] is not as
“tight” as with the randomized padding, the scheme remains provably secure.
To avoid a subliminal communication as described in the previous paragraph
we can make use of safe primes, i. e., we choose n = pq where the primes p
and q are such that (p − 1)/2 and (q − 1)/2 are prime. It is known that a zero
knowledge proof can be used to show that n is indeed the product of two safe
primes [CM99]. Additionally, we require e to be an odd prime and check that
(2e + 1) � n holds. This ensures that e is coprime to φ(n), and therewith that
for arbitrary m ∈ Z/nZ, the equation σe ≡ m (mod n) has a unique solution
σ ∈ Z/nZ. Thus, in summary before accepting a public key (n, e) we check that

– n is a product of two safe primes (using zero knowledge) and
– e is prime with (2e+1) � n (thereby ensuring the coprimality of e and φ(n)).

Proposition 2. When used with the above key verification procedure, the deter-
ministic RSA-PSS signature scheme is subliminal free.

Proof. To prove the proposition, it is sufficient to show that for any M and
any verified RSA key, there is only one signature σ satisying the verification
condition. By applying the basic RSA encryption operation to the signature σ,
the verifier obtains a PSS-encoding EM ′ = σe (mod n) of the message M and
due to the key verification he knows, that there is only one σ with σe ≡ EM ′

(mod n).2

2 The verification procedure also checks that σ lies in the range {0, . . . , n− 1}, i. e., σ
is not only unique modulo n.
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It has to be shown that the encoding EM ′ is the unique encoding EM of the
message M . For this, let emLen be the length of EM ′ which is checked to be
�(bitlength of n)/8� and hLen be the output length of the used hash function.
In the PSS-decoding, first the length of EM ′ is checked. Then the last octet has
to be the hexadecimal value bc. Let maskedDB denote the leftmost enLen −
hLen − 1 octets, and H0 be the next hLen octets. The verification procedure
finally outputs valid, if and only if H0 = H(M ′), where (due to the absence of
salt) M ′ can be derived from M alone. Consequently, there is just one unique
choice for H0. It is checked that maskedDB ⊕MGF(H0, emLen − hLen − 1) is
the string 0 . . . 0‖1. So maskedDB = (0 . . . 0‖1)⊕MGF(H0, emLen − hLen − 1),
and thus EM ′ = EM is uniquely determined. 
�

3.3 A Deterministic Polynomial-Based Proposal: SFLASHv3

SFLASHv2 is a an asymmetric signature algorithm which is part of the NESSIE
Portfolio of recommended cryptographic primitives [con03]. By now the authors
of the scheme “no longer recommend its use” and have put forward SFLASHv3

[CGP03]. Recently, Ding and Schmidt proposed a cryptanalysis of SFLASHv3

[DS04], but the (informal) subliminal channel described in the sequel nevertheless
seems worth noting.

For details on SFLASHv3 we refer to [CGP03]; here a rough summary is
sufficient: SFLASHv3 makes use of two finite fields K & F128, L & F12867 along
with bijections π : {0, 1}7 −→ K, ϕ : K67 −→ L. The non-public part of
the key consists of an 80-bit string Δ and two affine bijections s, t : K67 −→
K67. The corresponding public key is the function G(X) = [(t ◦ ϕ−1 ◦ F ◦ ϕ ◦
s)(X)]0→7·55−1, where F : L −→ L, α $→ α12833+1, [·]0→7·55−1 indicates that
only the first 56 (out of 67) rows are published, and (f ◦ g)(x) := f(g(x)).
By construction, (Y0, . . . , Y55) = G(X0, . . . , X66) can be expressed in the form
(P0(X0, . . . , X66), . . . , P55(X0, . . . , X66)) where each Pi is a polynomial of total
degree ≤ 2 with coefficients in K. Also the last (unpublished) 11 rows of (t ◦
ϕ−1◦F ◦ϕ◦s)(X0, . . . , X66) can be expressed through polynomials of degree ≤ 2,
and we denote them by P56, . . . , P66. Our subliminal key generation procedure
reveals these polynomials to the intended subliminal receiver.

Computing and verifying signatures. Essentially, to sign a bitstring M the fol-
lowing steps are performed:

1. Without involving any non-public data, a 392-bit string V is derived from
M by means of SHA-1.

2. Via Y := (π([V ]0→6), π([V ]7→13), . . . , π([V ]385→391)) the bitstring V is trans-
lated into a vector Y ∈ K56, where the notation [·]a→b is to be understood
as selecting the bits no. a− b.

3. Applying SHA-1 to the concatenation of V and Δ followed by reading off
the first 77 bits of the hash value yields a bitstring W = SHA-1(V ||Δ). Via
R := (π([V ]0→6), π([V ]7→13), . . . , π([V ]70→76)) this bitstring is translated
into an element R ∈ K11.
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4. Now the value X := (s−1◦ϕ−1 ·F−1◦ϕ◦t−1)(Y ||R) is computed. Translating
the 67 entries of X into a bitstring by means of π−1 yields the final (469-bit)
signature S of M .

To verify a signature S′ (of the correct length) of a message M , one uses π
to translate S′ into an element X ′ ∈ K67. Evaluating the 56 public verification
polynomials at X ′ yields an element Y ′ ∈ K56. Now the signature S is accepted
if and only if Y ′ coincides with the value Y derived from the message M in the
same manner as in the first two steps of the signature procedure.

Hiding a message. In particular, the verification procedure of SFLASHv3 does
not check whether the value R (computed in Step 3 of the signing process) has
been constructed as specified: If we replace the third step of the signing procedure
by “3. Choose R ∈ K11 as encryption of a subliminal message.” then we again
obtain a valid signature of M . Moreover, by means of P56, . . . , P66 the (77-bit)
value R—and therwith the encrypted subliminal message—can immediately be
recovered from the resulting signature S: Instead of evaluating only P0, . . . , P55

at the corresponding vector X ∈ K67, now also P56, . . . , P66 are evaluated at X.

3.4 A Deterministic Factoring-Based Scheme: ESIGN-D

ESIGN [con03] is an efficient signature scheme based on the difficulty of factoring
and computing approximate e-th roots. The public key is a pair (n, e) where
n = p2q for k-bit primes p, q such that n is of length 3k and e ≥ 8. Note
that e does not need to be coprime to φ(n). The secret key is the pair (p, pq).
Furthermore, a hash function H(·) with output length k − 1 is given.

Computing and verifying signatures. To sign a message, the signer first chooses
a random number r < pq and computes α = H(M) − re (mod n). Then he
computes w0 = � α

pq � and w1 = w0 · pq − α. If now w1 ≥ 22k−1 he begins again
with a new random number r. The signature is σ ≡ r + t · pq (mod n) where
t ≡ w0/(ere−1) (mod p). The verification is done by checking if σ is an e-th root
of (H(M)‖·2k−1) (mod n), i. e., by checking if the k most significant bits of σe

(mod n) are 0‖H(M).
The first security proof for the scheme was incorrect and to fix the proof

[Gra02] proposes a deterministic variant of ESIGN, called ESIGN-D. ESIGN-D
is identical to ESIGN up to the random choices in the signing algorithm which
are replaced by the output of a mask generation function MGF(., .) (cf. the
construction of M’Räıhi et al. [MNPV99]). Therefore the secret key contains
an additional k-bit value Δ that does not affect the public key. The random
inputs to the signing algorithm are now replaced by MGF(H(M)‖Δ‖i, |pq|) for
i = 1, 2, . . .

A subliminal channel in ESIGN. In [KT99] a subliminal channel in ESIGN is
proposed. To sign a message M and hide a message m with |m| < |pq|−k−1 the
signer computes an encryption of m into a random looking bitstring d of length
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|pq|−1. If H(M)·2k +d has no e-th roots then a different encoding of m has to be
chosen. Otherwise the signature σ of M is an e-th root of H(M) ·2k +d that can
be computed efficiently, although the original signing algorithm is more efficient.
The signature can be verified since σe (mod n) ≡ H(M)·2k+d = 0‖H(M)‖d, i. e.,
the k most significant bits of σe (mod n) are 0‖H(M). To extract the subliminal
message the receiver decrypts d.

This subliminal channel can also be used in ESIGN-D, because the warden
cannot distinguish the output of the mask generation function, modelled as ran-
dom oracle, and true random.

4 Conclusion

The above discussion and examples illustrate that several proposed deterministic
signature schemes allow for (practical) subliminal channels. Clearly, the kind of
subliminal channels and subliminal freeness discussed in this contribution does
not take all possible forms of subliminal communication into account (e. g., we
did not look at the possibility of encoding information in the public verifica-
tion key), but we think our discussion covers a significant class of subliminal
communication that is of practical interest.

We think it is interesting to note that an, up to the addition of a key verifi-
cation, deterministic version of RSA-PSS is both provably secure in the sense of
existential unforgeability and also subliminal free. From our point of view, the
phenomenon of subliminal communication through deterministic cryptographic
schemes certainly deserves further exploration.
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Abstract. Entrusted undeniable signatures are like undeniable signa-
tures, except that the disavowal protocol can only be run by a court in
order to resolve a formal dispute. This paper introduces threshold en-
trusted undeniable signature scheme without trusted center. It is shown
how the power to run a disavowal protocol of entrusted undeniable sig-
nature can be distributed to n agents such that any t of these can verify
a signature. This facility is useful to solve “lie detector” problem of un-
deniable signatures.

Keywords: Undeniable signature, Entrusted undeniable signature,
Threshold signature.

1 Introduction

Digital signatures are one of the most important techniques of modern cryp-
tography, and have many applications in information security systems. Digital
signatures are easily verified as authentic by anyone using the corresponding
public key. This “self-authenticating” property is quite suitable for some uses,
such as broadcast of announcements and public key certificate. But it is unsuit-
able for many other applications. Self-authentication makes signatures those are
somewhat commercially or personally sensitive, for instance, much more valu-
able to the industrial spy or extortionist. Thus, self-authentication provides too
much authentication for many applications.

To solve this problem, D. Chaum proposed a new type of digital signature,
undeniable signature in Crypto’89 conference and proposed a zero-knowledge
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undeniable signature in Eurocrypt’90 conference. [1, 2] Briefly, an undeniable
signature is a signature which cannot be verified without the help of the signer.
They are therefore less personal than ordinary signatures in the sense that a
signature cannot be related to the signer without his/her help. However, if a
signature is only verifiable with the aid of a signer, a dishonest signer may refuse
to authenticate a genuine document. Undeniable signatures solve this problem
by adding a new component called the disavowal protocol in addition to the
normal components of signature and verification.

Also, Boyar et al. introduced convertible undeniable signatures. [3] In this
schemes, release of a single bit string by the signer turns all of his signatures,
which were originally undeniable signatures, into ordinary digital signatures.

In Eurocrypt’94, new compromised schemes between normal digital signa-
tures and undeniable signatures were proposed by Chaum, called “designated
confirmer signature schemes”. [4] It was claimed that not only signer but also
the designated third party has the ability of proving the validity of a given sig-
nature. In undeniable signatures, the signer might refuse to cooperate in either
confirming or denying, he/she might claim the loss of keys for confirming or
denying, or he/she might just be unavailable. Designated confirmer signatures
can give the signer the protection of an undeniable signature while not letting
his/her abuse that protection.

In [5, 6, 7], Kim et al. proposed a new signature scheme, called “nominative
signature”, that is a dual signature scheme of undeniable signature. Unlike an
undeniable signature, the validity or invalidity of a nominative signature can be
ascertained by conducting a protocol with the verifier. If a confirmation protocol
is used, the cooperating verifier gives exponentially high certainty that the signa-
ture issued to him(her) and is valid. For an application of nominative signature,
we consider the following case. Bob submits to a company his academic record
(or any testimonial) which the president of his university signs. In this case,
signer(called “nominator”) is the president of university, verifier(called “nomi-
nee”) is Bob and the third party is the company. That is, a nominative signature
is very valuable for the case in which the content of signature is concerned with
the verifier’s privacy.

In [8, 9], Park et al. proposed another related notion, called “entrusted unde-
niable signature”. Let’s consider the following “lie detector” problem: Imagine
that Alice works for a Toxins, Inc., and sends incriminating documents to a news-
paper using an undeniable signature protocol. Alice can verify her signature to
a newspaper reporter, but not to anyone else. However, CEO Bob suspects that
Alice is the source of the documents. He demands that Alice run the disavowal
protocol to clear her name, and Alice refuses. Bob maintains that the only rea-
son Alice has to refuse is that she is guilty, and fires her. Entrusted undeniable
signatures are suited to these sorts of tasks. [10] Entrusted undeniable signatures
are like undeniable signatures, except that the disavowal protocol can only be
run by a court, Carol, in order to resolve a formal dispute.

However, in a group-oriented society it is often desired that the power to run
disavowal protocol is shared. Imagine that Bob tries to bribe Carol to reveal
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the signer’s name! In this paper, we propose a threshold entrusted undeniable
signature, in which the disavowal protocol can only be run by t jurors or more
rather than one person. Thus, in our scheme, even if Bob corrupts less than t
jurors, he can not run the disavowal protocol. The organization of the paper is
as follows: In the next section, we will briefly review Park’s entrusted undeniable
signature scheme. In section 3, we propose a (t, n)-threshold entrusted undeniable
signature scheme based on the discrete logarithm problem. In section 4, the
security of our proposed scheme is analyzed. Finally, we summarize the benefits
of our scheme in the last section of the paper.

2 Park’s Entrusted Undeniable Signature

The key point of Park’s entrusted undeniable signature is that a signer(and a
verifier) uses a randomized private key r · x (and a corresponding public key
yr = gr·x mod p) instead of a real private key x (and a corresponding public key
y = gx mod p). In addition, to solve a dispute later, the signer commits to the
value of random number r.

Assume that a large prime p, and a primitive element g, are made public,
and used by a group of signers. Alice has a private key, xA, and a public key,
yA = gxA mod p. Also, a court Carol has a RSA private key dC , and a RSA
public key (eC , nC).

To sign a message m, Alice computes (sig1 = yr
A mod p, sig2 = mr·xA mod

p) and a commitment c = reC mod nC with a random number r, and sends
(sig1, sig2, c) to a verifier Bob.

To verify the signature (sig1, sig2, c), Alice first shows that the discrete
logarithm of sig1 = yr

A mod p to the base yA is equal to the e-th root of
c = reC mod nC in a zero-knowledge manner, and then runs Chaum’s confir-
mation protocol with the randomized public key yr

A = gr·xA mod p.
If the (sig1, sig2, c) is forged signature, Alice can prove a court Carol that

the given signature is not valid. To do this, Carol first recovers r from c with her
private key dC , and then runs Chaum’s disavowal protocol on sigr−1

2 mod p. Here
we should note that the disavowal protocol can only be run by Carol knowing
the private key dC .

3 The Proposed Scheme

Being inspired of Stadler’s verifiable encryptions [11], in this section, we describe
a simple (t, n)-threshold entrusted undeniable signature scheme based on the
discrete logarithm problem. There are four types of participants in our scheme:
a signer Alice, a verifier Bob, a court(or combiner) Carol, and the n jurors.

Let p be a large prime so that q = (p − 1)/2 is also prime, and let h ∈ Z∗
p

be an element of order q. Let further G be a group of order p, and let g be a
generator of G so that computing discrete logarithms to the base g is difficult.
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Our scheme will make use of double exponentiation. By double exponentia-
tion with base g and h we mean the function

Zq → G : x $→ g(hx).

By the double discrete logarithm of v ∈ G to the base g and h we mean the
unique x ∈ Zq with

v = g(hx)

if such an x exists.
From now on, unless stated otherwise all the calculations to be performed in

this paper will be done in the group G.

3.1 Setup

Let (xA ∈ Zq, vA = gyA), where yA = hxA mod p, be Alice’s private/public key
pair and (xJ ∈ Zq, yJ = hxJ mod p) be a private/public key pair for Jurors
(For convenience, we assume that Jurors = {Ji|1 ≤ i ≤ n}). We now show a
protocol for generating (xJ ∈ Zq, yJ = hxJ mod p) without the dealer.

[Protocol for generating Jurors’ private/public key without delaer]

Suppose that a dealer with a random secret xJ ∈ Zq chooses a random
polynomial such that f(x) = xJ + a1x + · · · + at−1x

t−1, sends si = f(i) to Ji

secretly for i = 1, · · · , n, and broadcasts yJ = hxJ mod p and ha1 , · · · , hat−1 mod
p. This procedure is simulated by the following protocol without the dealer.
[12, 13]

1. Each juror Ji picks xJ,i ∈R Zq at random and broadcasts yJ,i = hxJ,i mod p
to all other jurors.

2. To distribute xJ,i, each Ji randomly selects a polynomial fi of degree t − 1
in Zq such that fi(0) = xJ,i, i.e.,

fi(x) = xJ,i + ai,1x + ai,2x
2 · · ·+ ai,t−1x

t−1

with ai,1, · · · , ai,t−1 ∈R Zq, and sends fi(j) mod q to Jj in a secure manner
(∀j �= i). Ji also broadcasts the value

hai,1 , · · · , hai,t−1 mod p.

3. From distributed fj(i) (∀j �= i), Ji checks whether, for each j (j �= i),

hfj(i) ?= yJ,j · (haj,1)i1 · · · (haj,t−1)it−1
mod p.

4. Let H
Δ= {Jj |Jj is not detected to be cheating at step 3}. Every Ji com-

putes the share
si = f(i) =

∑
j∈H

fj(i)

secretly, and computes

yJ =
∏
j∈H

yJ,j , ha1 =
∏
j∈H

haj,1 , · · · , hat−1 =
∏
j∈H

haj,t−1
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3.2 Signature Generation

To sign a message m of the group G, Alice computes {(sig1, sig2), (c1, c2)} =
{(vr

A,m
yA·r), (hs mod p, r−1 · ys

J mod p)} with two random numbers r, s ∈ Zq.

3.3 Confirmation Protocol

Our confirmation protocol consists of two subprotocols. The first is a protocol
for verifying that a commitment pair (c1, c2) encrypts the discrete logarithm of
sig1 = vr

A to the base vA, and the second is a protocol for convincing the validity
of a signature (sig1, sig2).

[Subprotocol 1]

The prover Alice now proves to the verifier Bob that the discrete logarithm
of c1 to the base h is identical to the double discrete logarithm of sigc2

1 to the
bases vA and yJ . It is based on the fact that if (c1, c2) is equal to (hs mod p, r−1 ·
ys

J mod p) for any s ∈ Zq then

sigc2
1 = vr·c2

A = v
ys

J

A .

Here’s the protocol (repeat K times):

1. Alice chooses a random number w ∈ Zq, and computes th = hw mod p and
tg = v

yw
J

A . Alice sends Bob th and tg.
2. Bob chooses a random b ∈ {0, 1}, and sends it to Alice.
3. Alice computes z = w − b · s mod q, and sends z to Bob.

4. Bob verifies that th
?= hz · cb

1 mod p, and tg
?= v

yz
J

A (if b = 0) or tg
?= sig

c2·yz
J

1

(if b = 1).

[Subprotocol 2]

In this protocol Bob is convinced that the signature (sig1, sig2) is valid, but
cannot convince a third party by using a transcript of this protocol.

1. Bob chooses two random numbers, a ∈ Zp and b ∈ Zp, and sends Alice
c = ma · gb.

2. Alice chooses a random number, t ∈ Zp, and computes and sends to Bob:
z1 = c · gt and z2 = (c · gt)yA·r

3. Bob sends Alice a and b, so that Alice can confirm that Bob did not cheat
in step (1).

4. Alice sends Bob t, so that Bob can use (sig1, sig2) and reconstruct z1 and
z2. If z1 = c · gt and z2 = sig

(b+t)
1 · siga

2 then the signature is valid.
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3.4 Disavowal Protocol

Unlike Chaum’s undeniable signatures, in our scheme, only t or more jurors out of
the Jurors group of n members, can run the disavowal protocol by decrypting
the ciphertext (c1, c2) without revealing the private decryption key xJ . Our
disavowal protocol consists of two subprotocols. The first is a protocol for the
(t, n)-threshold ElGamal decryption of (c1, c2), and the second is a protocol for
convincing the court Carol that a given signature is not valid, if it is not.

[Subprotocol 1]

Let (c1, c2) be a ElGamal ciphertext, and H ⊆ Jurors agree to decrypt the
ciphertext. For convenience, we assume that H = {Ji|1 ≤ i ≤ t}.

1. Bob sends a court Carol {(sig1, sig2), (c1, c2)}.
2. Carol then chooses a random number b ∈ Zq, computes cb

1 mod p, and broad-
casts it to H with a proof that she knows the discrete logarithm of cb

1 to the
base c1. (This proof allows Jurors to know what signature is really being
verified.)

3. After verifying that cb
1 has a correct form, every Ji ∈ H computes the shadow

ki = si ·
∏t

j=1,j �=i
−j
i−j mod q, raise cb

1 mod p by −ki, and sends this partial
result to Carol.

4. To get (cb
1)

(−xJ ), Carol multiplies each of the (cb
1)

(−ki) mod p together:

t∏
i=1

(cb
1)

(−ki)

= (cb
1)

(−
∑t

i=1
ki)

= (cb
1)

(−
∑t

i=1
si

∏t

j=1,j �=i

−j
i−j )

= (cb
1)

(−
∑t

i=1
f(i)

∏t

j=1,j �=i

0−j
i−j )

= (cb
1)

(−f(0))

= (cb
1)

(−xJ ) mod p (by the Lagrange interpolation formula).

Carol then unblinds (cb
1)

(−xJ ) with b−1 mod q, and multiplies this result with
the second entry of the ciphertext c2 to get r−1.

[Subprotocol 2]

An alleged signer Alice may wish to convince Carol that a particular
(sig1, sig2) is not a valid signature corresponding to her public key vA = gyA

and message m. To do this, the alleged signer Alice cooperates in the following
protocol.

1. Initially Carol chooses an integer t ∈ {0, · · · , k}, where k is a mutually agreed
constant and order k operations must be performed by the alleged signer
Alice (In practice k might be 1023). and chooses a random number a ∈ Zp.
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2. Carol computes (z1, z2, z3, z4) = (m, sigr−1

2 , mt · ga, sigr−1·t
2 · va

A), and sends
it to Alice.

3. Now Alice determines the value of t by trial and error:

(
zyA

1

z2
)t =

zyA

3

z4
mod p.

If no t is found, Alice uses a random value. Next Alice sends a blob, blob(t, u),
committing to the value of t, but hiding t until the randomly selected u is
revealed.

4. Upon receiving the blob, Carol can send a.
5. Alice checks that a can be used to reconstruct the first message, and then

finally provides u as the final message.

4 Security Analysis

To show that our proposed scheme solves the “lie detector” problem, we should
consider two points. First, we have to check whether only the jurors can run
the disavowal protocol. That is, we have to show that computing r from vr

A

and (hs mod p, r−1 · ys
J mod p) without xJ is hard. Second, we have to make

sure that no “useful” information about r is given away in the subprotocol 1 of
confirmation protocol. In below, we will prove two propositions. The main proof
idea comes from Stadler’s literature. [11] For convenience, we will omit the “mod
p” and “mod q” markers.

Proposition 1. Under the assumption that computing discrete logarithms in
G is infeasible, and that breaking the ElGamal cryptosystem is hard, computing
r from vr

A and (hs mod p, r−1 · ys
J mod p) is at least as hard as solving the

Decision-Diffie-Hellman problem to the base h in Z∗
p .

Proof. Assume that there is an efficient algorithm P that computes r on input
(vr, hs, hx, r−1 ·hs·x), where v = gy and y ∈ Z∗

p , with a non-negligible probability
ε over all r ∈ Z∗

p , and s, x ∈ Zq. We now show hot to use P to decide whether a
given triple (A,B,C) of elements in 〈h〉, is a Diffie-Hellman triple.

First, we randomly choose y, r ∈ Z∗
p , ρ ∈ Z∗

q , σ, τ ∈ Zq and run P on input
((gy)r, A, B, r−1C), where A = Aρhσ, B = Bhτ , and C = CρAρτBσhστ . Since
the triple (A,B,C) is a Diffie-Hellman triple if (A,B,C) is a Diffie-Hellman
triple, and a random non-Diffie-Hellman triple, otherwise, the probability that
P returns r depends on whether (A,B,C) is a Diffie-Hellman triple or not: (1)
If (A,B,C) is a Diffie-Hellman triple then P returns r with probability ε. (2) If
(A,B,C) is not a Diffie-Hellman triple then the probability that P returns r is
negligible.

Let us assume on the contrary that P returns r with a non-negligible prob-
ability γ. Then the discrete logarithm of any V ∈ G can be computed by re-
peatedly running P on input (V (gy)χ, hψ, hω, t) with y, t ∈R Z∗

p , χ ∈R Zp, and
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ψ, ω ∈R Zq until P returns χ + log(gy) V mod p. Then the discrete logarithm
of V to the base g can be computed by calculating y · (χ + log(gy) V ) mod p.
Because the probability that t/(χ + log(gy) V )−1 mod p ∈ 〈h〉 is approximately
1/2, the expected number of repetitions is 2/γ.

After sufficiently many repetitions, a decision on whether (A,B,C) is a Diffie-
Hellman triple can be made with arbitrarily small probability of error.

Proposition 2. The prover in the subprotocol 1 of confirmation protocol can
successfully cheat with a probability of at most 2−K . The protocol is perfectly
zero-knowledge.

Proof. See [11] for the proof of Proposition 2.

5 Conclusions

In this paper, we show how to construct threshold entrusted undeniable signa-
ture scheme. Our signature scheme is like undeniable signature, except that the
disavowal protocol can only be run by a court with an agreement with a group
of n jurors. Thus our scheme does not have the disadvantage of Park’s original
scheme.
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Abstract. We make fine-grained distinctions on the security models for
provably secure ring signature schemes. Currently there are two com-
monly used security models which are specified by Rivest et al. [15] and
Abe et al. [1]. They offer different levels of security. In this paper, we
introduce a new but compatible model whose security level can be con-
sidered to be lying in between these two commonly used models. It is
important to make fine-grained distinctions on the security models be-
cause some schemes may be secure in some of the models but not in the
others. In particular, we show that the bilinear map based ring signature
scheme of Boneh et al. [4], which have been proven secure in the weakest
model (the one specified by Rivest et al. [15]), is actually insecure in
stronger models (the new model specified by us in this paper and the
one specified by Abe et al. [1]). We also propose a secure modification of
their scheme for each of the two stronger models. In addition, we propose
a threshold ring signature scheme using bilinear maps and show its secu-
rity against adaptive adversaries in the strongest model defined in this
paper. Throughout the paper, we carry out all of the security analyses
under the random oracle assumption.

Keywords: Ring Signature, Security Models, Anonymity, Bilinear Maps.

1 Introduction

A ring signature scheme [15, 6, 1, 4, 17, 10] allows members of a group to sign mes-
sages on behalf of the group without revealing their identities (signer anonymity).
It is also not possible to decide whether two signatures have been issued by the
same group member. Different from a group signature scheme [8, 7, 2], the for-
mation of a group is spontaneous and there is no group manager to revoke the
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identity of the signer. That is, under the assumption that each user is already
associated with a public key of some standard signature scheme, a user can form
a group by simply collecting the public keys of all the group members includ-
ing his own. These diversion group members can be totally unaware of being
conscripted into the group.

Ring signatures could be used for whistle blowing [15], anonymous member-
ship authentication for ad hoc groups [6] and many other applications which
do not want complicated group formation stage but require signer anonymity.
For example, in the whistle blowing scenario, a whistleblower gives out a secret
as well as a ring signature of the secret to the public. From the signature, the
public can be sure that the secret is indeed given out by a group member while
cannot figure out who the whistleblower is. At the same time, the whistleblower
does not need any collaboration of other users who have been conscripted by
him into the group of members associated with the ring signature. Hence the
anonymity of the whistleblower is ensured and the public is also certain that the
secret is indeed leaked by one of the group members associated with the ring
signature.

In 2002, Bresson et al. [6] extended the notion of ring signature schemes to a
threshold setting and proposed the first threshold ring signature scheme. Later
on, some other threshold ring signature schemes [16, 13] have been proposed. A t-
out-of-n threshold ring signature scheme is defined as a ring signature scheme of
which at least t corresponding private keys of n public keys are needed to produce
a signature. The setup-free and signer anonymity properties of a conventional
ring signature scheme are preserved in the threshold setting.

1.1 Contributions

We make fine-grained distinctions on the security models for provably secure
ring signature schemes. Currently there are two commonly used security models
which are specified by Rivest et al. [15] and Abe et al. [1]. They offer different
levels of security. In this paper, we introduce a new but compatible model. Its
security level can be considered to be lying in between these two commonly
used models in such a way that it captures an attack called group-changing
attack while it does not consider another attack called multiple-known-signature
existential forgery.

It is important to make fine-grained distinctions on the security models be-
cause some schemes may be secure in some of the models but not in the others.
In particular, we show that the bilinear map based ring signature scheme of
Boneh et al. [4], which have been proven secure in the weakest model (the one
specified by Rivest et al. [15]), is actually insecure in stronger models (the new
model specified by us in this paper and the one specified by Abe et al. [1]). We
show that their scheme is susceptible to group-changing attack and multiple-
known-signature existential forgery. We also propose a secure modification of
their scheme for each of the two stronger models.

In addition, we propose a threshold ring signature scheme using bilinear maps
and show its security against adaptive adversaries in the strongest model defined
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in this paper. Our scheme is based on a partial proofs of knowledge protocol using
secret sharing due to Cramer, et al. [9].

Throughout the paper, we carry out all of the security analyses under the
random oracle assumption [3].

Paper Organization: In Sec. 2, we define a ring signature scheme, review the
two commonly used security models due to Rivest et al. [15] and Abe et al. [1],
and specify a new model whose security level lies in between the two commonly
used models. In Sec. 3, we review the bilinear map based ring signature scheme
of Boneh et al. [4] and show that it is insecure in the two stronger models (our
new model and the one due to Abe et al.). We describe how to modify their
scheme to make it secure in the two stronger models. In Sec. 4, we propose a
bilinear map based t-out-of-n threshold ring signature scheme and show that
it is secure against adaptive adversaries in the strongest model defined in this
paper. We conclude the paper in Sec. 5.

2 Security Models

We describe the subtleties of different security models for ring signature schemes.
Below is the definition of a ring signature scheme.

A ring signature scheme is a triple of algorithms (G, S, V).

– (x, P ) ← G(1k) is a probabilistic polynomial-time algorithm which takes
security parameter k and outputs private key x and corresponding public
key P .

– σ ← S(1k, x, L,m) is a probabilistic polynomial-time algorithm which takes
as inputs security parameter k, private key x, a set L of n public keys which
includes the one corresponding to x and message m, produces a signature σ.

– 1/0 ← V(1k, L,m, σ) is a polynomial-time algorithm which takes as inputs
security parameter k, a set L of n public keys, a message m and a signature
σ, returns 1 or 0 for accept or reject, respectively. We require that for any
message m, any (x, P ) generated by G(1k) and any L that includes P ,

V(1k, L,m,S(1k, x, L,m)) = 1.

For simplicity, we omit the denotation of the security parameter as one of the
inputs of these algorithms in the rest of the paper.

A secure ring signature scheme should be able to thwart signature forgery
under certain reasonable assumptions. Under the model of adaptive chosen mes-
sage attack, existential unforgeability [11] means that given the public keys of all
group members but not any of the corresponding private keys, an adversary, who
can adaptively obtain valid signatures for any messages that he wishes, cannot
forge a signature for any message m.

In the security model of Rivest et al. [15], the adversary who targets to
forge a signature of message m subjects to the condition that m has never been
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presented to a signing oracle, denoted by SO1. Hence given a pair of message and
ring signature denoted by (m,σ) with respect to a public-key set L, if another
pair (m̃, σ̃) with respect to L is forged by the adversary (that is, 1← V(L, m̃, σ̃))
such that m �= m̃, then it is considered to be a successful forgery in this model.
However, in a similar setup, given (L,m, σ), if the adversary obtains (L′,m, σ′)
such that σ′ �= σ, then it is not considered to be a successful forgery. More
importantly, it is not considered to be a forgery even if L and L′ are different. In
other words, a ring signature scheme could still be claimed to be secure under the
model of Rivest et al. [15] even if anyone can alter the public-key sets associated
with the ring signatures generated by the scheme. If an adversary can change the
public-key set associated with a ring signature, we say that the corresponding
ring signature scheme is susceptible to group-changing attack. In the following,
we capture the security model of Rivest, et al. in Game 0.

Game 0: Two entities: Simulator M and Adversary A. Simulator M prepares a
‘large’ set of public keys L = {P1, · · · , PN} using G where N is some polynomial
of security parameter k. M invokes A by providing it L and other appropriate
inputs such as pseudorandom coin flips. It then simulates the view of A by an-
swering all hash queries and signing queries. Suppose in one successful simulation
run, A outputs (L,m, σ) for some message m where L ⊆ L. Restriction is that
m should not be present in SO’s transcript.

The security of ring signature schemes has two aspects: unforgeability and
anonymity.

For unforgeability, the adversaryA returns a set L of n public keys, a message
m ∈ {0, 1}∗ and a signature σ. A wins the game if: (1) V(L,m, σ) = 1, (2)
L ⊆ L, (3) the public-key set L′ of each signing query is a subset of L, and
(4) the restriction of Game 0 above applies. We use Advunf

A (k) to denote the
probability of A winning the game where k is the security parameter.

Definition 1 (Unforgeability). A ring signature scheme is unforgeable if for
any PPT (probabilistic polynomial-time) adversary A, Advunf

A (·) is negligible.

A function ε is negligible if for all polynomials π, ε(k) < 1/π(k) holds for all
sufficiently large k.

For anonymity, Game 0 needs to be modified as follows. In the game, there
are three stages. Stage 1: A returns a set L of n public keys and a message
m ∈ {0, 1}∗. Stage 2: M randomly picks a key Pπ ∈R L, and generates a
signature σ ← S(xπ, L,m) where xπ is the corresponding private key of Pπ. M
gives σ to A. Stage 3: A returns a public key ỹ such that ỹ ∈ L. A wins the game
if: (1) L ⊆ L, (2) the public-key set L′ of each signing query is a subset of L, (3)
ỹ = Pπ, and (4) the restriction of Game 0 above applies. We use Advanon

A (k) to
denote the probability of A winning the game minus 1/n (that is the winning
probability of making a random guess) where k is the security parameter.

1 The signing oracle receives a message m̌ and a set Ľ of public keys in which each key
is appropriately generated by G and returns a signature σ̌ such that 1 ← V(Ľ, m̌, σ̌).



208 J.K. Liu and D.S. Wong

Definition 2 (Anonymity). A ring signature scheme is anonymous if for any
PPT (probabilistic polynomial-time) adversary A, Advanon

A (·) is negligible.

From the restriction of Game 0 above, we can see that group-changing attack,
in particular against unforgeability, is not allowed. In Sec. 3, we will see that
a ring signature scheme based on bilinear maps due to Boneh et al. [4] allows
anyone to add an arbitrary number of public keys to the public-key set of any
given ring signature. Hence the scheme is susceptible to group-changing attack
although it has been proven secure in Game 0 under the random oracle model.
We will explain why this is undesirable in some cases and group-changing attack
should be considered and captured by the security model in those cases. By
considering the group-changing attack, we introduce the following model.

Game 1: Two entities: Simulator M and Adversary A. M prepares a large
set of public keys L = {P1, · · · , PN} using G where N is some polynomial of
security parameter k. M then invokes A by providing L and other appropriate
inputs, just like the previous game. It simulates A’s view by answering all hash
queries and signing queries. Suppose in one successful simulation run, A outputs
(L,m, σ) for some message m and L ⊆ L. Restriction is that (L,m) should not
be present in SO’s transcript.

The specifications and formal definitions of unforgeability and anonymity are
similar to that of before. We skip the details.

In Game 1,A is allowed to query the signing oracle with the forging message m
as long as the corresponding public-key sets are different from L. Compared with
Game 0 which does not allow m to be present in any of the signing queries, Game
1 is stronger. In this model, given a ring signature (L,m, σ), if the adversary
obtains a forgery (L′,m, σ′) such that L �= L′ but with the same message m,
this is now considered as a successful forgery. In other words, the group-changing
attack is taken into account. In Sec. 3, we will see that the scheme of [4] is insecure
in Game 1.

There is still another scenario which is not considered in Game 1. Suppose
one or multiple signatures of some message m and public-key set L are given. If
the adversary then obtains a new signature on the same pair of m and L, this
is not allowed or considered in Game 1. We call this attack the multiple-known-
signature existential forgery.

Multiple-known-signature existential forgery exists in conventional (proba-
bilistic) signature schemes. It is considered as a valid attack sometimes in target
systems but not always. To include this attack, we extend Game 1 to the following
model.

Game 2: Two entities: Simulator M and Adversary A. M prepares a large set
of public keys L = {P1, · · · , PN} as the previous games. M then invokes A by
providing L and other appropriate inputs. It simulates A’s view by answering
all hash queries and signing queries. Suppose in one successful simulation run, A
outputs (L,m, σ) for some message m and L ⊆ L. Restriction is that (L,m, σ)
should not be present in SO’s transcript.
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This model is similar to that defined by Abe et al. [1]. Compared with Game
1, this model not only allows the group-changing attack but also the multiple-
known-signature existential forgery. In the rest of this paper, we study the con-
structions of ring signature schemes which can be proven secure in different
models/games specified above under the random oracle model.

3 Bilinear Ring Signature Schemes

In [4], Boneh et al. presented a ring signature scheme based on bilinear maps.
The scheme is reviewed in the following. It is provably secure in the model of
Rivest et al. [15] under the random oracle model, that is, it is secure in Game 0.
However, we will show that it is considered to be insecure in other games (Game
1 and Game 2).

Let G1, G2 and GT be three (multiplicative) cyclic groups of prime order p.
Let g1 and g2 be the generators of G1 and G2, respectively. Let ψ : G2 → G1

be a computable isomorphism with ψ(g2) = g1. Let e : G1 × G2 → GT be a
computable bilinear map with the following properties: (1) Bilinear: for all u ∈
G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab; (2) Non-degenerate: e(g1, g2) �= 1.
These properties imply that for any u1, u2 ∈ G1, v ∈ G2, e(u1u2, v) = e(u1, v) ·
e(u2, v); and for any u, v ∈ G2, e(ψ(u), v) = e(ψ(v), u).

For each user i, 1 ≤ i ≤ n, a random element xi ∈R Zp is picked as the
user’s private key and the user’s public key is computed as Pi = gxi

2 . Suppose
π, 1 ≤ π ≤ n, is the index of the actual signer. Let H : {0, 1}∗ → G1 be a hash
function. For security analysis, H is viewed as a random oracle [3]. The signature
generation for message m ∈ {0, 1}∗ proceeds as follows.

1. For each i, 1 ≤ i ≤ n and i �= π, randomly generate ai ∈R Zp and compute
σi = gai

1 .
2. Solve the following system to obtain σπ;

H(m) = σxπ
π ψ(

n∏
i=1,i �=π

P ai
i )

3. The signature is σ = (σ1, · · · , σn) ∈ Gn
1 .

To verify the signature, check if e(H(m), g2) =
∏n

i=1 e(σi, Pi).
The scheme is proven secure, that is, both unforgeable and anonymous, in

the model of Rivest et al. [15] (i.e. Game 0) under the random oracle model. But
alluded to in Sec. 5.4 of [4], their scheme also allows anyone to add an arbitrary
number of public keys to the public-key set of any signature generated by their
scheme. Below is an illustration.

Adding Group Members to a Given Signature
(Group-Changing Attack)
Given a bilinear signature σ = (σ1, · · · , σn), anyone can add a public key,
Pn+1, by carrying out the following steps.
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1. For i = 1, · · · , n−1, set σ′
i ← σi.

2. Set σ′
n ← σn · ψ(P r

n+1) where r ∈R Zp.
3. Set σ′

n+1 ← ψ(P−r
n ).

The new signature is σ′ = (σ′
1, · · · , σ′

n+1). The technique can be gen-
eralized to let anyone add an arbitrary number of public keys to the
public-key set of any given signature generated by their scheme.

Although this ‘feature’ can be regarded as a way to further ‘anonymize’ an
existing ring signature, it is questionable on the intention of doing so without
the consent of the actual signer. On the other hand, we argue that this group-
changing attacker can bring more harm than good for many other application
scenarios. For example, anyone can claim that he belongs to an ad hoc group by
adding his own public key into all the corresponding signatures of that group,
even though he is not invited to. In addition, other group members have no way
to expel or deny anyone from being a member of the group. This is particularly
undesirable when ring signature schemes are used in e-voting systems [12] where
the set of eligible voters have to be prespecified and fixed and no one should be
able to claim his eligibility without the approval of a voting authority.

In the following, we propose a simple modification of their scheme for pre-
venting group-changing attack, that is, the modified version is secure in Game 1.

3.1 Variant 1 for Game 1

To turn the scheme into one which is secure in Game 1, we simply change all the
evaluations of H(m) to H(L,m) where L = {P1, · · · , Pn} is the public-key set
associated with the message and signature pair.

Anonymity The identity of the signer is unconditionally protected. For any
algorithm A in Game 1, any set L of n public keys, and a random index value
π, 1 ≤ π ≤ n, the probability Pr[A(σ) = π] is at most 1/n, where σ is any ring
signature on L generated with xπ.

Unforegability We can obtain the similar result to Theorem 5.2 of [4] but in
Game 1 such that forging a signature is as hard as solving the co-CDH problem
[5]. The proofs are similar to that given in [4] and full details are omitted here
except the following.

In Game 1, the adversary A is given a ‘large’ set L of public keys P1, · · · , PN

where N is some polynomial of security parameter k, and is given oracle access to
H and a signing oracle SO. The adversary may work adaptively. When querying
SO, A has to specify a message m′ and a public-key set L′ such that L′ ⊆ L. m′

can be the same as the final forged message m of A but L′ must not be equal
to the L of A’s final forgery. That is, (L,m) of A’s forgery must not be present
in the transcript of SO. The significance of this change in the use of SO allows
us to show that Variant 1 is secure against group-changing attack. Essentially,
it can be shown that if a probabilistic polynomial-time forger A, which obtains
adaptively a number of signatures (L′

i,m, σ′
i), for i = 1, · · · , qSO, where qSO is

polynomially bounded in |p| (which is some polynomial of security parameter k),

.

.
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produces, with non-negligible probability, a forgery (L,m, σ) such that L �= Li

for all i = 1, · · · , qSO, then the co-CDH problem can be solved in polynomial
time with non-negligible probability.

3.2 Variant 2 for Game 2

Variant 1 described above is secure against group-changing attack. However, it is
not necessary to be secure against multiple-known-signature existential forgery.
In the following, we show that given two signatures (L,m, σ̂), (L,m, σ̌) of Variant
1, anyone can forge a new signature (L,m, σ̃).

Multiple-Known-Signature Existential Forgery
Let σ̂ = (σ̂1, · · · , σ̂n) and σ̌ = (σ̌1, · · · , σ̌n). We have

H(L,m) =
n∏

i=1

σ̂xi
i =

n∏
i=1

σ̌xi
i .

For any a, b ∈ Zp,

H(L,m) = (
n∏

i=1

σ̂xi
i )a/(a+b)(

n∏
i=1

σ̌xi
i )b/(a+b) =

n∏
i=1

σ̃xi
i

where σ̃i = σ̂
a/(a+b)
i σ̌

b/(a+b)
i , 1 ≤ i ≤ n. Hence a new signature σ̃ =

(σ̃1, · · · , σ̃n) can be obtained by picking a and b at random.

Being insecure in Game 2, it is implied that Variant 1 is insecure in the model
defined by Abe et al. [1].

We now describe a further extension and call the scheme Variant 2 which is
targeted to be secure in Game 2. The extension is to change all the evaluations
of H(L,m) to H(L,m, r) where r is a random binary string of length |p|. That
is, in each signature generation, a new r ∈R {0, 1}|p| is picked at random and
a sequence of (σ1, · · · , σn) is obtained in the similar way as the original scheme
of [4] such that e(H(L,m, r), g2) =

∏n
i=1 e(σi, Pi). The signature becomes σ =

(r, σ1, · · · , σn).

(Discussions) Compared with the scheme due to Boneh, et al. [4], our scheme
changes the evaluation of H by adding two more arguments: the public-key set L
and a randomizer r. The two additional arguments are used for upgrading their
scheme to a secure one in Game 2: L is added to prevent the public-key set of a
given signature from being modified. r is added to prevent existential forgery of
new signatures from given signatures of the same message (i.e. multiple-known-
signature existential forgery). Below is the formal analysis.

In Game 2, the adversary A may query SO with (L,m) which is the pair of
public-key set and message of A’s final forgery. If an algorithm F runs in time
at most t and completes successfully with probability at least ε, then F is said
to be an (t, ε)-algorithm. The probability is taken over the domain and the coin
tosses of F .

.



212 J.K. Liu and D.S. Wong

Theorem 1. Let L = {P1, · · · , PN} be a set of public keys where N is some
polynomial of security parameter k. Suppose A is a (t′, ε′)-algorithm, that takes
as input L, produces a ring signature forgery on a public-key set L such that
L ⊆ L. Then there exists an (t, ε)-algorithm that can solve the co-CDH problem
where t ≤ 2t′+2c(2N +qH +NqS) and ε ≥ ε′2 where A issues at most qS signing
queries and at most qH hash queries, and an exponentiation operation takes time
c to complete.

Proof. The co-CDH problem can be solved by first solving two random instances
of the following problem: Given gab

1 , ga
2 (and g1, g2), compute gb

1. We shall con-
struct an algorithm M that solves this problem. This is easy if a = 0. In what
follows, we assume a �= 0.
M prepares a large set L of public keys P1, · · · , PN by picking xi ∈R Zp at

random and setting Pi = (ga
2 )xi for i = 1, · · · , N . Algorithm A is given L and

invoked. During the simulation, M simulates A’s view by answering all hash
and signing queries.

On a hash query,M picks at random s ∈R Zp and returns (gab
1 )s. On a signing

query, suppose A issues a query for a message m′ and a set L′ of n′ public keys
such that L′ ⊆ L, M picks at random r′ ∈R {0, 1}|p| and α1, · · · , αn′ ∈R Zp, sets
H(L′,m′, r′) to

∏n′

i=1 ψ(Pi)αi , and returns the signature σ′ = (r′, gα1
1 , · · · , gαn′

1 ).
If collision occurs, that is the product has already been set to a H evaluation,
another sequence of (r′, α1, · · · , αn′) will be chosen. It is repeated until no colli-
sion occurs. Since all the sequence elements are chosen at random, the chance of
having collision occur is at most qH+qS

p which is negligibly small. Same applies
to the hash queries.

Eventually A outputs a forgery (L,m, σ) where L ⊆ L, |L| = n, and σ =
(r, σ1, · · · , σn). By the random oracle model assumption, A has previously issued
a hash query for (L,m, r). Since H(L,m, r) = (gab

1 )s for some s chosen by M,
M can compute gb

1 by (
∏n

i=1 σ
xi
i )1/s.

A cannot distinguish between M’s simulation and real life. Also M will not
fail except with negligible chance (i.e. A has not issued a hash query for (L,m, r)
before and the chance of this happens is 1/(p− qH − qS)).

In one simulation of A, M conducts N exponentiations to prepare L, one
exponentiation for each of A’s hash queries, n exponentiations for each of A’s
signing queries, and n exponentiations for computing gb

1. Since n ≤ N , its run-
ning time is at most the A’s running time plus c(2N + qH + NqS). 
�

4 Bilinear Threshold Ring Signature Schemes

A t-out-of-n threshold ring signature scheme ensures that any t members of a
group of size n can generate a valid signature but not t− 1 members or less. It
is a natural extension of the notion of (1-out-of-n) ring signature scheme.

The security of a threshold ring signature scheme also has two aspects: un-
forgeability and anonymity. The definition of anonymity can be extended sim-
ilarly to the context of threshold ring signature schemes. We omit the details
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and focus on the theme of this paper: the security models for proofing existential
unforgeability. Besides the parameters specified in the three models/games de-
scribed in Sec. 2, an additional ingredient for threshold-of-t setting stems from
the requirement of showing unforgeability even if t−1 group members are col-
luding.

On these t− 1 adversaries (colluding group members), they can be static
or adaptive. Static adversaries refer to a fix and predetermined set of group
members. They capture a scenario where a particular set of t−1 group members
try to forge a threshold-of-t signature. In other words, it is assumed that t−1
private keys are corrupted before the attack begins. This type of attacks is weaker
than having adaptive adversaries.

In the model of adaptive adversaries, the group of colluders does not need to
be prespecified before the attack. Instead, a set of t−1 group members is built
up adaptively according to the needs during the attack.

These two types of adversaries can be applied to all the games defined in
Sec. 2: Game 0, Game 1 and Game 2. As an example, we convert the strongest
game, Game 2, to a threshold setting with adaptive adversaries below.

Game 2T
A: Two entities: Simulator M and threshold-of-t adversary A. M

prepares a large set of public keys L = {P1, · · · , PN} in a similar way to previous
games. M invokes A by providing L and other appropriate inputs. The goal of
A is to produce a threshold-of-t signature with respect to a public-key set L
such that L ⊆ L. Assume that |L| ≥ t. In the simulation, M simulates A’s view
by answering all hash queries and signing queries. A can also ask for private
keys corresponding to keys in L by sending a new type of queries called private
key corruption queries: A specifies an index π in a private key corruption query
and M returns the private key xπ of the public key Pπ in L. Suppose in one
successful simulation run, A outputs threshold-of-t forgery (L,m, σ) for some
message m and L ⊆ L. Restrictions are that (L,m, σ) is not present in SO’s
transcript of that particular simulation run, the public key set L′ of each signing
query is a subset of L, and the total number of distinct private key revelation
queries is at most t−1 in each simulation.

T stands for threshold and A stands for adaptive adversaries on the notation
of Game 2T

A. In this game, the adversary adaptively corrupts up to t−1 private
keys, i.e. it makes its decision on which private keys to corrupt based on the
observed message-signature pairs and corrupted private keys.

4.1 A Bilinear Threshold Ring Signature Scheme Based on Secret
Sharing

In the following, we present a bilinear threshold ring signature scheme based on
the partial proofs of knowledge protocol due to Cramer, et al. [9]. We are able
to provide the same level of strong evidence on its security by showing that it is
existential unforegable in Game 2T

A under the random oracle model. We use the
same set of notations as in Sec. 3.
Signature Generation. To generate a t-out-of-n threshold ring signature, let
L = {P1, · · · , Pn} be the set of n public keys. Let I ⊆ {1, · · · , n}, |I| = t, be the
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set of indices of t actual signers. Let Ī = {1, · · · , n} \ I. Let H : {0, 1}∗ → Zp be
a hash function viewed as a random oracle. The signature generation proceeds
as follows.

1. For each i ∈ Ī, randomly generate si, ci ∈R Zp, compute zi = e(gsi
1 , g2) ·

e(gci
1 , Pi).

2. For each i ∈ I, compute zi = e(gri
1 , g2) where ri ∈R Zp.

3. Compute c0 ← H(L, t,m, z1, · · · , zn).
4. Find a polynomial f of degree n−t such that f(i) = ci for i ∈ Ī and f(0) = c0.
5. For each i ∈ I, set ci = f(i) and compute si = ri − cixi mod p.
6. The signature is σ = (s1, · · · , sn, f).

Signature Verification. The signature σ = (s1, · · · , sn, f) is valid if

f(0) = H(L, t,m, e(gs1
1 , g2) · e(gf(1)

1 , P1), · · · , e(gsn
1 , g2) · e(gf(n)

1 , Pn)).

Theorem 2 (Anonymity). For any algorithm A, any set of n public keys L =
{P1, · · · , Pn} in which each of them is generated according to the key generation
algorithm in Sec. 3, and a random subset I ⊆ {1, · · · , n}, |I| = t, the probability
Pr[A(σ) = π : π ∈ I] is at most t/n, where σ is any threshold-of-t ring signature
on L generated with private keys corresponding to users indexed by I.

Proof is in Appendix A.

Theorem 3 (Existential Unforgeability in Game 2T
A). Suppose a forger A

is a PPT, which on inputs of a set L of N public keys, each of them is generated
by the key generation algorithm described in Sec. 3, adaptively chooses up to
t−1 signers to corrupt, queries a signing oracle SO and a random oracle H
polynomial times, and outputs a forged signature σ for a message m ∈ {0, 1}∗
on a public-key set L with non-negligible probability where L ⊆ L. Then DLP can
be solved with non-negligible probability in polynomial time. All the restrictions
in Game 2T

A apply (in particular, the forgery (L,m, σ) should not be present in
the signing oracle transcript).

Proof is in Appendix B

5 Conclusions

We make fine-grained distinctions on the security models for provably secure
ring signature schemes. In this paper, we introduce a new model whose security
level can be considered to be lying in between the former two commonly used
models due to Rivest et al. [15] and Abe et al. [1]. They offer three different levels
of security. We explain the importance of making such fine-grained distinctions
by showing, in particular, that the bilinear map based ring signature scheme of
Boneh et al. [4], which has been proven secure in the weakest model (the one
specified by Rivest et al. [15]) among the three, is insecure in stronger models
(the new model specified in this paper and the one specified by Abe et al. [1]). We



On the Security Models of (Threshold) Ring Signature Schemes 215

also propose a secure modification of their scheme for each of the two stronger
models. A threshold ring signature scheme using bilinear maps is also proposed.
It is provably secure against adaptive adversaries in the strongest model defined
in this paper under the random oracle model.
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A Proof of Theorem 2

Proof. The polynomial f , with degree n−t, is uniquely determined by ci for i ∈ Ī
and c0. ci’s are randomly generated and c0 is the output of the random oracle
H. Thus f can be considered as a function chosen randomly from the collection
of all polynomials over GF (p) with degree n−t. Then the distributions of ci, for
i ∈ I, are also uniform over GF (p).

For i ∈ Ī, si are chosen independently and distributed uniformly over GF (p).
For i ∈ i, ri’s are chosen independently and distributed uniformly over GF (p).
Since ri’s are independent of ci and xi, for all i ∈ I, si are also uniformly
distributed over GF (p).

In addition, for any fixed message m and fixed set of public keys L, we can
see that (s1, · · · , sn) has exactly pn possible solutions. Since the distribution of
these possible solutions are independent and uniformly distributed no matter
which t participating signers are, an adversary A, even has all the private keys
and unbound computing resources, has no advantage in identifying any one of
the participating signers over random guessing. 
�

B Proof of Theorem 3

Proof. Let L be a set of N public keys, each of them is generated by the key
generation algorithm described in Sec. 3. Suppose there exists a PPT A that
outputs a forgery (L,m, σ) where L ⊆ L, m ∈ {0, 1}∗ and σ = (s1, · · · , sn, f)
such that deg(f) = n − t with non-negligible probability. A may corrupt adap-
tively up to t−1 private keys of the public keys in L. A may query a random
oracle H and a signing oracle SO. We construct from A a PPT M that solves
DLP with non-negligible probability. That is, given (G2, g2, p, P̂ ), M outputs an
integer x̂ such that gx̂

2 = P̂ with non-negligible probability.
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To get A run properly,M randomly picks x1, · · · , xN−1 ∈R Zp and randomly
picks π ∈R {1, · · · , N}. For i = 1, · · · , N−1, M sets Pi = gxi

2 . M sets PN = P̂ .
Then Pπ and Pn are swapped. A is run by giving the set of N public keys as
L = {P1, · · · , PN}.

During the attack, A may query random oracle H and signing oracle SO. A
may also pick up to t−1 signers to corrupt. If A picks to corrupt key indexed by
π, then the simulation fails. Since π is randomly chosen, the chance of picking
π is at most (t− 1)/n.

For each H-query, a random element from Zp is chosen and returned. For
each SO-query, A specifies a public key set L′ = {P1, · · · , Pn′}, a message m′

and a set of indices I ′ = {i1, · · · , it′} such that 1 ≤ ij ≤ n′ and t′ ≤ n′. The set
of indices specifies the actual signers. The answer is simulated as follows.

1. Randomly generate c0, ci ∈R Zp for i /∈ I ′.
2. Construct f over GF (p) such that deg(f) = n′− t′ and f(0) = c0, f(i) = ci,

for i /∈ I ′.
3. For i ∈ I ′, compute ci = f(i).
4. For i = 1, · · · , n′, randomly generate si ∈R Zp and compute zi = e(gsi

1 , g2) ·
e(gci

1 , Pi).
5. Assign c0 as the value of H(L′, t′,m, z1, · · · , zn′).
6. Output (s1, · · · , sn, f).

The simulation fails if step 6 causes collision, that is, the value of c0 has been
assigned before. This happens with probability at most qH/p where qH is the
number of times that the random oracle H is queried by A. Since A only queries
H for polynomially number of times, the simulation is successful with over-
whelming probability.

Let Θ,Ω be the random tapes given to the signing oracle and A such that
A outputs a forged signature. Notice that the success probability of A is taken
over the space defined by Θ,Ω and the random oracle H. The forged signature
contains a polynomial f where f(0) = H(L, t,m, z1, · · · , zn) for zi = e(gsi

1 , g2) ·
e(gf(i)

1 , Pi), 1 ≤ i ≤ n. With probability at least 1 − 1/p, there exists a query
H(L, t,m, z1, · · · , zn) due to the assumption of ideal randomness of H. Split the
sequence of outputs of oracle H as (H−, c0) where H− corresponds to the answers
to all H-queries except for c0. By invoking A with (Θ,Ω,H−) and randomly
choosing c′0 (�= c0) polynomial times ρ′(qH)/pA where ρ′ is some polynomial
and pA is the success probability of A, A outputs at least one forged signature
σ′ = (s′1, · · · , s′n, f ′) with probability pA/ρ′′(qH) where ρ′′ is some polynomial,
due to the heavy-row lemma [14]. Therefore, M can compute the discrete-log
x̂ = (sπ − s′π)/(c′π − cπ) mod p.

To see that c′π �= cπ (that is, f ′(π) �= f(π)), we notice that since f ′(0) �= f(0)
and the degrees of f and f ′ are limited to n − t, there is at least one value
j, 1 ≤ j ≤ n, such that f ′(j) �= f(j). The chance of having j = π is 1/n as
π is randomly chosen. Hence the probability of having M succeed is at least
pA/(nρ′′(qH)) which is non-negligible. 
�
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Abstract. In threshold ring signature schemes, any group of t entities
spontaneously conscript arbitrarily n − t entities to generate a publicly
verifiable t-out-of-n signature on behalf of the whole group, yet the actual
signers remain anonymous. The spontaneity of these schemes is desirable
for ad-hoc groups such as mobile ad-hoc networks. In this paper, we
present an identity based (ID-based) threshold ring signature scheme.
The scheme is provably secure in the random oracle model and provides
trusted authority compatibility. To the best of authors’ knowledge, our
scheme is the first ID-based threshold ring signature scheme which is also
the most efficient (in terms of number of pairing operations required) ID-
based ring signature scheme (when t = 1) and threshold ring signature
scheme from pairings.

Keywords: Threshold ring signature, identity-based signature, bilinear
pairings, anonymity, spontaneity.

1 Introduction

Anonymity is becoming a major concern in many multi-user electronic commerce
applications such as e-lotteries [15], e-cash and online games [12]. Group-oriented
signature schemes [9] enable an entity of a group to produce a signature on behalf
of the group. There are two major paradigms in anonymous group-oriented
signature schemes: group signature and ring signature. In a group signature
scheme, the group is predefined and there is a group manager that can revoke
this anonymity. Ring signature scheme provides a similar feature. It does not
support anonymity revocation mechanism, but no setup stage is needed to
produce and distribute a group secret explicitly. Hence it enables any individual
to spontaneously conscript arbitrarily n − 1 entities and generate a publicly
verifiable 1-out-of-n signature on behalf of the whole group, yet the actual signer
remains unconditionally anonymous. Threshold ring signature is the t-out-of-n
threshold version where t or more entities can jointly generate a valid signature
but t − 1 or fewer entities cannot. These schemes are getting more and more
popular due to the increasing prevalence of pervasive computing applications
and mobile ad-hoc networks, where ad-hoc groups are very common [7].
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1.1 Motivation of ID-Based Threshold Ring Signature

In traditional public key infrastructure (PKI), a user must pre-enroll the PKI or
he/she cannot enjoy the cryptographic services provided by the PKI, e.g. no one
can send them any encrypted message. Identity-based (ID-based) cryptography
[5, 30] solves this problem: all users already have their corresponding public key
before their enrollment since the public key can be derived via a public algorithm
with input of a string that can uniquely identify each of them, such as an email
address.

All previous threshold ring signature constructions are non ID-based, hence
real spontaneity is not always possible: the public key of each member of the
group is required to be published by the underlying PKI before it can be used to
generate the signature. Removing this pre-requisite requirement motivates the
construction of ID-based threshold ring signature scheme, which provide a better
alternative than non-ID based solutions1.

1.2 Related Work

Ring signature scheme was first formalized by Rivest et al. in [28]. After that,
several other ring signature schemes (for examples [1, 20]) were proposed. Bresson
et al. [7] extended the ring signature scheme into a threshold ring signature
scheme using the concept of partitioning. Later, Wong et al. [34] proposed
another threshold ring signature using tandem construction method. In [18],
a constant-size ring signature was derived from the anonymous identification
scheme proposed.

There are some threshold ring signature schemes with special properties
recently. For examples, Liu et al. [24] introduced the concept of separability
to threshold ring signature scheme, which enables the use of various flavours
of public keys in a single threshold ring signature; Tsang et al. [32] introduced
individual-linkability to threshold ring signature scheme, which enables anyone
to determine if two ring signatures are signed with the help of the same signer;
and Chan et al. [8] constructed CDS-type [17] t-out-of-n blind threshold ring
signature, such that the signers do not know what exactly they are signers
and cannot link which invocation of signing algorithm corresponding to which
unblinded signature. In [24], a generic construction of threshold ring signature
from any trapdoor-one-way type signature scheme and three-move type signature
scheme is given. Yet, the authors have not illustrated the correctness and the
security of this construction except the specific instantiations from RSA [27] and
Schnorr signature [29].

Using bilinear pairing to construct ring signature is not a new idea. Inspired
by the aggregate signature, a ring signature scheme was proposed in [6]. A
technique similar to that of [6] was used to derive a new ring signature scheme

1 Under the assumption that the trusted authority (the private key generator) will
not reveal any information about who has requested for his/her private key and who
has not.
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in [35]. In [38], a ring signature was derived from the short signature proposed. A
proxy ring signature was proposed in [39]. ID-based ring signature was introduced
in [37] and subsequently a more efficient construction was proposed in [23]. Small
inconsistencies in [37] and [23] were fixed by [2], together with a new proxy ring
signature scheme from the delegation function due to [39]. Another ID-based
ring signature with formally proven security was proposed in [22]. Threshold
ring signature scheme from pairings was proposed in [33], but this scheme is
not ID-based and has not addressed the requirement of TA (trusted authority)
compatibility [36] in which not all the users join the same TA.

1.3 Our Contributions

In this paper, we present an ID-based threshold ring signature scheme. The
scheme is provably secure in the random oracle model [4] and provides TA
compatibility [36]. To the best of authors’ knowledge, our scheme is the first
ID-based threshold ring signature scheme. Our scheme is the most efficient (in
terms of number of pairing operations required) ID-based ring signature scheme
(when the threshold value t = 1) and also the most efficient threshold ring
signature scheme from pairings.

1.4 Organization

The rest of the paper is organized as follows. The next section contains some
preliminaries about the formal definitions of an ID-based threshold ring signature
scheme, bilinear pairing as well as the Gap Diffie-Hellman group. Formal security
definitions describing the adversary’s capabilities and goals are presented in
Section 3. Section 4 describes the proposed ID-based threshold ring signature
scheme. The security and efficiency analysis of our scheme are given in Section
5. Finally, Section 6 concludes the paper.

2 Preliminaries

Before presenting our results, we give the framework of ID-based threshold ring
signature schemes and review the definitions of bilinear pairing and Gap Diffie-
Hellman groups.

2.1 Framework of ID-Based Threshold Ring Signature

An ID-based threshold ring signature scheme consists of four algorithms: Setup,
KeyGen, Sign, and Verify.

– Setup: On an unary string input 1k where k is a security parameter, it
produces the master secret key s and the common public parameters params,
which include a description of a finite signature space and a description of a
finite message space.
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– KeyGen: On an input of signer’s identity ID ∈ {0, 1}∗ and the master secret
s, it outputs the signer’s secret signing key SID.

– Sign: On input of a message m, a group of n users’ identities {ID i}, where
1 ≤ i ≤ n, and the secret keys of t members {SIDij

}, where 1 ≤ ij ≤ n,
1 ≤ j ≤ t and t ≤ n; it outputs a (t, n) ID-based threshold ring signature σ
on the message m.

– Verify: On a threshold ring signature σ, a message m, the threshold value
t and the group of signers’ identities {ID i} where 1 ≤ i ≤ n as the input,
it outputs ' for “true” or ⊥ for “false”, depending on whether σ is a valid
signature signed by at least t members in the group {ID i} on a message m.

These algorithms must satisfy the standard consistency constraint of ID-based
threshold ring signature schemes, i.e. if we have σ = Sign(m, {ID i}, {SIDij

})
and |{SIDij

}| = t (where |{SIDij
}| denotes the number of elements in the set

{SIDij
}), we must have Verify(σ, {ID i},m, t) = '. Security requirements will

be described in Section 3.

2.2 Bilinear Pairing and Gap Diffie-Hellman Groups

Bilinear pairing is an important primitive for many cryptographic schemes (for
examples, [2, 5, 6, 11, 13, 14, 16, 21, 22, 23, 25, 33, 35, 36, 37, 38, 39]). Here, we
describe some of its key properties.

Let (G1,+) and (G2, ·) be two cyclic groups of prime order q. The bilinear
pairing is given as ê : G1 ×G1 → G2, which satisfies the following properties:

1. Bilinearity: For all P,Q,R ∈ G1, ê(P +Q,R) = ê(P,R)ê(Q,R), and ê(P,Q+
R) = ê(P,Q)ê(P,R).

2. Non-degeneracy: There exists P,Q ∈ G1 such that ê(P,Q) �= 1.
3. Computability: There exists an efficient algorithm to compute ê(P,Q) ∀P,Q ∈

G1.

Definition 1. Given a generator P of a group G and a 3-tuple (aP, bP, cP ), the
Decisional Diffie-Hellman problem (DDHP) is to decide whether c = ab.

Definition 2. Given a generator P of a group G, (P, aP, bP, cP ) is defined as
a valid Diffie-Hellman tuple if c = ab.

Definition 3. Given a generator P of a group G and a 2-tuple (aP, bP ), the
Computational Diffie-Hellman problem (CDHP) is to compute abP .

Definition 4. If G is a group such that DDHP can be solved in polynomial time
but no probabilistic algorithm can solve CDHP with non-negligible advantage
within polynomial time, then we call G a Gap Diffie-Hellman (GDH) group.

We assume the existence of a bilinear map ê : G1 × G1 → G2 that one can
solve Decisional Diffie-Hellman Problem in polynomial time.



222 S.S.M. Chow, L.C.K. Hui, and S.M. Yiu

3 Formal Security Model

For an ID-based threshold ring signature scheme to be considered as secure, we
need to consider its unforgeability and signer ambiguity.

3.1 Unforgeability of ID-Based Threshold Ring Signature

The following EUF-IDTR-CMIA2 game played between a challenger C and an
adversary A formally defines the existential unforgeability of ID-based threshold
ring signature under adaptive chosen-message-and-identity attack.

EUF-IDTR-CMIA2 Game:

Setup: The challenger C takes a security parameter k and runs the Setup to
generate common public parameters params and also the master secret key s.
C sends params to A.

Attack: The adversary A can perform a polynomially bounded number of queries
in an adaptive manner (that is, each query may depend on the responses to the
previous queries). The types of queries allowed are described below.

– Hash functions queries: A can ask for the values of the hash functions (e.g.
H(·) and H0(·) in our proposed scheme) for any input.

– KeyGen: A chooses an identity ID . C computes KeyGen(ID) = SID and sends
the result to A.

– Sign: A chooses a group of n users’ identities {ID i} where 1 ≤ i ≤ n, a
threshold value t′ where t′ ≤ n, and any message m. C outputs a (t′, n)
ID-based threshold ring signature σ.

Forgery: The adversary A outputs an ID-based threshold ring signature σ on
message m “signed” by at least t′ members (t′ ≤ n) of a group of n users {ID i}
where 1 ≤ i ≤ n. The only restriction is that (m, {ID i}) does not appear in the
set of previous Sign queries and less than t′ private keys of {ID i} are returned
by previous KeyGen queries. It wins the game if Verify(σ, {ID i},m, t′) is equal
to '. The advantage of A is defined as the probability that it wins.

Definition 5. An ID-based threshold ring signature scheme is said to have the
existential unforgeability against adaptive chosen-message-and-identity attacks
property (EUF-IDTR-CMIA2 secure) if no adversary has a non-negligible
advantage in the EUF-IDTR-CMIA2 game.

3.2 Signer Ambiguity of ID-Based Threshold Ring Signature

Definition 6. An ID-based threshold ring signature scheme is said to have the
unconditional signer ambiguity if for any group of n users {ID i} where 1 ≤ i ≤ n,
any t′ signers indexed by {ij}, where 1 ≤ ij ≤ n, 1 ≤ j ≤ t′ and t′ ≤ n,
any message m and any signature σ, where σ = Sign(m, {ID i}, {SIDij

}), any
verifier A (i.e. not a signer in the group {ID ij

}), even with unbounded computing
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resources, cannot identify any of the signer with probability better than a random
guess. That is, A can only output any member of {ij} with probability no better
than t′

n .

4 Our Proposed Scheme

In this section, we show how to adopt the techniques introduced in [24] with
the elegancy of bilinear pairings to spawn an efficient ID-based threshold ring
signature scheme with reasonable signature size.

4.1 Basic Construction

Define G1,G2, and ê(·, ·) as in the Section 2 where G1 is a GDH group. H(·)
and H0(·) are two cryptographic hash functions where H : {0, 1}∗ → G1 and
H0 : {0, 1}∗ → Z∗

q .

Setup: TA randomly chooses s ∈R Z∗
q , keeps it as the master secret key and

computes the corresponding public key Ppub = sP . The system parameters are:

params = {G1,G2, ê(·, ·), q, P, Ppub,H(·),H0(·)}.

KeyGen: The signer with identity ID ∈ {0, 1}∗ submits ID to TA. TA sets the
signer’s public key QID to be H(ID) ∈ G1, computes the signer’s private signing
key SID by SID = sQID . Then TA sends the private signing key to the signer.

Sign: Let L be the set of all identities of the n users. Without loss of generality,
we assume user indexed by {1, 2, · · · , t} are the participating signers while user
indexed by {t+1, t+2, · · · , n} are the non-participating signers. The participating
signers carry out the following steps to give an ID-based threshold ring signature.

1. An arbitrary entity (which is trusted to keep the identities of the participating
signers in confidential) “prepares the signature on behalf of” other entities in
the group by performing the following computations: For i ∈ {t+ 1, · · · , n},
chooses xi and hi ∈R Z∗

q and computes Ui = xiP −hiPpub and Vi = xiQIDi
.

2. For j ∈ {1, · · · , t}, each signer IDj chooses rj ∈R Z∗
q and computes Uj =

rjP .
3. Anyone in the group of t participating signers who got the knowledge of
∪n

k=1{Uk} computes h0 = H0(L, t,m,∪n
k=1{Uk}) and construct a polynomial

f of degree n− t over Zq such that f(0) = h0 and f(i) = hi for t+1 ≤ i ≤ n.
4. For j ∈ {1, · · · , t}, each signer IDj computes hj = f(j) and Vj = rjQIDj

+
hjSIDj

.
5. Anyone in the group of t participating signers who got the knowledge of
∪n

k=1{Vk} computes V =
∑n

k=1 Vk.
6. Output the signature for m and L as σ = {∪n

k=1{Uk}, V, f}.
(The polynomial f only contains information for the hash values used and
its inclusion will not compromise the unforgeability and the anonymity of
the scheme.)
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Verify: A verifier checks whether a signature σ = {∪n
k=1{Uk}, V, f} for the

message m is given by at least t signers from the set of users L as follows.

1. Check if the degree of polynomial f is n− t and H0(L, t,m,∪n
k=1{Uk}) is the

constant term of f . Proceed if both conditions are true, reject otherwise.
2. For k ∈ {1, · · · , n}, compute hk = f(k).
3. Check whether

∏n
k=1 ê(QIDk

, Uk + hkPpub) = ê(P, V ). If the equality holds,
return '. Otherwise, return ⊥.

4.2 Trusted Authority Compatibility

It is quite often that different users joined different trusted authorities (TAs) in
the reality. In [36], the notion of TA compatibility is introduced in the ID-based
signcryption [16, 36] scenario. We extend their notion into TA compatibility
in ID-based threshold ring signature. For ID-based threshold ring signature
schemes, spontaneity will be affected if the intended group of signers joined
different TAs. However, our scheme can be easily extended to handle this situation
without compromising the spontaneity. We just need to change the equality to be
checked in the verification algorithm to

∏n
k=1 ê(QIDk

, Uk + hkPpubk
) = ê(P, V ),

where Ppubk
is the public key of the TA of the k-th user.

4.3 Robustness

Robustness is often desirable in group-oriented signature scheme. For a threshold
ring signature scheme that does not support robustness, the misbehavior of any
participating signer cannot be detected, and the final signature generated by
the group of signers will be invalid even there is only one misbehaving signer.
In our scheme, the partial signature σj = {hj , Uj , Vj} generated by the signer
IDj can be verified easily by checking whether ê(QIDj

, Uj + hjPpub) = ê(P, Vj)
holds.

5 Analysis of the Proposed Scheme

We analyze consistency, efficiency, existential unforgeability and signer ambiguity
of our proposed scheme.

5.1 Consistency

The consistency of our basic construction can be easily verified by the following
equations.

ê(P, V ) = ê(P,
n∑

k=1

Vk)

=
t∏

i=1

ê(P, Vi)
n∏

j=t+1

ê(P, Vj)
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=
t∏

j=1

ê(P, rjQIDj
+ hjSIDj

)
n∏

i=t+1

ê(P, xiQIDi
)

=
t∏

j=1

ê(P, (rj + hjs)QIDj
)

n∏
i=t+1

ê(xiP,QIDi
)

=
t∏

j=1

ê(QIDj
, (rj + hjs)P )

n∏
i=t+1

ê(QIDi
, xiP − hiPpub + hiPpub)

=
t∏

j=1

ê(QIDj
, Uj + hjPpub)

n∏
i=t+1

ê(QIDi
, Ui + hiPpub)

=
n∏

k=1

ê(QIDk
, Uk + hkPpub)

The consistency of the checking for the sake of robustness and that of our
extended scheme with TA compatibility can be verified easily in a similar manner.

5.2 Efficiency

Although some research has been done in analyzing the complexity and speeding
up the computation of pairing function (for examples, [3, 10, 19]), the pairing
operations are still rather expensive. Our scheme is the most efficient (in terms
of number of pairing operations required) ID-based ring signature scheme (when
the threshold value t = 1). Taken into account the computational costs for
signature generation and verification, [37] uses 4n − 1 pairing operations while
both of [2] and [23] use 2n + 1 of them. While the most efficient 1-out-of-n
ID-based ring signature scheme before the birth of our scheme is [22], which
uses n + 3 pairings in total (i.e. signing and verification), our scheme only uses
n+1 pairing operations. Although the difference is not great, our scheme can be
further optimized since the multiplication of a series of pairings in Verify can
be optimized by using the concept of “Miller lite” of Tate pairing presented in
[31]. Moreover, the pairing operations in our scheme can be executed in parallel,
which is not possible in schemes like [2, 23, 37].

The previous non ID-based threshold ring signature scheme from bilinear
pairings in [33], requires n + t pairing operations (or (n + 1)t of them without
optimization) for verification. Our scheme is more efficient since it only requires
n pairing operations in verification and none of them in signing.

Considering the signature size, our scheme is also up to the state-of-the-
art. Signature sizes in [7] and [34] are O(n lg n) and O(nt), respectively. We
share the same order of space complexities as in [24] and [33]. However, due to
the elegancy of elliptic curve, our scheme should achieve shorter signature size
than [24].
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5.3 Existential Unforgeability and Signer Ambiguity

The security of our proposed scheme is summarized in the following two theorems.

Theorem 1. In the random oracle model (the hash functions are modeled as
random oracles), if there is an algorithm A that can win the EUF-IDTR-CMIA2
game in polynomial time, then CDHP can be solved with non-negligible probability
in polynomial time.

Proof. Suppose the challenger C receives a random instance (P, aP, bP ) of the
CDHP and has to compute the value of abP . C will run A as a subroutine and
act as A’s challenger in the EUF-IDTR-CMIA2 game. During the game, A will
consult C for answers to the random oracles H and H0. Roughly speaking, these
answers are randomly generated, but to maintain the consistency and to avoid
collision, C keeps three lists to store the answers used. We assume A will ask for
H(ID) before ID is used in any other queries.
C gives A the system parameters with Ppub = bP . Note that b is unknown to

C. This value simulates the master key value for the TA in the game.

H requests and KeyGen requests: When A asks queries on the hash values of
identities, C checks the list L1, If an entry for the query is found, the same answer
will be given to A; otherwise, a value di from Z∗

q will be randomly generated and
diP will be used as the answer, the query and the answer will then be stored
in the list. Note that the associated private key is dibP which C knows how to
compute.

The only exception is that C has to randomly choose one of the H queries
from A, say the k-th query, and answers H(ID∗) = aP for this query. Since aP
is a value in a random instance of the CDHP, it does not affect the randomness
of the hash function H. Since both a and b are unknown to C, a KeyGen request
on this identity will make C fails.

H0 requests: When A asks queries on the hash values, C checks the corresponding
list L2. If an entry for the query is found, the same answer will be given to A;
otherwise, a randomly generated value will be used as an answer to A, the query
and the answer will then be stored in the list.

Sign requests: A chooses a group of n users’ identities L = {IDj}, and a
threshold value t′ where t′ ≤ n and any message m. On input of (m,L, t′),
C outputs a (t′, n) ID-based threshold ring signature σ as follows.

1. For i ∈ {0, t′, t′ + 1, · · · , n}, randomly choose hi ∈R Z∗
q .

2. Construct a polynomial f over Zq such that the degree of f is n − t′ and
f(i) = hi for i = 0, t′, t′ + 1, · · · , n.

3. For j ∈ {1, · · · , t}, compute hj = f(j).
4. For k ∈ {1, · · · , n}, randomly choose hk and compute Uk = xkP − hkPpub.
5. Compute V =

∑n
k=1 xkQIDk

.
6. Assign h0 as the value of H0(L, t,m,∪n

k=1{Uk}); if collision occurs, generate
another h0 and repeat.

7. Output the signature as σ = {∪n
k=1{Uk}, V, f}.
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Finally, A outputs a forged signature σ = {U, V, f} that is “signed” by
some t′ members in the group {ID i}, ID∗ ∈ {IDi} and A only requested
for the private key of some t′ − 1 members in the group. If ID∗ /∈ {IDi}, C
fails.

It follows from the forking lemma [26] that if A is a sufficiently efficient forger
in the above interaction, then we can construct a Las Vegas machine A′ that
outputs two signed messages (U, V, f) and (U, V ′, f ′). To do so we keep all the
random tapes in two invocations of A the same except h0 returned by H0 query
of the forged message.

Now we consider the probability that ID∗ is the chosen target of forgery.
Let π be the index of ID∗ in L, we need f(π) �= f ′(π) to solve for CDHP.
From the signing algorithm, f(i) = f ′(i) if IDi is a non-participating signer;
together with the fact that f(0) �= f ′(0), we know that f(j) �= f ′(j) if IDj is a
participating signer. Since A′ knows t′− 1 private keys among the group {ID i},
the probability that ID∗ is a participating signer (and hence (f(π) �= f ′(π)) is

1
n−t′+1 .

Given the machine A′ derived from A, we can solve the CDHP by computing
abP = (hπ − h′

π)−1(V − V ′). We calculate the probability of success of C
as follows. For C to succeed, A did not ask a KeyGen query on ID∗. And
the corresponding probability is at least qH−qE

qH
. Further, with a probability of

(n − t′ + 1)( qH−qE−1
qH−qE

)( qH−qE−2
qH−qE−1 ) · · · ( qH−qE−(n−t′)

qH−qE−(n−t′−1) )(
1

qH−qE−(n−t′) ) = n−t′+1
qH−qE

,
ID∗ ∈ {IDi}, hence the probability for using A to solve the CDHP is 1

qH
.


�

Theorem 2. Our ID-based threshold ring signature scheme satisfies the property
of unconditional signer ambiguity.

Proof. The polynomial f with degree n−t can be considered as a function chosen
randomly from the collection of all polynomials over Zq with degree n− t since
ht+1, · · · , hn are randomly generated and h0 is the output of the random oracle
H0.

For i ∈ {t + 1, · · · , n}, and for j ∈ {1, · · · , t}, {xi} and {rj} are chosen
independently and distributed uniformly over Z∗

q . So {Ui} ∪ {Uj} and hence
∪n

k=1{Uk} are also uniformly distributed.
The polynomial f is determined by ht+1, · · · , hn and h0, then the distributions

of h1, · · · , ht are also uniform over the underlying range, with the fact that
{SIDj

} is independent of {rj} and {hj}, we say that {Vi} ∪ {Vj} and hence V
are also uniformly distributed.

To conclude, for any fixed message m and fixed set of identities L, the
distribution of {∪n

k=1{Uk}, V, f} are independent and uniformly distributed no
matter which t participating signers are. So we conclude that even an adversary
with all the private keys corresponding to the set of identities L and unbounded
computing resources has no advantage in identifying any one of the participating
signers over random guessing. 
�
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6 Conclusion

In this paper, we present an ID-based threshold ring signature scheme. We prove
the security of our scheme in the random oracle model [4]. Moreover, our scheme
provides trusted authority compatibility [36]. To the best of authors’ knowledge,
our scheme is the first ID-based threshold ring signature scheme, which is also the
most efficient ID-based ring signature scheme (when the threshold value t = 1)
and threshold ring signature scheme from pairings in terms of the number of
pairing operations. Due to the elegancy of bilinear pairing, signatures generated
by our scheme are much shorter and simpler than signatures from other previous
threshold ring signature schemes. Future research directions include devising an
ID-based threshold ring signature scheme with constant signature size or making
the threshold ring signature scheme works in a hierarchical setting [14].
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22. Javier Herranz and Germán Sáez. New Identity-Based Ring Signature Schemes.
In Javier Lopez, Sihan Qing, and Eiji Okamoto, editors, Information and
Communications Security, 6th International Conference, ICICS 2004, Malaga,
Spain, October 27-29, 2004, Proceedings, volume 3269 of Lecture Notes in
Computer Science, pages 27–39, Malaga, Spain, October 2004. Springer-Verlag.
Preliminary version available at Cryptology ePrint Archive, Report 2003/261.

23. Chih-Yin Lin and Tzong-Chen Wu. An Identity-based Ring Signature Scheme from
Bilinear Pairings. Cryptology ePrint Archive, Report 2003/117, 2003. Available
at http://eprint.iacr.org.



Identity Based Threshold Ring Signature 231

24. Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. A Separable Threshold
Ring Signature Scheme. In Jong In Lim and Dong Hoon Lee, editors, Information
Security and Cryptology - ICISC 2003, 6th International Conference Seoul, Korea,
November 27-28, 2003, Revised Papers, volume 2971 of Lecture Notes in Computer
Science, pages 352–369. Springer, 2003.

25. Joseph K. Liu and Duncan S. Wong. On the Security Models of (Threshold)
Ring Signature Schemes. In Information Security and Cryptology - ICISC 2004,
7th International Conference Seoul, Korea, December 2-3, 2004, Revised Papers,
Lecture Notes in Computer Science, Seoul, Korea, December 2004. Springer-Verlag.

26. David Pointcheval and Jacques Stern. Security Arguments for Digital Signatures
and Blind Signatures. Journal of Cryptology: The Journal of the International
Association for Cryptologic Research, 13(3):361–396, 2000.

27. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of the ACM,
26(1):96–99, January 1983.

28. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret. In
Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th International
Conference on the Theory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 of Lecture
Notes in Computer Science, pages 552–565. Springer, 2001.

29. Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. Journal of
Cryptology: The Journal of the International Association for Cryptologic Research,
4(3):161–174, 1991.

30. Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In G. R.
Blakley and David Chaum, editors, Advances in Cryptology, Proceedings of
CRYPTO 1984, Santa Barbara, California, USA, August 19-22, 1984, Proceedings,
volume 196 of Lecture Notes in Computer Science, pages 47–53. Springer-Verlag,
19–22 August 1985.

31. Jerome A. Solinas. ID-based Digital Signature Algorithms. Slide Show presented
at 7th Workshop on Elliptic Curve Cryptography (ECC 2003), August 2003.

32. Patrick P. Tsang, Victor K. Wei, Tony K. Chan, Man Ho Au, Joseph K.
Liu, and Duncan S. Wong. Separable Linkable Threshold Ring Signatures.
In Anne Canteaut and Kapalee Viswanathan, editors, Progress in Cryptology
- INDOCRYPT 2004, 5th International Conference on Cryptology in India,
Chennai, India, December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes
in Computer Science, pages 384–398. Springer, 2004.

33. Victor K. Wei. A Bilinear Spontaneous Anonymous Threshold Signature for Ad
Hoc Groups. Cryptology ePrint Archive, Report 2004/039, 2004. Available at
http://eprint.iacr.org.

34. Duncan S. Wong, Karyin Fung, Joseph K. Liu, and Victor K. Wei. On the RS-
Code Construction of Ring Signature Schemes and a Threshold Setting of RST.
In Sihan Qing, Dieter Gollmann, and Jianying Zhou, editors, Information and
Communications Security, 5th International Conference, ICICS 2003, Huhehaote,
China, October 10-13, 2003, Proceedings, volume 2836 of Lecture Notes in
Computer Science, pages 34–46. Springer, 2003.

35. Jing Xu, Zhenfeng Zhang, and Dengguo Feng. A Ring Signature Scheme Using
Bilinear Pairings. In Chae Hoon Lim and Moti Yung, editors, Information Security
Applications, 5th International Workshop, WISA 2004, Revised Papers, volume
3325 of Lecture Notes in Computer Science, pages 163–172, Jeju Island, Korea,
August 2004. Springer-Verlag.



232 S.S.M. Chow, L.C.K. Hui, and S.M. Yiu

36. Tsz Hon Yuen and Victor K. Wei. Fast and Proven Secure Blind Identity-Based
Signcryption from Pairings. In A. J. Menezes, editor, Topics in Cryptology - CT-
RSA 2005, The Cryptographers’ Track at the RSA Conference 2005, San Francisco,
CA, USA, Febrary 14-18, 2005, Proceedings, volume 3376 of Lecture Notes in
Computer Science, San Francisco, CA, USA, February 2005. Springer. To Appear.
Also available at Cryptology ePrint Archive, Report 2004/121.

37. Fangguo Zhang and Kwangjo Kim. ID-Based Blind Signature and Ring
Signature from Pairings. In Yuliang Zheng, editor, Advances in Cryptology -
ASIACRYPT 2002, 8th International Conference on the Theory and Application
of Cryptology and Information Security, Queenstown, New Zealand, December 1-
5, 2002, Proceedings, volume 2501 of Lecture Notes in Computer Science, pages
533–547. Springer, 2002.

38. Fangguo Zhang, Rei Safavi-Naini, and Willy Susilo. An Efficient Signature Scheme
from Bilinear Pairings and Its Application. In Feng Bao, Robert H. Deng, and
Jianying Zhou, editors, Public Key Cryptography - PKC 2004, 7th International
Workshop on Theory and Practice in Public Key Cryptography, Singapore, March
1-4, 2004, volume 2947 of Lecture Notes in Computer Science, pages 277–290.
Springer, 2004.

39. Fangguo Zhang, Reihaneh Safavi-Naini, and Chih-Yin Lin. New Proxy Signature,
Proxy Blind Signature and Proxy Ring Signature Schemes from Bilinear
Pairings. Cryptology ePrint Archive, Report 2003/104, 2003. Available at
http://eprint.iacr.org.

Appendix

The work described in this paper was first publicly available in [13]. In an
independent and more or less concurrent work [21], an ID-based ring signature
scheme for general access structure was proposed. However, their scheme is
inefficient for t-out-of-n threshold access structure; the space complexity of the
signature and the time complexities of signing and verification are all in O(nt).
Subsequently, they proposed a different construction specific to threshold access
structure, which requires 2n− t pairing operations in signing and 2n of them in
verification.

At ICISC 2004, a new bilinear threshold ring signature was proposed [25].
Since the structure of the threshold scheme in [21] and that of the scheme in
[25] are similar, they share the same number of pairing operations in signing and
verification.

To conclude, our scheme is still the most efficient ID-based threshold ring
signature and the most efficient threshold ring signature scheme from pairings.
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Abstract. An identity (ID)-based signature scheme allows any pair of
users to verify each other’s signatures without exchanging public key cer-
tificates. With the advent of Bilinear maps, several ID-based signatures
based on the discrete logarithm problem have been proposed. While these
signatures have an advantage in the fact that the system secret can be
shared by several parties using a threshold scheme (thereby overcoming
the security problem of RSA-based ID-based signature schemes), they all
share the same efficiency disadvantage. To overcome this, some schemes
have focused on finding ways to verify multiple signatures at the same
time (i.e. the batch verification problem). While they had some success in
improving efficiency of verification, each had a slightly diversified defini-
tion of batch verification. In this paper, we propose a taxonomy of batch
verification against which we analyze security of well-known ID-based
signature schemes. We also propose a new ID-based signature scheme
that allows for all types of multiple signature batch verification, and
prove its security in random oracle model.
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1 Introduction

In 1984, Shamir proposed a new model for public key cryptography, called
identity (ID)-based encryption and signature schemes. The goal was to sim-
plify key management procedures of certificate-based public key infrastructures
(PKIs) [27]. Since then, several ID-based encryption and signature schemes.
based on integer factorization problem, have been proposed [9, 29, 30, 21]. While
these ID-based signatures have improved key management and key recovery,
their disadvantage lies in the fact that the signer’s key is shared with the private
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key generator [13, 10]. This problem can be alleviated using signatures based
on the discrete logarithm problem (DLP) instead, since in this case the secret
key can be shared by several parties using a threshold scheme. Several ID-based
signatures with these properties that use pairings in elliptic curves have been
proposed [14, 25, 8].

In spite of several advantages of ID-based signatures schemes based on pair-
ings, they suffer from an efficiency problem that puts restrictions on their use
in applications: Their signature verifications are between ten and two hundred
times slower than those of DSS or RSA [1]. This problem may be critical in
some applications such as electronic commerce and banking service, in which
one server may have to verify many signatures simultaneously. To improve the
efficiency of performance for multiple signature verification, many researchers
have studied so called batch verification.

Even so, each proposed approach has a different definition of batch verifica-
tion. We classify multiple signatures (i.e. input of batch verification) into the
following three types, according to the number of signers and messages:

Type 1. multiple signatures on a single message generated by multiple signers.
Type 2. multiple signatures on multiple messages generated by a single signer.
Type 3. multiple signatures on multiple messages generated by multiple sign-

ers, where each message is signed by a distinct user.

Type 1 signature was traditionally classified as multisignature and has been
studied for a long time [16, 23, 24, 20, 6]. Due to its simplicity, it allows for very
efficient batch verification. Type 2 batch verification proposals centered around
batch RSA [11, 2] and have been a topic of research since late 80’s. Compression
of multiple RSA signatures of type 2 into one signature is also called condensed
RSA [19]. More precisely, our discussion deals with different notion of batch
verification, called screening [2]. That is, we only want to determine whether the
signer has at some point authenticated the text rather than verifying if each string
provided is the valid signature corresponding to the message. Recently, Boneh
et al. proposed aggregate signatures (BGLS scheme) using bilinear maps, in
which multiple signatures are aggregated into a single signature [3]. They allow
for batch verification of type 3, but the efficiency gain is almost half of usual
verifications. We note that there have been many efforts that aim at speeding
up simultaneous verifications of modular exponentiations for DSA signatures [22,
18, 2, 7]. These approaches are independent of specific signature schemes, but the
efficiency gain over the sum of individual verifications is limited. On the other
hand, our approach can give significant improvement in efficiency.

Our Contributions. In this paper, we discuss batch verifications of ID-based
signatures according to the above taxonomy. (1) We discuss security of batch
verification of type 2 in the Cha-Cheon scheme. We provide a loose security re-
duction of batch verification of type 2 in Cha-Cheon scheme to the computational
Diffie-Hellman problem (CDHP). It is the same as in the Hess scheme [14]. (2)
We show that previous signature schemes are not secure in batch verification of
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Type 1 or 3. (3) We propose a new ID-based signature scheme that is secure
in batch verification of Type 1 and 3 and provide security proof under random
oracle model.

Organizations. The rest of the paper is organized as follows: In Section 2, we
introduce hard problems which our scheme relies upon. In Section 3, we analyze
previously proposed ID-based signatures in batch verification of Type 2. We
also discuss why those ID-based signature schemes fail to provide secure batch
verification of Type 3 and Type 1. In Section 4, we propose a new ID-based
signature scheme admitting secure batch verification of Type 3 and Type 1,
provide proof of security and discuss the batch verification of each type. We
conclude in Section 5.

2 Preliminary

2.1 Bilinear Maps

Consider an additive cyclic group G of prime order � and a cyclic multiplicative
group V . Let e : G×G→ V be a map which satisfies the following properties.

1. Bilinear. For any aP, bP ∈ G, e(aP, bP ) = e(P, P )ab.
2. Non-degenerate. If e(P,Q) = 1V for all P (or Q) in G, then Q (or P ) is

the identity of G, respectively.
3. Efficient. There exists an efficient algorithm to compute the map.

We call such a bilinear map as an admissible bilinear pairing.
The Weil pairing and Tate pairing in elliptic curve give good implementations

of the admissible bilinear pairing. Let E be an elliptic curve over Fq where q = pn

and p is a prime. For a prime � and an � torsion subgroup E[�] of E, we define
a Weil pairing eW : E[�] × E[�] → F∗

qα for suitable α. Now let G = E(Fq)[�]
and define a map e : G × G → F∗

qα , where e(P,Q) = eW (P, φ(Q)) and φ is
an automorphism over G. Then e is an efficiently computable non-degenerate
bilinear map. The Tate pairing has similar properties and is more efficient than
the Weil pairing. For the details, refer to [4].

2.2 Some Problems

Let G be a cyclic group of prime order � and P a generator of G.

1. The decisional Diffie-Hellman Problem (DDHP) is to decide whether c = ab
in Z/�Z for given P, aP, bP, cP ∈ G. If so, (P, aP, bP, cP ) is called a valid
Diffie-Hellman (DH) tuple.

2. The computation Diffie-Hellman Problem (CDHP) is to compute abP for
given P, aP, bP ∈ G.

Now we define a gap Diffie-Hellman group.
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Definition 1. A group G is a gap Diffie-Hellman group if the DDHP in G can
be efficiently computable and there exists no algorithm which can solve the CDHP
in G with non-negligible probability within polynomial time.

If we have an admissible bilinear pairing e in G, we can solve the DDHP in G
efficiently as follows:

(P, aP, bP, cP ) is a valid DH tuple⇔ e(aP, bP ) = e(P, cP ).

Hence an elliptic curve becomes an instance of a gap Diffie-Hellman group if the
Weil (or the Tate) pairing is efficiently computable and the CDHP is sufficiently
hard on the curve.

From now on, we assume that G is a gap Diffie-Hellman group generated by
P , whose order is a large prime � and all schemes are performed in the group G
if not special remarks. To implement the a gap Diffie-Hellman group we consider
G as a subset of elliptic curve as above with an admissible pairing e originated
from the Weil pairing or Tate pairing.

2.3 ID-Based Signature Schemes and Attack Models for Batch
Verifications

An ID-based signature scheme consists of four algorithms: Setup, Extract, Sign-
ing and Verification.

Setup. A key generation center (KGC) sets the system’s secret key Ks that is
called the master key and the system parameters Param.

Extract. For each identity ID, KGC generates the secret key DID corresponding
to ID using Ks and Param.

Signing. A user with ID produces a signature (ID,m, σ) on a message m using
her secret key DID and Param.

Verification. Given the signature (ID,m, σ), a verifier checks the validity of
the σ using Param.

In batch verification, we replace the Verification process by the following
process:

Batch Verification. Given multiple signatures σ1, · · · , σk on messages m1, · · · ,
mk and corresponding identities ID1, · · · , IDk, a verifier checks the validity
of all signatures at once.

In the batch verification, if m1 = · · · = mk then we call this the batch verification
of (multiple signatures) of Type 1. If ID1 = · · · = IDk then we call this the batch
verification of Type 2. If each message is signed by distinct ID’s then we call this
the batch verification of Type 3.

We formalize the attack model for batch verification of Type 1, 2 and 3 in the
general ID-based signature scheme. We call a forger F a k-batch forger of Type i,
where i=1, 2, 3, when F executes the following game. Note that F performs
an existential forgery under the adaptively chosen message and ID attack.
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Setup. A k-batch forger F is given public system parameters.
Queries. F can access the hash, Extract and Signing oracle. F obtains the

hash values of his queries, the secret keys of his chosen ID’s and the signatures
of his chosen ID’s and messages.

Outputs. Finally, F outputs ID1, · · · , IDn and message m1, · · · ,mn and corre-
sponding signatures σ1, · · · , σn of Type i where n ≤ k and i = 1, 2, 3.

F wins if the outputs pass the batch verification process of each type within
polynomial time bound with non-negligible probability and there exists one index
i such that the IDi has not been queried to the Extract oracle and the message
mi corresponding to IDi has not been asked to the Signing oracle.

3 Batch Verifications in ID-Based Signatures

In this section, we discuss the security of previous ID-based signature schemes.

3.1 Batch Verifications of Type 2 in the Cha-Cheon Scheme

The Cha-Cheon ID-based signature scheme consists of four algorithms: Setup,
Extract, Signing and Verification.

Setup. Given a gap Diffie-Hellman group G with an admissible pairing e and its
generator P , pick a random s ∈ Z/	Z and set Ppub = sP . Choose two hash
functions H1 : {0, 1}∗ × G → (Z/	Z)∗ and H2 : {0, 1}∗ → G∗. The system
parameter is (P, Ppub, H1, H2). The master key is s.

Extract. Given an identity ID, the algorithm computes QID = H2(ID) and DID =
sH2(ID) and outputs DID as a private key of the identity ID.

Signing. Given a secret key DID and a message m, pick a random number r ∈ Z/	Z
and output a signature σ = (m, U, h, V ) where U = rQID, h = H1(m, U), and
V = (r + h)DID.

Verification. Given a signature σ = (U, V ) of a message m for an identity ID,
compute h = H1(m, U). The signature is accepted if and only if e(P, V ) =
e(Ppub, U + hQID).

Let σi = (mi, Ui, hi, Vi) be the signatures using the Cha-Cheon scheme signed by
a single user with ID on distinct k-messages mi, Ui = riQID, Vi = (ri + hi)DID

and hi = H1(mi, Ui) where i = 1, 2, · · · k, QID = H2(ID) and DID is a secret key
of user. Then we can verify all k-signatures at once as follows:

– Compute QID = H2(ID) and hi = H1(mi, Ui) for all i = 1, · · · , k.

– Check whether e(P,
∑k

i=1 Vi) = e
(
Ppub,

∑k
i=1 Ui + (

∑k
i=1 hi)QID

)
or not.

We know that the Cha-Cheon scheme is secure in gap Diffie-Hellman group
in random oracle model [8]. Now we analyze the security of batch verification of
Type 2 in the Cha-Cheon scheme.
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Theorem 1. Let F0 be k-batch forger of Type 2 which performs an existential
forgery under an adaptively chosen message and ID attack against the Cha-Cheon
scheme within a time bound T0 with probability ε0 in random oracle model. The
forger F0 can ask queries to the oracles H1, H2, Extract and Signing at most
qH1 , qH2 , qE, and qS-times, respectively. And VqH1 ,k denotes k times the number
of k-permutations of qH1 elements, that is, VqH1 ,k = k · qH1(qH1 − 1) · · · (qH1 −
k + 1). If ε0 ≥ (12VqH1 ,k + 6(qH1 + k · qS)2)qH2/(� − 1), then the CDHP can
be solved with probability ≥ 1/9 and within running time ≤ 144823VqH1 ,k(1 +
qS)qH2T0/

(
ε0
(
1− 1

�

))
.

To prove the above theorem, we consider the properties of the ID-based
scheme. While each secret key of user is chosen independently in the traditional
public key system, all secret keys of users are mutually related in ID-based
system. In fact, they are produced from one secret key of the whole system
which is called the master key. Hence in ID-based setting it is reasonable to give
not an specific ID but a system parameter to a forger. Using [8–Lemma 1], we
can reduce the adaptively chosen ID attack to the given ID attack.

Now, consider the following lemma to reduce the security of batch verification
of Type 2 in the Cha-Cheon scheme to the CDHP under the given ID attack
model.

Lemma 1. Let F be k-batch forger of Type 2 which performs an existential
forgery under an adaptively chosen message and given ID attack against the Cha-
Cheon scheme within a time bound T with probability ε in random oracle model.
The forger F can ask queries to the oracles H1, H2, Extract and Signing
at most qH1 , qH2 , qE, and qS-times, respectively. We assume that, within time

bound T , F produces, with probability of success ε ≥
12VqH1

,k+6(qH+k·qS)2

� , multi-
ple signatures σ = (mi, Ui, hi, Vi), i = 1, 2, · · · , n and n ≤ k, which pass the batch
verification. Then, there is another probabilistic polynomial time Turing machine
which has control over the machine obtained from F by simulation, and which
produces another multiple signatures σ′

i = (m′
i, Ui, h

′
i, V

′
i ), i = 1, 2, · · · , n such

that hj �= h′
j, for some j ∈ {1, · · · , n} and hi = h′

i for all i = 1, · · · , n such that

i �= j within time T ′ =
144823VqH1

,k(1+qS)T

ε .

The Lemma 1 can be proved using the similar method with [15–Theorem 2]
except the number of signatures in output n ∈ {1, · · · , k}. In [15], they deal with
the ring signature, so the number of signatures i.e. random parts Ri’s are fixed
as the number of users in the ring. But in the batch verification of Type 2, the
number of signatures which is batch verified is not fixed, it is only less than k.
So to fix the number of signatures during the oracle replay, we use a random
variable tuple (ω, n, f) not (ω, f) when we apply the splitting lemma. Note that
the number of signatures n is included in the fixed parts when we apply the
splitting lemma. Thus we need k times the original VqH1 ,k in [15–Theorem 2].

Proof (of theorem 1). Using the above Lemma 1, we can prove the theorem 1
in the given ID attack case. We construct an algorithm C to solve the CDHP



Batch Verifications with ID-Based Signatures 239

using the forger F . We assume that P , aP , bP are given as the CDHP instances.
The algorithm C simulates a real signer to get signatures which pass the batch
verification of Type 2 from F . If C does not fail this simulation, C gets multiple
signatures what he wants and using the general oracle replaying technique, C
can solve the CDHP. In Setup, the algorithm C fixes a target identity ID, and
put Ppub = aP .

Note that ID-Hash Query, Extract Query, Message-Hash Query, and
Signing Query are the same as the proof of [8–Lemma 2]. After the queries,
if the simulation does not fail, the forger F outputs multiple signatures σi =
(mi, Ui, hi, Vi) for given ID, where i = 1, 2, · · · , n and n ≤ k. Then C re-
plays the oracles and obtains another multiple signatures σ′

i = (mi, Ui, h
′
i, V

′
i ),

i = 1, 2, · · ·n using the Lemma 1. Let V =
∑n

i=1 Vi, V ′ =
∑n

i=1 V
′
i . Since the

signatures pass the batch verification of Type 2, C knows that the following two
equations are satisfying:

e(P, V ) = e

(
Ppub,

n∑
i=1

Ui +

(
n∑

i=1

hi

)
QID

)

e(P, V ′) = e

(
Ppub,

n∑
i=1

Ui +

(
n∑

i=1

h′
i

)
QID

)

Thus from V =
∑n

i=1(ri + hi)DID and V ′ =
∑n

i=1(ri + h′
i)DID, C can compute

V −V ′ =
∑n

i=1(hi−h′
i)DID. Since there exist an i ∈ {1, · · ·n} such that hi �= h′

i,
C obtains abP = DID = (V − V ′)/

∑n
i=1(hi − h′

i). The total running time is
bounded by the running time of the Lemma [15]. Thus applying [8–Lemma 1],
we obtain the result of theorem 1. 
�

Remark 2. We may consider batch verification of Type 2 in the Hess scheme.
In the original Hess scheme, we must compute a hash value and compare it
with some value to verify. But a hash function does not have any homomorphic
property, thus we cannot use directly the original Hess scheme for batch verifica-
tion. Hence we slightly modify the signing and verification processes in the Hess
scheme to apply the batch verification. Let the signature of a user with ID be
σ = (ID,m,R, h, V ) where h = H1(m,U), U = e(P,R), V = hDID +R and DID

is a secret key of user. Then the batch verification of Type 2 in the Hess scheme
is possible and the security of them can be reduced to the CDHP similarly to the
above theorem.

The time complexity of the reduction is dominated by T0 times k-th power
of the number of H1 hash queries over ε0. That is, if k increases then the time
complexity of security reduction increases exponentially. Thus the Theorem 1
gives a security proof of the batch verification in the Cha-Cheon scheme of
Type 2 only when the of signature k is very small. It is the same for that of the
Hess scheme.
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3.2 Batch Verification of Type 3 in the Cha-Cheon Scheme

We also consider the batch verification in the Cha-Cheon [8] scheme of Type 3.
However, it is not secure.

Let ID1 be an identity of honest user U1 and ID2 an identity of a 2-batch
forger F of Type 3 in the Cha-Cheon scheme. We may assume that F can
access to the ID-hash oracle and obtain Q1 − H2(ID1), Q2 = H2(ID2). Now
F selects two random values r1, r̃2 and messages m1,m2, compute U1 = r1Q1,
h1 = H1(m1, U1) and

U2 = r̃2Q2 − h1Q1 − r1Q1.

Finally, F computes h2 = H2(m2, U2) and V1 = (r′2 + h2)D2, V2 = r′′2D2,
where r′2 + r′′2 = r̃2, and outputs two signatures σ1 = (ID1,m1, U1, h1, V1) and
σ2 = (ID2,m2, U2, h2, V2). Though F does not know the discrete log of U2, r2,
these multiple signatures pass the batch verification of Type 3:

e(Ppub, U1 + h1Q1 + U2 + h2Q2) = e(P, r1D1 + h1D1 + r̃2D2 − h1D1 − r1D1 + h2D2)

= e(P, r̃2D2 + h2D2)

= e(P, V1 + V2).

That is, F pretends to generate signatures which pass the batch verification of
Type 3 with the honest user U1. Thus the batch verification of Type 3 in the
Cha-Cheon scheme is not secure.

Remark 3. In the case of the Hess scheme, because of the same reason with the
previous subsection, we consider the modified Hess scheme. Similarly to the Cha-
Cheon scheme, let U2 = e(Ppub,−h1Q1) · e(P, R̃2) = e(P,−h1D1 + R̃2) where a
random point R2 is the same role as U2 = r2QID in the Cha-Cheon scheme, then
the forged signatures generated by the forger alone pass the batch verification.

In the Cha-Cheon and Hess scheme, a random part U is used as an input of
the hash function H1. Thus although all messages are same, the hash outputs
are all distinct. So the batch verification of Type 1 in the Cha-Cheon scheme is
the same as that of Type 3.

4 ID-Based Signature Scheme Admitting Batch
Verification of Type 3

4.1 New ID-Based Signature Scheme

This scheme consists of four algorithms: Setup, Extract, Signing and Verification.
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Setup. Given a gap Diffie-Hellman group G with an admissible pairing e and its
generator P , pick a random s ∈ Z/	Z and set Ppub = sP . Choose two hash
functions H1 : {0, 1}∗ × G → (Z/	Z)∗ and H2 : {0, 1}∗ → G∗. The system
parameter is (P, Ppub, H1, H2). The master key is s.

Extract. Given an identity ID, the algorithm computes QID = H2(ID) and DID =
sH2(ID) and outputs DID as a private key of the identity ID corresponding to
QID = H2(ID).

Signing. Given a secret key DID and a message m, pick a random number r ∈ Z/	Z
and output a signature σ = (U, V ) where U = rP , h = H1(m, U), and V =
rQID + hDID.

Verification. Given a signature σ = (U, V ) of a message m for an identity ID,
compute h = H1(m, U). The signature is accepted if and only if e(P, V ) =
e(QID, U + hPpub).

The proposed scheme is secure under the assumption that the CDHP is hard
as in the following theorem.

Theorem 2. Let F0 be a forger which performs an existential forgery under an
adaptively chosen message and ID attack against our ID-based scheme within a
time bound T0 with probability ε0 in random oracle model. The forger F0 can
ask queries to the oracles H1, H2, Extract and Signing at most qH1 , qH2 , qE,
and qS-times, respectively. Assume that ε0 ≥ (10(qS + 1)(qS + qH1)qH2)/(�− 1),
then the CDHP can be solved with probability ≥ 1/9 and within running time ≤
(23qH1qH2T0)/

(
ε0
(
1− 1

�

))
where � is a security parameter.

Using the forking lemma [26] and [8–Lemma 1], we can prove this theorem. We
discuss the rigorous proof of this theorem in the Appendix.

4.2 Security of Batch Verifications

In the our ID-based signature scheme, secure batch verification of Type 3 has
possible and that of Type 2 is the same performance with the Cha-Cheon
scheme. Given k signatures (ID1,m1, U1, h1, V1), · · · , (IDk,mk, Uk, hk, Vk), we
can do batch verifications as follows:

– Compute Qi = H2(IDi) and hi = H1(mi, Ui) for all i = 1, · · · , k. Check
whether

e

(
P,

k∑
i=1

Vi

)
=

k∏
i=1

e (Qi, Ui + hiPpub) .

Now we discuss the security of batch verification of our scheme. At first we
show the security of batch verification of Type 3. To reduce the adaptively chosen
ID attack to the given ID attack in the case of batch verification of Type 3, we
need the following lemma:

Lemma 2. If there is a k-batch forger F0 of Type 3 under an adaptively cho-
sen message and ID attack to our scheme within time bound T0 with probabil-
ity ε0, then there is a k-batch forger F of Type 3 under an adaptively chosen
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message and given ID attack within time bound T ≤ T0 with the probability
ε ≤ ε0

(
1− k

�

) (
k

qH2+k

)
, where qH2 is the maximum number of queries to H2

asked by F0 and k is the maximum number of signatures to be aggregated. In
addition, the number of queries to hash functions, Extract and Signing asked
by F0 are the same as those of F .

We show the proof of the Lemma 2 in the Appendix.

Now in random oracle model we show the security of batch verification of
Type 3 under an adaptively chosen message and given ID attack.

Lemma 3. Let F be k-batch forger of Type 3 which performs an existential
forgery under an adaptively chosen message and given ID attack against our
scheme within a time bound T with probability ε in random oracle model. The
forger F can ask queries to the oracles H1, H2, Extract and Signing at most
qH1 , qH2 , qE, and qS-times, respectively. If ε ≥ (10k(qS + 1)(qS + k · qH1))/�,
then the CDHP can be solved with probability ≥ 1/9 and within running time
≤ (23qH2kT )/ε.

Proof. We construct an algorithm C using the forger F to solve the CDHP.
We assume that P , aP , bP are given as the CDHP instances. The algorithm
C simulates a real signer to obtain signatures which pass the batch verification
from F . If C does not fail this simulation, he gets multiple signatures which pass
the batch verification and using the general oracle replaying technique, it can
solve the CDHP. In Setup, the algorithm C fixes a target identity ID0, and put
Ppub = aP .

Note that ID-Hash Query, Extract Query, Message-Hash Query, and
Signing Query are the same as the single signature case. After the queries, if
the simulation does not fail, the forger F outputs other n−1 ID’s and n multiple
signatures

σi = (mi, Ui, hi, Vi), i = 1, 2, · · · , n

where n ≤ k.
Then C replays the oracles and obtains another n′ − 1 ID′’s and n′ multiple

signatures σ′
i = (m′

i, U
′
i , h

′
i, V

′
i ), i = 1, 2, · · ·n′, where n′ ≤ k. By the forking

lemma, the replay succeeds with the probability ≥ 1/9 and the running time
≤ (23qH2T )/ε. Note that we may assume h1 �= h′

1 since the probability of col-
lision of two random numbers is negligible. Since the random commitment r is
fixed before the hash queries of a message, the corresponding random commit-
ment of σ must be the same with that of σ by the forking lemma. That is, we
have IDi = ID′

j = ID0 and Ui = U ′
j for some i ∈ {1, · · · , n} and j ∈ {1, · · · , n′}

without loss of generality let i = j′ = 1. And according to the Extract Query,
C knows each secret key Di corresponding to IDi except that of ID1 and by
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ID-Hash Query, C knows discrete log of each Qi = H2(IDi), xi, except that
of H2(ID0). Hence from

V =
n∑

i=1

Vi =
n∑

i=1

(riQi + hiDi) =
n∑

i=1

{xi(riP ) + hiDi},

V ′ =
n′∑

i=1

V ′
i =

n′∑
i=1

{x′
i(r

′
iP ) + h′

iD
′
i},

compute V = V − V ′ −
∑n

i=2 Vi −
∑n′

i=2 V
′
i = (h1 − h′

1)D1 so (h1 − h′
1)

−1V =
D1 = abP as desired. The total running time is bounded by the running time of
the forking lemma. 
�

As the same reason with the Cha-Cheon scheme, the batch verification of
Type 1 has the same performance with that of Type 3. In Type 2 signatures,
the performance of our scheme is the same as that of the Cha-Cheon scheme.

From the Lemma 2, Lemma 3 and the Theorem 1, we obtain the following
result.

Theorem 4. Let F0 be a k-batch forger which performs an existential forgery
under an adaptively chosen message and ID attack against our ID-based scheme
with probability ε0 within a time bound T0 in random oracle model. The forger
F0 can ask queries to the oracles H1, H2, Extract and Signing at most qH1 ,
qH2 , qE, and qS-times, respectively.

– In the Type 1 or 3 case, if ε0 ≥ (10(qS +1)(qS + qH1)(qH2 +k)qH2)/k(�−k),
then the CDHP can be solved with probability ≥ 1/9 and within running time
≤ (23qH1(qH2 + k)T0)/

(
ε0k

(
1− k

�

))
.

– In the Type 2 case, if ε0 ≥ (12VqH1 ,k + 6(qH1 + k · qS)2)qH2/(� − 1), then
the CDHP can be solved with probability ≥ 1/9 and within running time
≤ 144823VqH1 ,k(1 + qS)qH2T0/

(
ε0
(
1− 1

�

))
.

4.3 Efficiency of Batch Verifications

In this section, we compare the efficiency of verifications of k individual Cha-
Cheon signatures with that of k-batch verification of Type 3 in our scheme. Here
we assume that we use an elliptic curve with an admissible Tate pairing as a gap
Diffie-Hellman group.

To estimate the performance of our scheme, we first present experimental
results for the cost of several cryptographic primitives in Table 1. We used Miracl
library v.4.8.2 [17] in P3-977 MHz with 512 Mbytes memory. In MapToPoint and
Pairing, we considered a subgroup of order q in a supersingular elliptic curve E
over Fp, where p is a 512 bit prime and q is a 160 bit prime. Note that the pairing
value belongs to a finite field of 1024 bits.

To verify a single Cha-Cheon signature, we need to compute two pairings, a
scalar multiplication in an elliptic curve and a MapToPoint the total running
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Table 1. Cost of basic operations

Function modulus (bits) exponent (bits) performance (msec)

Scalar Mul. in EC 512 160 7.33

MapToPoint 512 (160) 2.42

Pairing 512 (160) 31.71

time is about 73.17ms. So the running time to verify all individual signatures
signed by k distinct signers on k distinct messages is about 73kms. In the batch
verification of Type 3 k multiple signatures using our scheme, we need to compute
k+1 pairings, k scalar multiplications, k MapToPoints, which takes about (41k+
32)ms. Thus if k is large, we can save about half of the verification time. In the
batch verification of Type 2 k multiple signatures, we need to compute only
two pairings, one scalar multiplication and one MapToPoint, which takes about
73ms. Thus the verification cost of the batch verification of Type 2 is almost
that of a single signature.

5 Conclusion

In this paper, we classified batch verifications into three types, Type 1, 2, and 3,
according to the number of signers and messages, and discussed security of pre-
vious well-known ID-based signature schemes in each type of batch verification.
We have shown that the previous ID-based signature schemes are not secure in
batch verifications of Type 1 and 3. We also proposed a new ID-based signature
scheme admitting secure batch verification. The batch verification of Type 2
in our scheme has the same security reduction as in the previous schemes, and
those of Type 1 and 3 are secure against existential forgery, under the adaptively
chosen message and ID attack in random oracle model. Finally we discussed the
efficiency of batch verification of Type 3 in our scheme.
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Appendix: Security Proof

Proof of Theorem 2

Using [8–Lemma 1], we can reduce the forger F0 to F an adaptively chosen
message and given ID attack within time bound T ≤ T0 with the probability
ε ≤ ε0(1− 1

� )/qH2 . We construct an algorithm C using F to solve the CDHP. We
assume that P , aP , and bP are given. Since the forger F is an adaptively chosen
message attacker, he can access to the hash oracles, the extraction oracle, and
the signing oracle, and ask at most qH1 , qH2 , qE , and qS queries for each oracles
respectively. The algorithm C simulates a real signer to get a valid signature
from the forger F . If C does not fail this simulation, he gets a valid signature,
and using the oracle replaying technique he can solve the CDHP.

We may assume the forger is well-behaved in the following sense: A forger F
makes a Extract query for an ID only if an H2 query has been made before for
the ID. Also Signing query is made for a message m only if a H1 queries has
been made before for the m.

Then the algorithm C puts Ppub = aP and performs the following game with
the forger F for a fixed identity ID as follows:

ID-Hash Query. When F makes an ID-hash query IDi, C gives to F an answer
H2(IDi) = bP if IDi = ID and H2(IDi) = xiP for xi ∈R Z/� otherwise.

Extract Query. When F makes an extract query for IDik
, C gives xik

Ppub =
xik

(aP ) as the secret key corresponding to H2(IDik
) for an identity IDik

.
Note that F must not ask the secret key corresponding to the bP = H2(ID).
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Message-Hash Query. F makes qH message-hash queries. For the j-th hash
query Qj , C chooses a random value hj ∈ Z/� and gives to F as the hash
value of Qj for j = 1, · · · qH1 and stores them as H1(Qj) = hj .

Signing Query. If F asks the signature on mjt
of IDit

, C chooses a random
value rt ∈ Z/� responses

Sign(IDit
,mjt

) = (IDit
,mjt

, Ut, ht, Vt),

where Ut = rtP − htPpub and Vt = rt(xit
P ) for t = 1, · · · , qS . Since

(P,H2(IDit
), Ut +htPpub, Vt) is a valid Diffie-Hellman tuple, these signatures

pass the verification algorithm.

If the simulation does not fail, the forger F outputs a valid signature (ID,m,U,
h, V ) with probability ε. After a replay of the forger F , apply the forking
lemma in [26]. Then C obtains two valid signatures σ = (ID,m,U, h, V ) and
σ′ = (ID,m,U, h′, V ′) such that h �= h′ with probability ≥ 1/9 within the time
23qH1T/ε. C can easily obtain the value abP from

(hDID − h′DID)
h− h′ = DID = abP.

By the forking lemma [26] and [8–Lemma 1], we obtain the result of this
theorem. 
�

Proof of Lemma 2

Proof. We assume, without loss of generality, the forger F0 has an extract queries
for any ID at most once. We consider an algorithm F that performs the following
simulation:

Setup. F chooses a random number r ∈ {1, · · · , qH1}. Let IDi be the
F0’s i-th H2-query and ID′

i = ID if i = r and ID′
i = IDi oth-

erwise. Let H ′
2(IDi) = H2(ID′

i), Extract′(IDi)=Extract(ID′
i) and

Signing′(IDi,mi)=Signing(ID′
i,mi)

Queries. If F0 makes the H1, H2 hash queries and Extract, Signing queries,
then F computes H1, H ′

2, Extract′and Signing′ as above and answers the
results.

If the simulation does not fail, F0 outputs signatures σi = (IDi
out,mi, Ui, hi, Vi)

where i = 1, · · · k with probability ε0. Finally, if IDi
out = ID for some i = 1, · · · , k

and IDj
out �= ID for all j �= i and all σis are valid signatures, then F outputs σi

where i = 1, · · · , k. Otherwise the simulation fails.
Since the output distributions of H ′

2, Extract′, Signing′-queries are not
distinguishable those of original ones, we know

Pr[For all i ∈ {1, · · · , k}, σ′
is are valid] ≥ ε.
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Since we consider the hash functions as the random oracles, we obtain the
following result.

Pr[IDj
out = IDi for some j = 1, · · · , k and i = 1, · · · qH2

| For all i ∈ {1, · · · , k}, σ′
is are valid] ≥

(
1− 1

�

)k

≥ 1− k

�

Furthermore since the randomness of r, we have the following inequality.

Pr[IDi
out = IDr for some i = 1, · · · , k and IDj

out �= ID for some j = 1, · · · ,
i− 1, i + 1, · · · , k | IDj

out = IDi for some j = 1, · · · , k and i = 1, · · · qH2 ]

≥ qH2−1Hk−1

qH2
Hk

≥ k(qH2 − 1)
(qh2 + k − 1)(qH2 + k − 2)

≥ k

2(qH2 + k)

Finally, summarizing these, we get the following result as desired:

Pr[IDi
out = IDr = ID for some i = 1, · · · , k and IDj

out �= ID for some
j = 1, · · · , i− 1, i + 1, · · · , k and For all i ∈ {1, · · · , k},

σ′
is are valid] ≥ ε ·

(
1− 1

�

)
· k

2(qH2 + k)
. 
�
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Abstract. In this paper, we first introduce a shift product-based poly-
nomial transformation. Then, we show that the parities of (#E − 1)/2
and (#E′ − 1)/2 are reciprocal to each other, where #E and #E′ are
the orders of the two candidate curves obtained at the last step of CM
method algorithm. Based on this property, we propose a method to check
the parity by using the shift product-based polynomial transformation.
For a 160-bits prime number as the characteristic, the proposed method
carries out the parity check about 20 times faster than the conventional
method when 4 divides the characteristic minus 1.

Keywords: CM method, irreducible cubic polynomial, quadratic power
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1 Introduction

In recent years, the elliptic curve cryptosystem (ECC) has received much at-
tention. For ECC, some attacks have been proposed[1]-[3]. From the viewpoint
of security and implementation of ECC, it is said that a prime order elliptic
curve is the best. In order to systematically generate prime order elliptic curves,
several algorithms has been proposed[4],[5]. We can roughly classify them into
two types; the one adopts a certain order counting algorithm[4],[6] and the other
adopts CM method[5],[7]. This paper is related to the latter and particularly
deals with no two-torsion elliptic curves defined over a prime field Fp.

Applying CM method, we can generate an elliptic curve whose order is a
certain prime number. The input of the algorithm based on the CM method
is the characteristic of the definition field of the curve[8], for example, then
we can obtain j-invariant. According to the j-invariant, we have two candidate
elliptic curves, one of these two curves has the objective order. Therefore, we
must check whether the order of the curve is the objective order. In general,
it is checked by picking a random point on the curve and then calculating a
scalar multiplication with the rational point. This paper proposes a method that
makes this check fast. In the CM method, the class polynomial computation
is the most time-consuming operation[8]. Therefore, most of the conventional
improvements for CM method are given for the class polynomial computation;
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however, recently Koc et al.[7] have proposed an algorithm that prepares a table
of class polynomials in advance, by using this table the algorithm generates a
prime order elliptic curve within several seconds. If we can distinguish the two
candidate curves fast, then Koc et al. algorithm will generate prime order elliptic
curves more effectively.

In this paper, we introduce a shift product-based polynomial transformation
(SPPT) which are carried out by a square root calculation and a polynomial
modulo operation over the prime field Fp. Then, we show that the parities of
(#E−1)/2 and (#E′−1)/2 are reciprocal to each other, where #E and #E′ are
the orders of the two candidate curves obtained at the last step of CM method
algorithm. Based on this property, we propose a method to check the parity by
using SPPT. This parity check method does not need a scalar multiplication
for a rational point, it needs a square root calculation, a polynomial modulo
operation, and a quadratic power residue check instead. In addition, when 4
divides the characteristic minus 1, the proposed method does not need the square
root calculation and polynomial modulo operation. It only needs a quadratic
power residue check, where this check is carried out by an exponentiation in the
prime field. From the experimental results, we show that the proposed method
is superior to the conventional method. For a 160-bits prime number as the
characteristic, the proposed method carries out the parity check about 20 times
faster than the conventional method when 4 divides the characteristic minus 1.
In this paper, we deal with a finite field Fq whose characteristic p is an odd prime
number larger than 3. Fp denotes a prime field. X | Y and X |� Y mean that
X divides Y and does not divide Y , respectively. X || Y means that X divides
Y but X2 does not divide Y . Without any additional explanation, polynomials
in this paper are monic. This paper particularly focuses on the CM method for
generating prime order elliptic curves.

2 Fundamentals

In this section, we go over the fundamentals of elliptic curve, quadratic residue/
non-residue, and CM method.

2.1 Defining Equation

When the characteristic of Fq is not equal to 2 or 3, an elliptic curve over Fq is
generally defined by

E(x, y) = x3 + ax + b− y2 = 0, a, b ∈ Fq. (1)

The solutions (x, y) to Eq.(1) and the point at infinity denoted by O are called
Fq-rational points when the coordinates of x and y lie in Fq. Fq-rational points on
the elliptic curve form an additive Abelian group. In this paper, we denote this
group and its order by E(Fq) and #E(Fq), respectively. The following parameter
t is called the trace of elliptic curve E(Fq);

t = q + 1−#E(Fq). (2)
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2.2 No Two-Torsion Curve

The necessary and sufficient condition for an elliptic curve to have no two-torsion
points is that E(x, 0) given from its defining equation is irreducible over Fq. A
two-torsion point P means that 2P = O, where O plays a role of the unity
in the Abelian group E(Fq). It is necessary for a prime order elliptic curve to
have no two-torsion points, and Nogami et al. algorithm[6] uses this necessary
condition for generating prime order elliptic curves. In what follows, we consider
no two-torsion curves.

2.3 The Order of Elliptic Curve

Let us rewrite the defining equation Eq.(1) as

y2 = E(x, 0) = x3 + ax + b, a, b ∈ Fq. (3)

For an arbitrary element i∈Fq, if E(i, 0) is a quadratic residue in Fq, then the
following two rational points on the curve are given;(

i,±
√

E(i, 0)
)
, (4)

where E(i, 0) �= 0 because E(Fq) is a no two-torsion curve. Therefore, let N be
the number of quadratic residues in the following set;

{x|x = E(i, 0),∀i ∈ Fq}, (5)

the order #E(Fq) is given by

#E(Fq) = 2N + 1, (6)

where 1 shown in the right-hand side of the above equation corresponds to the
point at infinity O. From Eq.(6), N is written as

N =
#E(Fp)− 1

2
. (7)

2.4 Quadratic Residue/Non-residue

For a non-zero element c ∈ Fq, we can check whether c is a quadratic residue
(QR) or quadratic non-residue (QNR) in Fq as follows;

c(q−1)/2 =

{
1 when c is a QR

−1 when c is a QNR
. (8)

The product of two non-zero QRs and that of two QNRs become QRs in Fq. On
the other hand, the product of a QR and a QNR becomes a QNR in Fq.
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2.5 CM Method Algorithm

We refer to the following algorithm[8] as the conventional CM method algorithm
for generating a prime order elliptic curve;

Input : Characteristic p
Output : Prime order elliptic curve E(x, y) over Fp

Step1 : Find a smallest D along with t such that 4p = t2 + Ds2, D, t, s ∈ Z.
Step2 : Check whether one of the orders #E±(Fp) = p + 1 ± t is a prime. If

not a prime, then find another D along with t at Step1.
Step3 : Construct the class polynomial HD(x).
Step4 : Find a root j ∈ Fp of HD(x), then set k = j/(1728− j) ∈ Fp.
Step5 : Check whether the order of E(x, y) = x3+3kx+2k−y2 is #E−(Fp) or

#E+(Fp) by picking a random point P on E(x, y) and computing #E+(Fp)P .
If the order is the objective order, then output the defining equation E(x, y).
Otherwise, output the twisted curve of E(x, y).

The calculations from Step1 to Step4 are too time-consuming steps, therefore
several improvements have been proposed[5],[9]. As compared to these steps,
Step5 is carried quite fast; however, Koc et al.[7] canceled these time-consuming
calculations by preparing a table of class polynomials, for example, in advance.
In this paper, we propose an improvement for Step5.

3 Main Idea

In what follows, we consider a prime field Fp as the definition field. We first
introduce a shift product-based polynomial transformation(SPPT). Then, we
show a relation between SPPT and cubic polynomial E(x, 0).

3.1 Shift Product-Based Polynomial Transformation(SPPT)

Let us consider an irreducible polynomial f(x) over Fp of degree m written as

f(x) =
m∑

i=0

fix
i, fi ∈ Fp, fm = 1. (9)

If fm−1 = 0 and p |� m, as shown in App.A there exists an irreducible polynomial
f̃(x) that satisfies Eqs.(10).

f̃(xp − x) =
p−1∏
i=0

f(x + i), (10a)

f̃(x) =
m∑

i=0

f̃ix
i, f̃i ∈ Fp, f̃m = 1, f̃m−1 = 0. (10b)
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These irreducible polynomials f(x) and f̃(x) hold one to one relation, see App.A.
We consider a shift product-based polynomial transformation(SPPT) as follows;

SPPT : f(x) → f̃(x). (11a)

3.2 For Defining Equation E(x, y)

Let us consider f(x) = E(x, 0) in Sec.3.1. Noting that E(x, 0) is an irreducible
cubic polynomial over Fp in this paper, as shown in Eq.(10a), there exists a cubic
irreducible polynomial Ẽ(x, 0) over Fp that satisfies

Ẽ(xp − x, 0) =
p−1∏
i=0

E(x + i, 0). (12)

By substituting x = 0 into Eq.(12), we have

Ẽ(0, 0) =
p−1∏
i=0

E(i, 0). (13)

From Eq.(13), we have

Ẽ(0, 0)(p−1)/2 =
p−1∏
i=0

E(i, 0)(p−1)/2. (14)

By using the number N defined in Sec.2.3 and substituting Eq.(8), we obtain

Ẽ(0, 0)(p−1)/2 = (−1)p−N . (15)

Noting that this paper deals with an odd prime number as the characteristic p,
from Eq.(14) we have the following property;

Property 1. Let Ẽ(0, 0) be the constant term of a cubic irreducible polynomial
Ẽ(x, 0) over Fp that satisfies Eq.(12), and let N be the number of QRs in the
set Eq.(5). Then, N is odd if and only if Ẽ(0, 0) is a QR in Fp.

3.3 Implementation of SPPT

From Prop.1 and Eq.(15), if we have the constant term Ẽ(0, 0), then we can
check the parity of N by checking whether or not Ẽ(0, 0) is a QR in Fp. In order
to obtain the constant term Ẽ(0, 0), in this section we consider how to determine
the cubic irreducible polynomial Ẽ(x, 0) over Fp that satisfies Eq.(12), that is
how to implement SPPT introduced in Sec.3.1.

Let ω and τ be zeros of f(x) and f̃(x) introduced in Sec.3.1, respectively, then
we have τ = ωp − ω from Eq.(10a). Therefore, f̃(x) is the minimal polynomial
of ωp − ω with respect to Fp, where we should note that ω and τ belong to Fp3
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but not to Fp. As shown in App.B, from f(x) given by Eq.(9) with m = 3, we
obtain the following two candidates of f̃(x);

f̃±(x) = x3 + 3f1x±
√

D(f), D(f) = −(4f3
1 + 27f2

0 ), (16)

where D(f) is the discriminant of f(x). In addition, when f(x) is irreducible,
the discriminant D(f) becomes a QR in Fp[10], therefore we can calculate its
square roots in Fp by Smart’s square root calculation algorithm[8], for example.
Since f(x) and f̃(x) satisfy Eqs.(10), we can distinguish them as follows;

f̃(x) =

{
f̃+(x) when f(x) divides f̃+(xp − x)

f̃−(x) when f(x) divides f̃−(xp − x)
. (17)

For checking Eq.(17), we need polynomial modulo operations for testing whether
f(x) divides f̃+(xp − x) or f̃−(xp − x).

4 Distinguishing the Two Candidate Curves in CM
Method

In this section, we consider CM method[8] as an application of Prop.1, however,
we do not introduce CM method itself into detail. In what follows, the definition
field of elliptic curve is a prime field Fp.

4.1 Two Candidate Elliptic Curves in CM Method

As introduced in Sec.1, several algorithms for generating prime order elliptic
curves have been proposed[5],[6]. In the CM method introduced in Sec.2.5, the
input is the characteristic p and the output is the defining equation E(x, y)
whose order is a prime number. In what follows, for instance, we suppose that
the j-invariant is not 0 or 1728. Let us consider that X is the objective order
written as

X = p + 1− t. (18a)

Using CM method algorithm, we have a pair of the characteristic p and j-
invariant. In other words, we obtain the following defining equation;

E(x, y) = x3 + 3kx + 2k − y2, k = j/(1728− j), k, j ∈ Fp. (18b)

Let #E(Fp) be the order of the curve defined by Eq.(18b), it is possible for
#E(Fp) to be the following two numbers;

#E±(Fp) = p + 1± t. (19)

Only from the j-invariant, we cannot distinguish whether #E(Fp) is #E−(Fp) or
#E+(Fp). For this problem, as shown in Step5, we randomly pick a Fp-rational
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point P on the curve Eq.(18b), then test whether or not XP = O by a scalar
multiplication. If #E(Fp) is not X, then we consider the twist of E(x, y) as

E′(x, y) = x3 + 3kc2x + 2kc3 − y2, (20)

where c is a QNR in Fp.

The parities of (#E±(Fp)− 1)/2:
If the defining equation E(x, y) is a no two-torsion curve, both of the order
#E(Fp) and the trace t are odd. In addition, noting that p is an odd prime
number in this paper, we find that (#E+(Fp) − 1)/2 is an odd number if and
only if (#E−(Fp)− 1)/2 is an even number, because

if 2 || (p− t), then 4 | (p + t), (21a)
if 4 | (p− t), then 2 || (p + t), (21b)

where #E−(Fp)− 1 = p− t, #E+(Fp)− 1 = p + t = (p− t) + 2t.

Therefore, we have the following property;

Property 2. The parity of (#E+(Fp) − 1)/2 and that of (#E−(Fp) − 1)/2 are
reciprocal to each other.

4.2 Proposed Method

In order to distinguish whether the order #E(Fp) is #E+(Fp) or #E−(Fp), this
paper proposes the following Step5’;

Step5’ : For irreducible cubic polynomial E(x, 0) = x3 + 3kx+ 2k, calcu-
late Ẽ(x, 0) that satisfies Eq.(12) by using SPPT as introduced in Sec.3.3
and then calculate the following value T ∈ Fp ;

T = Ẽ(0, 0)(p−1)/2. (22)

Let #E(Fp) be the order of E(x, y) = x3 + 3kx + 2k − y2, we have

N =
#E(Fp)− 1

2
=

{
odd when T = 1

even when T = −1
. (23)

Based on this relation, check whether #E(Fp) is #E+(Fp) or #E−(Fp)
by using Prop.2. If the order #E(Fp) is the objective order, then output
E(x, y). If not, then output the twisted curve of E(x, y).

We can apply Step5’ instead of Step5 in the CM method algorithm introduced
in Sec.2.5. In Step5’, we calculate an irreducible cubic polynomial Ẽ(x, 0) from
f(x) = E(x, 0) by using SPPT as introduced in Sec.3.3.

According to Prop.1 and Prop.2, we can check the parity of N from Ẽ(0, 0)
and therefore we can distinguish whether the order #E(Fp) is #E+(Fp) or
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#E−(Fp), where N is written as Eq.(7). If the order is not the objective order,
the following twisted elliptic curve has the objective order;

E(x, y) = x3 + 3kc2x + 2kc3 − y2, (24)

where c is a QNR in Fp.

when 4 divides p− 1:
Step5 in the conventional algorithm needs a scalar multiplication for a rational
point as introduced in Sec.4.1. On the other hand, Step5’ only depends on
whether or not Ẽ(0, 0) is a QR in Fp, as shown in Eq.(16) and Eq.(17), Step5’
needs a square root calculation, a polynomial modulo operation for SPPT, and
a quadratic power residue check Eq.(22). In other words, we need to distinguish
whether f̃(x) given by SPPT is f̃+(x) or f̃−(x). However, when 4 divides p− 1,
we can easily check whether or not Ẽ(0, 0) is a QR in Fp by

Ẽ(0, 0)(p−1)/2 =
(
±
√
−(108k3 + 108k2)

)(p−1)/2

=
(
−108k3 − 108k2

)(p−1)/4
. (25)

Therefore, the result of Eq.(25) does not depend on the sign ±. Consequently,
when 4 divides p − 1, we can easily check the parity of N without a square
root calculation and polynomial modulo operation for SPPT. It only needs an
exponentiation in the prime field Fp. As compared to a scalar multiplication
for a rational point, we can carry out the calculation of the right-hand side of
Eq.(25) much faster.

When 4 divides p − 1, we use the following Step5” instead of Step5 in the
CM method algorithm introduced in Sec.2.5;

Step5” : For irreducible cubic polynomial E(x, 0) = x3 + 3kx + 2k, cal-
culate the following value T ∈ Fp ;

T =
(
−108k3 − 108k2

)(p−1)/4
. (26)

Then, let #E(Fp) be the order of E(x, y) = x3 + 3kx + 2k − y2, we have

N =
#E(Fp)− 1

2
=

{
odd when T = 1

even when T = −1
. (27)

Based on this relation, check whether #E(Fp) is #E+(Fp) or #E−(Fp)
by using Prop.2. If the order #E(Fp) is the objective order, then output
E(x, y). If not, then output the twisted curve of E(x, y).

We should note that Eq.(26) does not need any square root calculations
because 4 divides p− 1.
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4.3 Experimental Result

Table 4.3 shows the computation times of Step5, Step5’, and Step5” on av-
erage. We used Pentium4(2.63GHz) with C language and NTL(A library for
doing number theory)[11]. For scalar multiplications of Step5, we used binary
method[8].

Table 1. Comparison between Step5, Step5’, and Step5”

[unit:ms]

characteristic p Step5 Step5’ Step5”

2160 + 7 149 45.3 −
2180 + 15 112 52.2 −

4 |� (p − 1) 2200 + 235 131 64.4 −
2220 + 463 242 79.5 −
2240 + 115 177 88.4 −
2160 + 357 113 − 4.83
2180 + 193 139 − 5.57

4 | (p − 1) 2200 + 697 170 − 6.59
2220 + 217 163 − 8.05
2240 + 325 180 − 8.99

* CPU:PentiumIII 846MHz, We used NTL[11].

From the table, we find that the computation times of Step5’ and Step5”
are faster than that of Step5. Especially, when the characteristic p is a 160-bits
prime number, the computation time of Step5” is about 20 times faster than
that of Step5. Therefore, as the input of CM method algorithm, the authors
recommend to choose the characteristic p such that 4 | (p− 1).

In CM method, the class polynomial computation is the most time-consuming
operation[8]. Therefore, most of the conventional improvements for CM method
are given for the class polynomial computation; however, Koc et al[7] algorithm
prepares a table of class polynomials in advance, by using this table the algorithm
generates a prime order elliptic curve within several seconds. By incorporating
our proposed method, Koc et al. algorithm will become about 10% faster. We
can say that the proposed algorithm is enough practical.

5 Conclusion

In this paper, we have introduced a shift product-based polynomial transforma-
tion (SPPT) that was carried out by a square root calculation and a polynomial
modulo operation. Then, we show that the parities of (#E−1)/2 and (#E′−1)/2
are reciprocal to each other, where #E and #E′ are the orders of the two can-
didate curves obtained at the last step of CM method algorithm. Based on this
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property, we proposed a method to check the parity by using SPPT. This parity
check method does not need a scalar multiplication for a rational point, it needs
a square root calculation, a polynomial modulo operation, and a quadratic power
residue check instead. When 4 divides the characteristic minus 1, the proposed
method does not need the square root calculation and polynomial modulo opera-
tion. It only needs a quadratic power residue check. For a 160-bits prime number
as the characteristic, the proposed method can carry out the parity check about
20 times faster than the conventional method when 4 divides the characteristic
minus 1.
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A A Relation Between f(x) and f̃(x)

Let τ and ω be zeros of f̃(x) and f̃(xp − x), then we have

τ = ωp − ω, (28a)

τp = ωp2 − ωp, (28b)

τp2
= ωp3 − ωp2

, (28c)
... (28d)

τpm−1
= ωpm − ωpm−1

. (28e)

By adding these equations, we have

ωpm − ω = τ + τp + τp2
+ · · ·+ τpm−1

= Tr(τ) = −f̃m−1 = 0, (29)

where Tr(x) = x + xp + xp2
+ · · ·+ xpm−1

.

Therefore, noting that τ belongs to Fpm but not to its proper subfield, we find
that ω also belongs to Fpm but not to its proper subfield because ω satisfies
Eq.(28a). In addition, we find that ω + 1, ω + 2, · · ·, ω + (p− 1) are also zeros of
f̃(xp − x). In the case of p |� m, among these zeros, there exists an element that
satisfies Tr(x) = 0[12]. Supposing that ω satisfies Tr(ω) = 0 and denoting the
minimal polynomial of ω by f̃(x), we have f̃(x) that satisfies Eq.(10b).

Next, let us consider an irreducible cubic polynomial f(x) of degree m over
Fp whose zero ω satisfies Tr(ω) = 0 and ω ∈ Fpm . Then, we have

p−1∏
i=0

f(x + i) =
p−1∏
i=0

(x− ω + i)(x− ωp + i) · · · (x− ωpm−1
+ i)

=
m−1∏
i=0

(x− ωpi

)(x− ωpi

+ 1) · · · (x− ωpi

+ (p− 1))

=
m−1∏
i=0

(xp − x− (ωp − ω)pi

). (30)

If τ = ωp − ω belongs to a proper subfield Fpr , r | m of Fpm , then we have

τ + τp + · · · τpr−1
= (ωp − ω) + (ωp2 − ωp) + · · · (ωpr − ωpr−1

) = ωpr − ω. (31)

Since ω does not belongs to the proper subfield Fpr , ωpr−ω is not equal to 0. On
the other hand, τ + τp + · · · τpr−1

is the sum of all conjugates of τ with respect
to Fp, therefore the sum becomes an element in Fp. Let c ∈ Fp be the element,
we have

c + cpr

+ cp2r

+ · · ·+ cpm′r

= (ωpr − ω) + (ωpr − ω)pr

+ (ωpr − ω)p2r

+ · · ·+ (ωpr − ω)pm′r
, (32)
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then we have

(m′ + 1)c = ωpm − ω = 0, (33)

where m′ = m/r−1. This paper deals with the case that the characteristic p does
not divide the extension degree m, therefore c must be 0 because p |� (m′ + 1).
Consequently, τ does not belong to the proper subfield Fpr and therefore f(x)
is an irreducible polynomial of degree m over Fp whose zero τ = ωp−ω satisfies

−fm−1 = Tr(τ) = Tr(ωp − ω) = Tr(ω)p − Tr(ω) = 0. (34)

Then, we have SPPT and the one to one relation between f(x) and f̃(x) is
shown.

B Proof of Eq.(16)

Based on the relation τ = ωp − ω, we have the following equations;

f̃2 = −(τ + τp + τp2
) = 0, (35a)

f̃1 = ττp + τpτp2
+ τp2

τ = 3f1, (35b)

f̃0 = −ττpτp2
= A−B, (35c)

A = ωω2p + ωpω2p2
+ ωp2

ω2, (35d)

B = ω2ωp + ω2pωp2
+ ω2p2

ω. (35e)

Since A + B = 3f0 and AB = f3
1 + 9f2

0 , we obtain

f̃0 = A−B = ±
√
−(4f3

1 + 27f2
0 ). (36)

As shown above, we can easily obtain two candidates of f̃0 without any calcula-
tions in the extension field Fp3 to which ω belongs.
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1 Introduction

The generation of elliptic curves (ECs) with good security properties has been one
of the central considerations in Elliptic Curve Cryptography. One of the most ef-
ficient methods that can be employed for the construction of ECs with specified
order is the Complex Multiplication (CM) method [1, 17]. Briefly, the CM method
starts with the specification of a discriminant value D, the determination of the
order p of the underlying prime field and the order m of the EC. It then computes
a special polynomial, called Hilbert polynomial, which is uniquely determined by
D and locates one of its roots modulo p. This root can be used to construct the
parameters of an EC with order m over the field Fp. A major drawback of Hilbert
polynomials is that their coefficients grow very large withD and hence possess high
computational demands. In order to eliminate this drawback, analternative class of
polynomials with much smaller coefficients, called Weber polynomials, can be used
instead. The issue with Weber polynomials, however, is that their roots (modulo p)
cannot be used to construct directly the parameters of the EC but they first have
to be transformed into the roots of their corresponding Hilbert polynomials.

The CM method is not by itself adequate for applications that require robust
ECs against cryptanalytic attacks. It turns out that the properties of the order
of an EC play a central role in establishing cryptanalytic robustness. One way to
establish robustness is to generate ECs whose order satisfies a certain number of
properties designed to guard against the currently known most effective attacks
[18, 24, 25]. An equally important alternative to cryptographic strength (see e.g.,
[26]) requires that the order of the generated EC is a prime number. Note that in
certain applications it is necessary to have ECs of prime order [6]. Prime order
ECs defined in various fields were also treated in [2, 16, 20, 23].

In this paper we follow the latter approach and study the use of the CM
method for generating ECs of prime order in Fp. Although ECs with no restric-
tions on their order may be generated more efficiently using a point counting
(such as Schoof’s [28]) algorithm1, the requirement of prime order can severely
change the situation. Point counting algorithms first choose the parameters of
the EC and then compute its order. If this order is found non-prime, then an-
other set of EC parameters is generated and the process is repeated. This can be
seen, approximately, as sampling from the set of ECs of prime order (for a fixed
p). There is well supported theoretical and experimental evidence [11] that this
probability is, asymptotically, cp

log p , where cp is a constant depending on p and
satisfying 0.44 ≤ cp ≤ 0.62. Thus, it appears that prime orders are not especially
favored by the point counting approach, as also noted in [11]. CM, on the other
hand, starts with a prime number (the order of the EC) and then constructs the
parameters thus avoiding this averse prime order probability.

In attempting to construct prime order ECs using Weber polynomials two
additional difficulties arise. The first one is that the prime order requirement

1 There are cases where point counting algorithms can be very inefficient compared
to the CM method, e.g., when p is large and the discriminant value is small.
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necessitates that D ≡ 3 (mod 8), which in turn results in Weber polynomials
with degree three times larger than the degree of their corresponding Hilbert
polynomial. The second and most crucial difficulty is that such Weber polyno-
mials (used for the construction of prime order ECs) do not have roots in Fp for
certain values of p, as it is shown in Section 3.

Our work addresses the difficulties outlined above with an eye to applications
and the practitioner’s needs. We pay particular attention to support our theo-
retical findings with a thorough experimental study, thus shedding more light in
the use of polynomials for the efficient generation of prime order ECs using the
CM method, and providing guidance to the practitioner with respect to the res-
olution of these difficulties. In particular, we make the following contributions:
(i) We show that Weber polynomials defined on values of D ≡ 3 (mod 8) and
used in the CM method for generating ECs of prime order have roots in the
extension field Fp3 and not in Fp. (ii) We present a set of simplified transforma-
tions that map the roots of the Weber polynomials in Fp3 to the roots of their
corresponding Hilbert polynomials in Fp. This implies that the particular Weber
polynomials can be used to generate prime order ECs with the CM method. (iii)
We show how a new class of polynomials can be used in the CM method for gen-
erating prime order ECs. The advantage of these polynomials is that they have
the same degree with their corresponding Hilbert polynomials and hence have
roots in Fp. (iv) We perform a comparative experimental study regarding the ef-
ficiency of the CM method using the aforementioned Weber polynomials against
using the new class of polynomials. Although it may seem that the use of Weber
polynomials is inefficient due to their high degree and the fact that their roots
lie in Fp3 (which requires operations with polynomials of degree 2), we provide
experimental evidence which demonstrates that this is not always the case.

We would like to note that the case D ≡ 3 (mod 8) can also be useful for
the generation of ECs that do not necessarily have prime order [29] or for the
generation of special curves, such as MNT curves [19, 20]. This makes our analysis
for class polynomials with such discriminants even more useful.

The rest of the paper is organized as follows. In Section 2 we review some basic
definitions and facts about ECs, the CM method, the Hilbert polynomials, and
discuss some of their properties relevant to the generation of ECs. In Section 3
we present properties of Weber polynomials with D ≡ 3 (mod 8) and describe
their use in the CM method. In Section 4 we elaborate on the construction of a
new class of polynomials that can also be used in the CM method. Finally, in
Section 5 we present our experimental results concerning the efficiency of the CM
method using Weber polynomials against using the new class of polynomials.

2 A Brief Overview of Elliptic Curve Theory and
Complex Multiplication

This section contains a brief introduction to elliptic curve theory, to the Com-
plex Multiplication method for generating prime order elliptic curves and to
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the Hilbert class field polynomials. Our aim is to facilitate the reading of the
sections that follow. For full coverage of the necessary concepts and terms, the
interested reader may consult [5]. Also, the proofs of certain theorems require
basic knowledge of algebraic number theory and Galois theory. The interested
reader is referred to [8, 31, 32] for definitions not given here due to lack of space.

2.1 Preliminaries of Elliptic Curve Theory

An elliptic curve defined over a finite field Fp, p > 3 and prime, is denoted by
E(Fp) and contains the points (x, y) ∈ Fp (in affine coordinates) that satisfy the
equation (in Fp)

y2 = x3 + ax + b, (1)

with a, b ∈ Fp satisfying 4a3 + 27b2 �= 0. The set of these points equipped with
a properly defined point addition operation and a special point, denoted by O
and called point at infinity (zero element for the addition operation), forms an
Abelian group. This is the Elliptic Curve group and the point O is its identity
element (see [5, 30] for more details on this group).

The order, denoted by m, is the number of points that belong in E(Fp). The
numbers m and p are related by the Frobenius trace t = p + 1 − m. Hasse’s
theorem (see e.g., [5, 30]) implies that |t| ≤ 2

√
p. Given a point P ∈ E(Fp),

its order is the smallest positive integer n such that nP = O. By Langrange’s
theorem, the order of a point P ∈ E(Fp) divides the order m of the group E(Fp).
Thus, mP = O for any P ∈ E(Fp) and, consequently, the order of a point is
always less than or equal to the order of the elliptic curve.

Two of the most important quantities of an elliptic curve E(Fp) defined
through Eq. (1) are the curve discriminant Δ and the j-invariant: Δ = −16(4a3+
27b2) and j = −1728(4a)3/Δ. Given a j-invariant j0 ∈ Fp (with j0 �= 0, 1728)
two ECs can be constructed. If k = j0/(1728− j0) mod p, one of these curves is
given by Eq. (1) by setting a = 3k mod p and b = 2k mod p. The second curve
(the twist of the first) is given by the equation

y2 = x3 + ac2x + bc3 (2)

with c any quadratic non-residue of Fp. If m1 and m2 denote the orders of an
elliptic curve and its twist respectively, then m1 + m2 = 2p + 2 which implies
that if one of the curves has order p + 1 − t, then its twist has order p + 1 + t,
or vice versa (see [5–Lemma VIII.3]).

2.2 The Complex Multiplication Method

As stated in the previous section, given a j-invariant one may readily construct
an EC. Finding a suitable j-invariant for a curve that has a given order m can
be accomplished through the theory of Complex Multiplication (CM) of elliptic
curves over the rationals. This method is called the CM method and in what
follows we will give a brief account of it.
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By Hasse’s theorem, Z = 4p−(p+1−m)2 must be positive and, thus, there is
a unique factorization Z = Dv2, with D a square free positive integer. Therefore

4p = u2 + Dv2 (3)

for some integer u that satisfies the equation

m = p + 1± u. (4)

The negative parameter −D is called a CM discriminant for the prime p. For
convenience throughout the paper, we will use (the positive integer) D to refer
to the CM discriminant. The CM method uses D to determine a j-invariant.
This j-invariant in turn, will lead to the construction of an EC of order p+1−u
or p + 1 + u.

The method works as follows. Given a prime p, the smallest D is chosen
for which there exists some integer u for which Eq. (3) holds. If neither of the
possible orders p+1−u and p+1+u is suitable for our purposes, the process is
repeated with a new D. If at least one of these orders is suitable, then the method
proceeds with the construction of the Hilbert polynomial (uniquely defined by D)
and the determination of its roots modulo p. Any root of the Hilbert polynomial
can be used as a j-invariant. From this the corresponding EC and its twist can be
constructed as described in Section 2.1. In order to find which one of the curves
has the desired suitable order (m = p + 1 − u or m = p + 1 + u), the method
uses Langrange’s theorem as follows: it repeatedly chooses points P at random
in each EC until a point is found in one of the curves for which mP �= O. This
implies that the curve we seek is the other one. It turns out that the most time
consuming part of the CM method is the construction of the Hilbert polynomial.
These polynomials have very large coefficients and their construction requires
the use of high precision floating point arithmetic with complex numbers.

We now turn to the generation of prime order ECs. If m should be a prime
number, then it is obvious that u should be odd. It is also easy to show that D
should be congruent to 3 (mod 8) and v should be odd, too. In this paper, we
follow a variant of the CM method for the construction of prime order elliptic
curves. We first determine a discriminant D ≡ 3 (mod 8) and then we construct
the two prime numbers p and m. The most trivial way to do this, is by choosing
at random odd integers u and v and then check whether p and m are prime using
Eq. (3) and Eq. (4). Next, a Weber polynomial corresponding to the discriminant
value D is constructed and we locate a root of it. This root, however, cannot
lead to the construction of the j-invariant directly, since j-invariants are roots
of the Hilbert polynomials. Therefore, we must transform this root to a root of
the corresponding (constructed with the same discriminant) Hilbert polynomial.
The necessary transformations are given in Section 3.

2.3 Hilbert Polynomials

Every CM discriminant D defines a unique Hilbert polynomial, denoted by
HD(x). Given a positive D, the Hilbert polynomial HD(x) ∈ Z[x] is defined as
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HD(x) =
∏
τ

(x− j(τ)) (5)

for values of τ satisfying τ = (−β +
√
−D)/2α, for all integers α, β, and

γ such that (i) β2 − 4αγ = −D, (ii) |β| ≤ α ≤
√

D/3, (iii) α ≤ γ, (iv)
gcd(α, β, γ) = 1, and (v) if |β| = α or α = γ, then β ≥ 0. The 3-tuple of integers
[α, β, γ] that satisfies these conditions is called a primitive, reduced quadratic
form of −D, with τ being a root of the quadratic equation αz2 + βz + γ =
0. Clearly, the set of primitive reduced quadratic forms of a given discrimi-
nant is finite. The quantity j(τ) in Eq. (5) is called class invariant and is de-
fined as follows. Let z = e2π

√−1τ and h(τ) = Δ(2τ)
Δ(τ) , where Δ(τ) = η(τ)24 =

z
(
1 +

∑
n≥1 (−1)n

(
zn(3n−1)/2 + zn(3n+1)/2

))24

. Then, j(τ) = (256h(τ)+1)3

h(τ) .
Let h be the number of primitive reduced quadratic forms, which determines

the degree (or class number) of HD(x). Then, the bit precision required for the
generation of HD(x) can be estimated (see [17]) by

H-Prec(D) ≈ ln 10
ln 2

(h/4 + 5) +
π
√
D

ln 2

∑
τ

1
α

with the sum running over the same values of τ as the product in Eq. (5). Hilbert
polynomials have roots roots modulo p under certain conditions stated in the
following theorem.

Theorem 1. A Hilbert polynomial HD(x) with degree h has exactly h roots
modulo p if and only if the equation 4p = u2 + Dv2 has integer solutions and p
does not divide the discriminant Δ(HD) of the polynomial.

Proof. Let HK be the Hilbert class field of the imaginary quadratic field K =
Q(
√
−D), and let OHK

and OK be the rings of algebraic integers of HK and K
respectively.

Let p be a prime such that 4p = u2 + Dv2 has integer solutions. Then,
according to [8–Th. 5.26] p splits completely in HK . Let HD(x) ∈ Z[x] be the
Hilbert polynomial with root the real algebraic integer j(τ). Proposition 5.29 in
[8] implies that HD(x) has a root modulo p if and only if p splits in HK and
does not divide its discriminant2 Δ(HD). But since OHK

pOHK
/Fp is Galois, HD(x)

has not only one root modulo p, but h distinct roots modulo p. 
�

There are finitely many primes dividing the discriminant Δ(HD) of the
Hilbert polynomial and infinitely many primes to choose. In elliptic curve cryp-
tosystems the prime p is at least 160 bits. Therefore, an arbitrary prime almost
certainly does not divide the discriminant.

2 For a definition of the discriminant of a polynomial see [7].
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3 The CM Method Using Weber Polynomials

In this section we define Weber polynomials for discriminant values D ≡ 3
(mod 8) and prove that they do not have roots in Fp for certain primes p, but
they do have roots in the extension field Fp3 . We then discuss their efficiency
when used in the CM method, and present a transformation that maps roots of
Weber polynomials in Fp3 into the roots of their Hilbert counterparts in Fp.

3.1 Weber Polynomials and Their Roots in Finite Fields

Weber polynomials are defined using the Weber functions (see [1, 13]):

f(y) = q−1/48
∞∏

r=1

(1 + q(r−1)/2) f1(y) = q−1/48
∞∏

r=1

(1− q(r−1)/2)

f2(y) =
√

2 q1/24
∞∏

r=1

(1 + qr) where q = e2πy
√−1.

The Weber polynomial WD(x) ∈ Z[x] for D ≡ 3 (mod 8) is defined as

WD(x) =
∏

�

(x− g(�)) (6)

where � = −b+
√−D
a satisfies the equation ay2+2by+c = 0 for which b2−ac = −D

and (i) gcd(a, b, c) = 1, (ii) |2b| ≤ a ≤ c, and (iii) if either a = |2b| or a = c, then
b ≥ 0. Let ζ = eπ

√−1/24. The class invariant g(�) for WD(x) is defined by

g(�) =

⎧⎪⎨⎪⎩
ζb(c−a−a2c) · f(�) if 2 |/a and 2 |/c

−(−1)
a2−1

8 · ζb(ac2−a−2c) · f1(�) if 2 |/a and 2 | c
−(−1)

c2−1
8 · ζb(c−a−5ac2) · f2(�) if 2 | a and 2 |/c

(7)

if D ≡ 3 (mod 8) and D �≡ 0 (mod 3), and

g(�) =

⎧⎪⎨⎪⎩
1
2ζ

3b(c−a−a2c) · f3(�) if 2 |/a and 2 |/c
− 1

2 (−1)
3(a2−1)

8 · ζ3b(ac2−a−2c) · f3
1 (�) if 2 |/a and 2 | c

− 1
2 (−1)

3(c2−1)
8 · ζ3b(c−a−5ac2) · f3

2 (�) if 2 | a and 2 |/c
(8)

if D ≡ 3 (mod 8) and D ≡ 0 (mod 3).
For these cases of the discriminant (D ≡ 3 (mod 8)), the Weber polynomial

WD(x) has degree three times larger than the degree of its corresponding Hilbert
polynomial HD(x). An upper bound for the precision requirements of Weber
polynomials for both cases of D was presented in [16] and is equal to 3h +
π
√

D
24 ln 2

∑
�

1
α for D �≡ 0 (mod 3) and to 3h + π

√
D

8 ln 2

∑
�

1
α for D ≡ 0 (mod 3). The

sum runs over the same values of � as the product of Eq. (6) and 3h is the
degree of the Weber polynomial (h is the degree of the corresponding Hilbert
polynomial).
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Consider the modular function

Φ2(x, j) = (x− 16)3 − jx (9)

where j is a class invariant for the Hilbert polynomial. The three roots of the
equation Φ2(x, j) = 0 are the powers f24, −f24

1 and −f24
2 of the Weber functions.

A transformation (used in the CM method) from roots of Weber polynomials
to roots of Hilbert polynomials was presented in [16], and is derived from the
modular equation Φ2(x, j) = 0. The transformation for D �≡ 0 (mod 3) is

RH =
(212R−24

W − 16)3

212R−24
W

(10)

and for D ≡ 0 (mod 3) is

RH =
(24R−8

W − 16)3

24R−8
W

(11)

where RW is a root of WD(x) and RH is a root of HD(x). To use these trans-
formations we have to locate RW on a specific field, an issue not addressed in
[16].

In the rest of this section we will show that when u, v are odd numbers and
D ≡ 3 (mod 8), then WD(x) does not have roots modulo p, but its roots belong
to the extension field Fp3 (recall that the order m = p+1±u of the elliptic curve
can be prime only if u is odd, which means that in Eq. (3) v must be odd, too).

Theorem 2. If the equation 4p = u2 + Dv2 has a solution and u, v are odd
integers, then the Weber polynomial WD(x) with degree 3h (D ≡ 3 (mod 8))
has no roots modulo p.

Proof. Given an integer c, let
(

c
2

)
be the Kronecker symbol. From [22–Th. 3.1]

we conclude that if
(

−Dv2

2

)
= −1, then the polynomial Φ2(x, j) (mod p) is

irreducible modulo p. This means that if we could prove that
(

−Dv2

2

)
= −1,

then the equation Φ2(x, j) = 0 (mod p) would have no roots x (mod p) for a
given j (mod p). This j will be a root of Hilbert polynomial modulo p, which
we know from Theorem 1 that always exists. But if there is no x (mod p) that
satisfies the equation Φ2(x, j) = 0 (mod p), then the Weber polynomial cannot
have a root modulo p either. If it had, then according to the transformations
there would also exist an x (mod p) which is a contradiction. We must prove now
that

(
−Dv2

2

)
= −1. Using the Kronecker symbol we know that

(
−Dv2

2

)
= −1

if −Dv2 is odd and −Dv2 ≡ ±3 (mod 8). We will show that Dv2 ≡ 3 (mod 8).
Clearly, since D ≡ 3 (mod 8) = 8d1 + 3 and v = 2v1 + 1 is odd, then Dv2 is
also odd. We have Dv2 = (8d1 + 3)(2v1 + 1)2 = (8d1 + 3)(4v2

1 + 4v1 + 1). That
is, Dv2 ≡ 3(4v2

1 + 4v1 + 1) (mod 8) and because v2
1 + v1 is even then it is easily

seen that Dv2 ≡ 3 (mod 8) which completes the proof. 
�

The next theorem establishes the main result of this section.
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Theorem 3. If the equation 4p = u2+Dv2 has a solution with u, v odd integers,
then the Weber polynomial WD(x) has h monic irreducible factors of degree 3
modulo p. Thus, the polynomial has 3h roots in the extension field Fp3 .

Proof. We have proved in Theorem 2 that the Weber polynomial does not have
roots modulo p if u, v are odd numbers and that the polynomial Φ2(x, j) is
irreducible modulo p. This means that Φ2(x, j) = 0 has three roots x ∈ Fp3 for
a root j ∈ Fp of the Hilbert polynomial. According to Eq. (10) and Eq. (11),
x = 212R−24

W if D �≡ 0 (mod 3), and x = 24R−8
W if D ≡ 0 (mod 3). Thus, there

are at least three roots of the Weber polynomial that correspond to a root j ∈ Fp

of the Hilbert polynomial, and which are either in Fp3 or in an extension field of
greater degree (at most 72 if D �≡ 0 (mod 3) and at most 24 if D ≡ 0 (mod 3)).

Let RW,j be a root of the Weber polynomial that corresponds to a root j of
the Hilbert polynomial. Let fj(x) be the minimal polynomial of RW,j (mod p).
The degree of this polynomial will be at least 3, because the root RW,j is at least
in Fp3 . Then, the Weber polynomial can be written as

WD(x) =
∏
j

fj(x) (mod p). (12)

Since the degree of the Weber polynomial is 3h and the roots j modulo p of the
Hilbert polynomial are h (see Theorem 1) we have that every minimal polynomial
fj(x) will have degree 3. Thus, Weber polynomials have h irreducible cubic
factors. Every factor has 3 roots in Fp3 , which means that there are totally 3h
roots in Fp3 . 
�

3.2 The Use of Weber Polynomials in the CM Method

In this subsection we will elaborate on the use of Weber polynomials for the
generation of prime order ECs. The idea is that we replace Hilbert polynomials
with Weber polynomials and then try to compute a root of the Hilbert polyno-
mial from a root of its corresponding Weber polynomial. To compute the desired
Hilbert root, we proceed in three stages. First, we construct the corresponding
Weber polynomial. Second, we compute its roots in Fp3 . Finally, we transform
the Weber roots to the desired Hilbert roots in Fp. The first stage is accom-
plished using the definition of Weber polynomials in Section 3.1. To compute a
root of WD(x) in Fp3 , we have to find an irreducible factor (modulo p) of degree
3 of the polynomial. This is achieved using Algorithm 3.4.6 from [7]. The irre-
ducible factor has 3 roots in Fp3 from which it suffices to choose one, in order to
accomplish the third stage.

Suppose that x3 + ax2 + bx + c is an irreducible factor modulo p of the
Weber polynomial. From this irreducible factor, we can compute three roots
(one suffices for the CM method) of the Weber polynomial if we have already
defined the reduction polynomial of the extension field Fp3 . We simply set the
reduction polynomial to be equal to the irreducible factor x3 + ax2 + bx+ c and
then a root of the Weber polynomial would be just x.
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Let us see an example: if W403(x) = x6−12x5−26x4+4x3+36x2+20x+4 and
p = 722107661880352729711165735009 then a factor of the Weber polynomial
modulo p is x3+530841998355731959331093661138x2+2654209991778659796655
46830567x + 7221076618803527 29711165735007. Note that 403 is not divisible
by 3 and 722107661880352729711165735007 = p− 2 ≡ −2 (mod p).

The following lemma allows us to determine the constant term of the irre-
ducible factor and consequently to simplify the roots’ transformation as we will
see later.

Lemma 1. Let x3 + ax2 + bx + c be an irreducible factor (modulo p) of the
Weber polynomial with D ≡ 3 (mod 8). Then, the following hold: (i) if D ≡ 0
(mod 3), then c = −1; (ii) if D �≡ 0 (mod 3), then c = −2.

Proof. The constant term of the Weber polynomial is equal to (−1)h for the
first case of D and (−2)h for the second case (see [14]). The Galois group of
the extension HK/K operates on the roots modulo p of HD(x), and therefore
on the cubic irreducible factors of WD(x) (every root of HD(x) corresponds to
three roots of WD(x) and thus to a cubic irreducible factor). Since every element
in this Galois group induces the identity on Fp, all cubic factors of WD(x) will
have the same constant term. Because the constant term of a monic polynomial
is equal to the product of the constant terms of its monic irreducible factors,
it can be easily seen that c = −1 for the first case of D and c = −2 for the
second. 
�

We are now ready to present the transformations for mapping a Weber root
in Fp3 to its corresponding Hilbert root in Fp. Suppose that RW = x is a root of
a Weber polynomial WD(x) in the extension field Fp3 . The calculations in the
transformations must be in Fp3 with reduction polynomial x3 + ax2 + bx + c,
since RW is a root in Fp3 .

The transformations may seem quite complicated because of the arithmetic
operations that take place in the extension field, but they can be simplified
due to Lemma 1. Consider the case D �≡ 0 (mod 3) for which an irreducible
factor of the Weber polynomial is equal to x3 + ax2 + bx − 2. Then, R−24

W =
x−24 = ( x2+ax+b

x(x2+ax+b) )
24 = (x2+ax+b

2 )24. This means that 212R−24
W = (x2+ax+b)24

212 .
Substituting it to Eq. (10) we finally have:

RH =
((x2 + ax + b)24 − 216)3

224(x2 + ax + b)24
. (13)

Similarly, for D ≡ 0 (mod 3) the transformation becomes:

RH =
28((x2 + ax + b)8 − 1)3

(x2 + ax + b)8
. (14)

The nominator and the denominator of the two transformations are elements of
Fp3 . However we know that RH is in Fp and we can find its value dividing only
the leading coefficients of these two elements modulo p. To illustrate the above
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transformations, consider again the Weber polynomial W403. Let p be a prime
as in the previous example, and let the reduction polynomial be the factor of the
W403(x) presented also in the previous example. Then, ((x2 +ax+b)24−216)3 =
485216670393361675137940525358x2 + 498390024660218217560914441491x +
437505083747867349301080018378 and (x2+ax+b)24 = 372203635398289746
518033419220x2 + 193471851293797158505478806686x + 10581862220484269
1408284289782. The root RH of the Hilbert polynomial is equal to

485216670393361675137940525358
224372203635398289746518033419220 (mod p) = 188541528108458443856585415294.

4 The CM Method Using a New Class of Polynomials

Even though Weber polynomials have much smaller coefficients than Hilbert
polynomials and can be computed very efficiently, the fact that their degree
for D ≡ 3 (mod 8) is three times larger than the degree of the corresponding
Hilbert polynomials can be a potential problem, because it involves computations
in extension fields. Moreover, the computation of a cubic factor modulo p in a
polynomial with degree 3h is more time consuming than the computation of a
single root modulo p of a polynomial with degree h.

To alleviate these problems, we can use in the CM method a relatively new
class of polynomials which have degree h like Hilbert polynomials. In particular,
two types of polynomials can be constructed in Z[x] using two families of η-
products: ml(z) = η(z/l)

η(z) [21] for an integer l, and mp1,p2(z) = η(z/p1)η(z/p2)
η(z/(p1p2))η(z)

[10], where p1, p2 are primes such that 24|(p1 − 1)(p2 − 1). We will refer to the
minimal polynomials of these products (powers of which generate the Hilbert
class field and are called class invariants like j(τ)) as MD,l(x) and MD,p1,p2(x),
respectively, where D is the discriminant used for their construction.

The polynomials are obtained from these two families by evaluating their
value at a suitably chosen system of quadratic forms. Once a polynomial is
computed, we can use the modular equations Φl(x, j) = 0 or Φp1,p2(x, j) = 0,
in order to compute a root modulo p of the Hilbert polynomial from a root
modulo p of the MD,l(x) or the MD,p1,p2(x) polynomial, respectively. In this
section we will construct polynomials using only the ml family for prime values
of l, in particular for l = 3, 5, 7, 13. The reason is that only for these values of
l the modular equations have degree 1 in j. For all other values of l or for the
mp1,p2 family, the degree in j is at least 2 (which makes the computations more
“heavy”), the coefficients of the modular equations are quite large (which makes
their use less efficient) and moreover, the computation of mp1,p2(z) involves the
computation of four η-products and not two like ml(z).

In order to construct the polynomial MD,l(x) with l = 3, 5, 7, 13, we used
Theorem 2 from [9] which for our purposes boils down to the following statement.

Theorem 4. [9] Let l ∈ {3, 5, 7, 13} and D > 0 a discriminant such that l|D.
Choose the power me

l as specified in Table 1 . Assume Q = [A,B,C] is a primitive
quadratic form of discriminant D with gcd(A, l) = 1, gcd(A,B,C) = 1 and



272 E. Konstantinou et al.

B2 ≡ −D (mod 4l). If τQ = −B+
√−D

2A , then the minimal polynomial of me
l (τQ)

has integer coefficients and can be computed from an l-system.

Table 1. Class invariants for different values of l

l class invariant

3 m12
3

5 m6
5

7 m4
7

13 m2
13

An l-system is a system S = {(Ai, Bi, Ci)}1≤i≤h of representatives of the reduced
primitive quadratic forms of a discriminant −D such that B2

i − 4AiCi = −D,
gcd(Ai, l) = 1 and Br ≡ Bs (mod 2l) for all 1 ≤ r, s ≤ h. For a more formal
definition see [27].

Although the construction of MD,l(x) polynomials is explained in [9, 21, 22],
the required computation of the primitive forms is not provided. In the following,
we provide all the details for computing these forms, which we also used in
our implementation. Possibly there are alternative ways to generate the same
polynomial MD,l(x) with other, equivalent forms.

For the construction of the polynomials MD,l(x), and according to Theorem 4,
the condition Br ≡ Bs (mod 2l) can be replaced by the condition B2

i ≡ −D
(mod 4l) and because D ≡ 0 (mod l), we can write Bi = l + 2lki ≡ l (mod 2l)
for an integer ki ≥ 1. In particular, MD,l(x) =

∏
τQ

(x − me
l (τQ)) where Q =

[Ai, Bi, Ci] is a primitive form satisfying the conditions gcd(Ai, l) = 1, Bi =
l+2lki and τQ = −Bi+

√−D
2Ai

. The set of forms [Ai, Bi, Ci]1≤i≤h can be computed
from the set of the reduced primitive quadratic forms [α, β, γ] that are used for
the construction of HD(x).

A form [Ai, Bi, Ci] can be computed from a reduced primitive quadratic form
[α, β, γ] using (at most) two transformations from [27–Prop. 3]. The first one
transforms a form [a, b, c] to an equivalent (having the same discriminant −D)
form [a, b + 2ak, c + bk + ak2] for an integer k and the second transforms a
form [a, b, c] to an equivalent form [a + bn + cn2, b + 2cn, c] for an integer n.
In order to compute a form [Ai, Bi, Ci] we first transform a reduced primitive
form [α, β, γ] to a form [α1, β1, γ1] such that β1 and γ1 are divided by l, using
the first transformation. This means that we choose an integer k such that
β1 = β + 2αk ≡ 0 (mod l) and γ1 = γ + βk + αk2 ≡ 0 (mod l). If α ≡ 0
(mod l), we just set α1 = γ and γ1 = α, and we do not apply the transformation
(β1 = β ≡ 0 (mod l), because D ≡ 0 (mod l)). After this transformation, we
use the second transformation from [27] to compute the final form [Ai, Bi, Ci]
from [α1, β1, γ1]. Thus, Ai = α1 + β1n + γ1n

2, Bi = β1 + 2γ1n and Ci = γ1 for
an integer n such that Ai > Bi > Ci.

It is easy to see why this process yields a form that satisfies the desired con-
ditions. The requirement Ai > Bi > Ci exists because our experiments showed
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that it is necessary for the proper construction of the polynomial MD,l(x). For
example, for D = 51 the reduced forms are [1, 1, 13], [3, 3, 5] and the correspond-
ing forms [Ai, Bi, Ci] for l = 3 are [67, 63, 15], [11, 9, 3].

The invariants me
l (τ) are related with j(τ) through the modular equation

Φl(me
l (τ), j(τ)) = 0, based on the definitions of Φl(x, j) for the different values

of l given in Table 2.

Table 2. Modular functions for different values of l

l Φl(x, j)

3 (x + 27)(x + 3)3 − jx

5 (x2 + 10x + 5)3 − jx

7 (x2 + 13x + 49)(x2 + 5x + 1)3 − jx

13 (x2 + 5x + 13)(x4 + 7x3 + 20x2 + 19x + 1)3 − jx

Theorem 5. A polynomial MD,l(x) has h roots modulo p if and only if the equa-
tion 4p = u2+Dv2 has an integer solution and p does not divide the discriminant
Δ(MD,l) of the polynomial.

Proof. It follows the same lines as that of Theorem 1. We know that the class
invariants me

l generate the Hilbert class field, and therefore Proposition 5.29 from
[8] hold. This implies that MD,l(x) has a root modulo p when 4p = u2 + Dv2

has an integer solution, and since OHK

pOHK
/Fp is Galois, the polynomial MD,l(x)

has h distinct solutions modulo p. 
�

The polynomials MD,l(x) can be used in the CM method in a more straightfor-
ward way, compared to that of Weber polynomials for the case of prime order
elliptic curves. Since MD,l(x) has roots RM modulo p, we use an algorithm
for their computation (for example Berlekamp’s algorithm [4]) and then we can
compute the roots RH modulo p of the corresponding Hilbert polynomial HD(x)
from the modular equation Φl(RM , RH) = 0.

We finally note that the precision required for the construction of the MD,l(x)
polynomials is approximately 1

l H-Prec(D) [9].

5 Implementation and Experimental Results

All of our implementations were made in ANSI C using the (ANSI C)
GNUMP [12] library for high precision floating point arithmetic and also for the
generation and manipulation of integers of unlimited precision. The implemen-
tation includes the construction of the Hilbert, Weber and MD,l(x) polynomials,
algorithms for the computation of roots modulo p of a polynomial, algorithms
for the computation of a cubic factor of a polynomial modulo p, and of course



274 E. Konstantinou et al.

all the steps of the CM method for the generation of prime order elliptic curves.
All implementations and experiments have been carried out on a Pentium III
(933 MHz) running Linux and equipped with 256 MB of main memory.

Our experiments first focused on the bit precision and the time requirements
needed for the construction of Weber and MD,l(x) polynomials with D ≡ 3
(mod 8). We also conducted experiments with Hilbert polynomials and we no-
ticed, as expected, that their construction is much less efficient than the con-
struction of Weber or MD,l(x) polynomials for all values of D and l. For this
reason we do not report on these polynomials here (experimental studies re-
garding Hilbert and other polynomials can be found e.g., in [3, 15]). Concerning
Weber polynomials we used discriminants D �≡ 0 (mod 3). We avoid discrimi-
nants D ≡ 0 (mod 3) because the precision requirements are greater than those
of the case D �≡ 0 (mod 3). We have considered various values of D and h and
report on our experimental results in Figure 1 and Figure 2. We noticed, as the
theory dictates, that the precision required for the construction of Weber poly-
nomials WD(x) is less than the precision required for the construction of MD,l(x)
polynomials for all the values of l that we examined (in Section 4 we explained
why we consider these particular values of l). Among the MD,l(x) polynomials
the least precision is required for the construction of MD,13(x), followed by the
construction of MD,7(x), followed by the construction of MD,5(x). The greatest
requirements in precision are set by the MD,3(x) polynomials.

The same ordering can be observed in the construction time. For Figure 2
(time in seconds) we used the same values of D as in Figure 1 and also in this
figure the differences among the polynomials are very clear. We observed that
the time for the construction of MD,l(x) depends not only on the precision re-
quirements of the polynomials, but also on the convergence rate of η-products.
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Fig. 1. Bit precision for the construction of class polynomials
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Fig. 2. Time requirements for the construction of class polynomials

The greater the l, the slower the convergence. This is why in Figure 2 the differ-
ences do not seem to be analogous with the differences in Figure 1. This favors
Weber polynomials, as the η-products in their construction converge faster than
any of the MD,l(x) polynomials, making their generation even more efficient.

The coefficients of the Weber polynomials are also smaller than the coeffi-
cients of the MD,l(x) polynomials, following the same relative order with pre-
cision and time. However, the disadvantage of Weber polynomials is that their
degree is three times larger than the degree of the MD,l(x) polynomials. There-
fore, the space required for the storage of a Weber polynomial WD(x) can be
larger than the space required for the storage of MD,13(x) or MD,7(x). Ac-
tually, it turns out that MD,l(x) polynomials can be even more advantageous
when it comes to storage requirements as our experiments showed. Suppose that
MD,l(x) = xh + M1x

h−1 + ... + Mh−1x + Mh and h is even. We noticed that
every coefficient Mi of MD,l(x) is divisible by l. Moreover, when l = 13, then
Mh = 13h/2 and Mh−i

Mi
= 13h/2−i for 1 ≤ i ≤ (h/2 − 1). For l = 7, Mh = 7h,

Mh−i

Mi
= 7h−2i; for l = 5, Mh = 53h/2, Mh−i

Mi
= 53h/2−3i; and finally for l = 3 we

have Mh = 33h, Mh−i

Mi
= 33h−6i. Using these properties of the MD,l(x) polyno-

mials, we can reduce the space required for their storage (if someone wants to
store them for subsequent use).

This is not the only advantage of MD,l(x) against WD(x). The large degree
of the Weber polynomials is a disadvantage for the time efficiency of the CM
method, because the time for finding a cubic factor of the polynomial can be
much larger than the time for finding a single root modulo p of a polynomial with
three times smaller degree. In Table 3 we report on the time (in seconds) that is
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Table 3. Time for the computation of a cubic factor of Weber polynomials and of a
linear factor of the MD,l(x) polynomials, together with their construction time

D h l TW CW TM CM

403 2 13 0.12 0.63 0.01 0.38

1027 4 13 0.40 1.31 0.02 0.36

2035 8 5 1.53 2.35 0.07 1.31

2795 12 13 3.88 3.60 0.13 2.12

4403 20 7 13.12 5.15 0.44 8.71

5603 22 13 16.97 6.94 0.50 8.38

6995 32 5 41.05 9.64 1.72 36.03

22435 32 5 41.05 17.80 1.72 72.94

required for the computation of a cubic factor modulo p of WD(x), denoted by
TW , and the time that is required for the computation of a linear factor modulo
p of the MD,l(x) polynomials denoted by TM , for various values of l. The prime
p has size 160 bits. CW and CM is the time required for the construction of the
WD(x) and the MD,l(x) polynomials, respectively. The degree of WD(x) is 3h.
Note that CW + TW (resp. CM + TM ) is the time that mostly dominates and
differentiates the use of polynomials (Weber versus MD,l(x)) in the CM method,
since the time for the other steps of the method is practically independent of
the polynomials used.

We observe from Table 3 that CW +TW is almost always larger than CM +TM ,
implying that the use of Weber polynomials is more time consuming than the
use of the MD,l(x) polynomials. However, we also observed that in some cases
when D increases, h is of moderate size and l ∈ {3, 5}, the construction of the
MD,l(x) polynomials may become less efficient (cf. last line of Table 3) and the
total time of the CM method with these polynomials can be larger than the time
required by the method when their corresponding Weber polynomials are used.

In conclusion, the type of polynomial that one should use depends on the
particular application. If the main focus is on time or precision regarding the
construction of the polynomials, then Weber polynomials should be preferred. If
the focus is on fast and frequent generation of ECs and which implies storage of
polynomials for subsequent use in the CM method, then the MD,l(x) polynomials
(l �= 3) must be preferred. Finally, if the class polynomials are computed online
with the CM method, then the selection of the proper polynomial depends on
the value of D and h. Notice though, that Weber polynomials can be constructed
for any value of D ≡ 3 (mod 8), while MD,l(x) polynomial add a restriction for
D, demanding that D ≡ 0 (mod l).
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Abstract. The Gallant-Lambert-Vanstone method [14] (GLV method
for short) is a scalar multiplication method for elliptic curve cryptogra-
phy (ECC). In WAP WTLS[47], SEC 2[42], ANSI X9.62[1] and X9.63[2],
several domain parameters for applications of the GLV method are de-
scribed. Curves with those parameters have efficiently-computable en-
domorphisms. Recently the GLV method for hyperelliptic curve (HEC)
Jacobians has also been studied.

In this paper, we discuss applications of the GLV method to curves
with real multiplication (RM). It is the first time to use RM in cryp-
tography. We describe the general algorithm for using such RM, and we
show that some genus 2 curves with RM have enough effciency to be
used in the GLV method as in the previous CM case.

Keywords: Public Key Cryptography, Elliptic Curve Cryptography, Hy-
perelliptic Curve Cryptography, Scalar Multiplication, GLV Method.

1 Introduction

Presently elliptic curve cryptography (ECC) and small genus (≤ 3) hyperelliptic
curve cryptography (HECC) arouse much interest because of its higher efficiency
in comparison with RSA. Thus efforts to improve the efficiency of those cryp-
tosystems have been continued.

Widely used elliptic curves for ECC are classified into binary-field ones and
prime-field ones. Moreover in the both categories, there exist randomly chosen
ones and more efficiently computable ones ([1, 2, 42, 47]). For binary-field ones,
very special EC parameters have been known as Koblitz curves for great effi-
ciency for a long time ([24]). They use the Frobenius endomorphism for efficient
computation.

In case of prime-field parameters, a method of efficient computation in [14]
(Gallant-Lambert-Vanstone method, GLV method for short) can be used. Some
efficiently-computable endomorphisms are used also in this case. In SEC 2[42],
such curves are also called “Koblitz curves” like binary-field ones. Here we call
such parameters over non-binary fields “GLVnbf parameters”. Some GLVnbf EC
parameters are included in the parameter list of WAP WTLS[47], SEC 2[42],
ANSI X9.62[1] and X9.63[2] etc. All those are of type 2 in Table 1 in section 3.

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 279–295, 2005.
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Recently genus 2 HECC has got comparable perfomance to ECC of the same
security level ([3, 26, 29]). In [38, 27], more efficient HEC parameters (not so-
called Koblitz curves) are studied in the binary-field case.

So far only CM (complex multiplication) HECs are considered for HEC
GLVnbf parameters like in the EC case. However, other endomorphisms can be
used for HEC of genus > 1. Corresponding studies have not yet been reported.
Hence in this paper we describe fast endomorphisms other than CM on Jaco-
bian of genus 2 curves to enlarge the applicability of the GLV method. They are
called real multiplication (RM), and we report that those are efficient enough to
be used in the GLV method as in the CM case. It is the first time to use RM in
cryptography.

As the RM is not induced from an automorphism of the curve, the calculation
is new, and explained in section 4. The descriptions and analysis of the algorithm
are divided into several subsections. Firstly, in subsection 4.1, we describe the
algorithm using the point-sum representation of divisors for a curve in a 3-
parameter family. Based on that, in subsection 4.2, we describe the general
algorithm without solving quadratic equations (Algorithm 1). In subsection 4.3,
due to Hashimoto [18] (see also [17]), we simplify the algorithm on a curve Cβ,γ

(with 2 parameters β, γ), and show that an application of the endomorphism
takes at most 1.5 times as long as a doubling on Jacobians. Thus in subsection
4.4, we show the endomorphism can be used in the GLV method as in the CM
case. In subsection 4.5, through example RM curves, we point out that they
don’t have some special properties of previous CM GLV curves.

We treat −1±√
5

2 -multiple endomorphisms in [6, 17, 20] mainly in this paper,
and we call curves with those endomorphisms on their Jacobians “Brumer-
Hashimoto (BH) curves” (with 3 parameters) and “Mestre-Hashimoto (MH)
curves” (with 2 parameters). For details, see section 4.

In this paper, firstly, we briefly review some necessary basic notions in section
2, and previous examples of GLV curves in section 3. As is mentioned above,
we investigate BH (and MH) curves and their endomorphisms on Jacobians in
section 4. And in section 5, we see (a variant of) the Algorithm 1 is also applicable
for curves with

√
2 multiplication treated in [4, 21].

2 Basic Notions

We deal with a genus 2 curve C : Y 2 = f(X) defined over a finite field Fq of
order q where the characteristic p of Fq is not 2.

2.1 Mumford Representation

In this subsection, we review the representation of divisors on a genus g curve
C : Y 2 = f(X), so-called Mumford representation. A reduced divisor is repre-
sented by a pair of polynomials (u(X), v(X)) ∈ Fq[X]2 s.t. u(X)|v(X)2 − f(X),
deg v(X) < deg u(X) ≤ g and u(X) is monic. JacC consists of all reduced divi-
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sors, and JacC(Fq) consists of all reduced divisors (u(X), v(X)) whose coefficients
are in Fq. We call this group JacC(Fq) Jacobian group in this paper.

2.2 GLV Method

Here we survey the GLV method for elliptic curve groups E(Fq) or Jacobian
groups JacC(Fq) (where the minimal polynomial of the below ψ is quadratic).
We assume E or JacC has an efficiently-computable endomorphiam ψ. Let the
restriction of ψ to a cyclic subgroup G (⊂ E(Fq) or JacC(Fq)) correspond to the
multiplications by λ(∈ [1, n − 1], where n := �G). For a point P (or a divisor
class [D]) ∈ G to calculate kP (or k[D]), firstly we calculate k1, k2 s.t.

k = k1 + k2λ k1, k2 = O(
√
n) . (1)

And applying “simultaneous multiple points scalar multiplication” (see [44] for
example) to P, λP (= ψ(P )) (or [D], λ[D]), we obtain kP (or k[D]) respectively.
Therefore, on average a speedup by a factor of 16/9 is obtained over the best
general methods for scalar multiplication. We call this GLV method.

It is clear that if we can find smaller k1, k2, we can calculate scalar multiplica-
tion more efficiently. Therefore, in [14, 37, 25, 40] they proposed several method
of calculating “smaller” k1, k2 (in other words, decomposition of k).

Ciet et al. [9] proposed a speedup using ψ-adic expansion of scalar instead
of ordinary binary expansion. And, in [10] they also proposed countermeasures
against DPA (Differential Power Analysis) in using the GLV method.

3 Previous Examples of GLV Curves (Not Using
Frobenius Endomorphisms)

Previously proposed fast endomorphisms ψ for the GLV method except for
Frobenius endomorphisms are divided into 3 types as in Table 1. Especially
in the case of genus 1 and 2, those have the following special properties.

1. A (hyper-)elliptic curve of type 1 has an automorphism ψ. In particular in
the genus 2 case (i.e. C : Y 2 = X5 + a2X

3 + a4X), its Jacobian varieties are
isogeneous to a product of elliptic curves over the degree 6 extension field
of Fq (see [22]). We can verify it by using the criterion in [15] section 4 (see
[5, 13, 28, 43] also).

2. A Curve of type 2 has also an automorphism ψ. There exists only one curve
of genus 1 (or 2) of type 2 up to isomorphism over Fq respectively.

3. CM ψ’s of elliptic curves of type 3 are not automorphisms of curves. However,
there exist only a few isomorphism classes of the curves.

That is, previously proposed ψ’s of genus 1 or 2 have either of two special
properties that “The Jacobian varieties are split (over the degree 6 extension
field)” or “There exist only a few isomorphism (isogeny) classes”.



282 K. Takashima

Table 1. Examples of endomorphisms ψ except for Frobenius end (CM)

type source curve equation Q-coeff. char. poly. of ψ

example 3 in [14] Y 2 = X3 + aX T 2 + 1
1. example 3 in [37] Y 2 = X5 + aX T 4 + 1

example 4 in [37] Y 2 = X7 + aX T 4 − T 2 + 1

example 2 in [37]
Y 2 = X2g+1 + a2X

2g−1+
· · · a2g−2X

3 + a2gX
T 2 + 1

2. example 4 in [14] Y 2 = X3 + b T 2 + T + 1
example 5 in [37]
(see also [7, 41])

Y 2 = X2g+1 + b T 2g + T 2g−1 + · · · + T + 1

3. example 5 in [14] Y 2 = X3 − 3
4
X2 − 2X − 1 T 2 − T + 2

example 6 in [14] Y 2 = 4X3 − 30X − 28 T 2 + 2

In this paper, we propose the use of RM on genus 2 Jacobian in the GLV
method. Those provide various absolutely simple (non-isomorphic) Jacobian va-
rieties applicable for the GLV method (for comparison of computational amount
with the previous curves, see section 4.4).

4 Brumer-Hashimoto (BH) Curves and
Mestre-Hashimoto (MH) Curves

At first in this section, we describe a HEC of genus 2 whose Jacobian admits
the action of the ring Z[1+

√
5

2 ] as its endomorphism ring. The curves have been
studied by G. Humbert, J. -F. Mestre, and K. Hashimoto [17, 18, 20, 23, 32, 33]
etc. We describe the explicit calculation method of a RM ψ on the Jacobian
group.

Here we briefly summarize (a part of) previous researches of the genus 2
curves with the above property from number-theoretical viewpoint. Mestre ob-
tained a 2-parameter family ({Cβ,γ} in subsection 4.3)[32, 33] based on classical
works by Humbert [23] etc. Brumer has described a 3-parameter family which
contains the above family as a subfamily ([6], see also [8] p.164 and the last com-
ment in [32]). Hashimoto reconstructed curves of this family as the normal form
C0(a, b, c) (equation (2)) based on the descent theory in geometric Galois theory.
He also obtained explicit formulas (3) and (4) for the RM ([20]), and pointed
out that they are very simple for Cβ,γ ([17, 18], see formulas (9) in subsection
4.3). Therefore, we call a general curve in the family {Cβ,γ} “Mestre-Hashimoto
(MH) curve” and that in {C0(a, b, c)} “Brumer-Hashimoto (BH) curve” in this
paper.1 It is the first time to use such RM curves in cryptography.

1 As is shown in [19, 20], the family {C0(a, b, c)} contains a subfamily of curves with
split Jacobian (see also section 3). In this paper, we don’t call them BH curves.
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BH curves are given by the following equation. Those are parametrized by
constants a, b, c ∈ Fq that are given by some rational expressions a = a(s, t, z), b =
b(s, t, z), c = c(s, t, z) of s, t, z ∈ Fq.

C0(a, b, c) : Y 2 = X6−(4 + 2b + 3c)X5+(2+2b+b2−ac)X4

−(6+4a+6b−2b2+5c+2ac)X3 +(1+b2−ac)X2+(2−2b)X+c+1 .
(2)

On that curve, an algebraic correspondence Xψ ⊂ C0(a, b, c) × C0(a, b, c) is
described as follows[20]. In the following equations (3) and (4) of Xψ, coordinates
of C0(a, b, c)×C0(a, b, c) are given by (X1, Y1, X2, Y2). We define Js(X) := (X−
s)(sX + s− 1)((s + 1)X − 1) for the above constant s ∈ Fq.

A(X1, X2) :=τ1X
2
1X

2
2 +τ2X1X2(X1+X2)

+τ3(X1+X2)2+τ4X1X2+τ5(X1+X2)+τ6 =0 ,
(3)

Js(X2)Y1 = Js(X1)Y2 . (4)

Here τ� (� = 1, . . . , 6) are constants given by some polynomials of s, t, z. The
endomorphism ψ on JacC0(a,b,c) defined by Xψ satisfies the equation ψ2+ψ−1 =
0 (1 : identity map) [20].

Therefore, ψ(∈ End(JacC0(a,b,c))) is a fundamental unit in the real quadratic
field, that is an automorphism on the Jacobian. When genus g > 1 and finite
field characteristic p > g + 1, except for some very special cases, the order of
automorphism group of HEC is less than or equal to 84(g− 1) ([11]). Therefore,
we can verify that the RM ψ is not induced by any automorphism on HEC in
general. In fact, for HEC C1 in Table 5 in subsection 4.5, the order of ψ (in F∗

n)
is 104421127348307506991 (> 84). For other curves in the Table, the order > 84
also. This is a new property of the RM ψ compared to the previous CM’s for
cryptographic use.

We consider the equation (2) whose RHS has a zero point in Fq only. There-
fore, (2) is transformed to Y 2 = f(X) whose RHS has degree 5. We use it as
defining equation of C0(a, b, c). Thus equations (3) and (4) are transformed to
A∗(X1, X2) = 0 and J∗

s (X2)Y1 = J∗
s (X1)Y2 respectively. Here A∗(X1, X2) is

a polynomial with degX1
A∗ ≤ 2 and degX2

A∗ ≤ 2, and J∗
s (X) is a rational

expression whose numerator and denominator have degree ≤ 3 respectively.
In the following, for a general element (u1(X), v1(X)) (i.e. deg u1(X) = 2,

deg v1(X) = 1) in JacC0(a,b,c)(Fq) s.t.

u1(X)=X2+u1,1X+u1,2 , v1(X)=v1,1X+v1,2 (5)

where u1,�, v1,� ∈ Fq (� = 1, 2), we show ψ calculation algorithms. In subsection
4.1, the algorithm using point-sum representation of diviors is described. And
in subsection 4.2, that using Mumford representation (subsection 2.1) without
solving several quadratic equations A∗(x1,1, X2) = 0, A∗(x1,2, X2) = 0 etc. are
described.

4.1 Algorithm for ψ over Fq (Using Point-Sum Representation)

ψ calculation algorithm on JacC(Fq) is as follows. In this subsection, we don’t
treat the last reduction (in a linear equivalence class) step of the divisors. Here we
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describe the calculation algorithm from a divisor D1 to the divisor D2 determined
by the algebraic correspondence Xψ.

ψ : JacC(Fq) −→ JacC(Fq)[
D1 := P1,1 + P1,2

]
$→

[
D2 := (P2,1 + P2,2) + (P2,3 + P2,4)

] (6)

Here we set Pi,j := (xi,j , yi,j) (xi,j , yi,j ∈ Fq, i = 1, 2, j = 1, . . . , 4). x2,1, x2,2

are two roots of A∗(x1,1, X2) = 0 in variable X2, and x2,3, x2,4 are two roots of
A∗(x1,2, X2) = 0 in variable X2. And y2,j = y1,1

J∗
s (x1,1)

J∗
s (x2,j) for j = 1, 2, and

y2,j = y1,2
J∗

s (x1,2)
J∗

s (x2,j) for j = 3, 4. When D2 is represented by two polynomi-
als u2(X) and v2(X), u2(X) =

∏
j=1,...,4(X − x2,j) and v2(X) is the unique

cubic polynomial such that v2(x2,j) = y2,j(j = 1, . . . , 4). If [D1] ∈ JacC(Fq),
as is shown in subsection 4.2, [D2] ∈ JacC(Fq). Setting d(X) := v1(X)

J∗
s (X) , the cu-

bic polynomial whose value at x2,1, x2,2 is d1(:= d(x1,1)), and that at x2,3, x2,4

is d2(:= d(x1,2)) is represented as follows using Lagrangian interpolation for-
mula (i.e. L(X) is the cubic polynomial s.t. d1 = L(x2,1),d1 = L(x2,2), d2 =
L(x2,3),d2 = L(x2,4)).

L(X) := d1H1 + d2H2 s.t.

H1(X) :=
∏

j∈{2,3,4}
{(X−x2,j)/(x2,1−x2,j)}+

∏
j∈{1,3,4}

{(X−x2,j)/(x2,2−x2,j)} ,

H2(X) :=
∏

j∈{1,2,4}
{(X−x2,j)/(x2,3−x2,j)}+

∏
j∈{1,2,3}

{(X−x2,j)/(x2,4−x2,j)} .

(7)

At last, we obtain v2(X) = L(X)J∗
s (X) mod u2(X).

4.2 Algorithm for ψ over Fq (Using Mumford Representation)

In this subsection, we describe the same calculation in the subsection 4.1 without
solving several quadratic equations (Algorithm 1). In Algorithm 1, a subroutine
(ExpFundSym2) that rewrites symmetric expressions to expressions in terms of
fundamental symmetric polynomials is used several times. Hence we define the
subroutine ExpFundSym2 as follows.

Inputs are a symmetric rational expression μ = μ(X1, X2) and rational ex-
pressions ω1(X3) and ω2(X3). By using relations σ1 = X1 +X2 and σ2 = X1X2,
we transform μ(X1, X2) to the rational expression ν(σ1, σ2) w.r.t. σ1, σ2. Next
we substitute ω1,ω2 to σ1,σ2 in ν(σ1, σ2) respectively. That is a rational expres-
sion ξ(X3) of X3, which is the output of ExpFundSym2 (i.e. ξ(X3) = ν(ω1, ω2)
= ExpFundSym2(X1, X2, X3, μ, ω1, ω2)).

Example. When μ(X1, X2) = X2
1 + X2

2 , ω1 = X3 + 1 and ω2 = X3 − 1, we
calculate ExpFundSym2(X1, X2, X3, μ, ω1, ω2) as follows.

At first, ν(σ1, σ2) = σ2
1−2σ2. By substituting ω1 and ω2, ν(ω1, ω2) = ω2

1−2ω2

= (X3 + 1)2 − 2(X3 − 1) = X2
3 + 3. Therefore, ξ(X3) = X2

3 + 3 is the output of
ExpFundSym2(X1, X2, X3, μ, ω1, ω2).

Using the ExpFundSym2, we give the calculation algorithm from a divisor
D1 = (u1(X), v1(X)) in the formula (5) to D2 in the diagram (6).
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Algorithm 1 RM ψ on JacC0(a,b,c) (without linear equivalence reduction)
Input : D1 = (u1(X), v1(X)) ∈ JacC0(a,b,c)(Fq)
Output : D2 = (u2(X), v2(X)) ∈ JacC0(a,b,c)(Fq)
[Calculation of u2(X)]
1: ũ2(X1,1, X1,2, X2) ← A∗(X1,1, X2)A

∗(X1,2, X2)
2: Using notation ũ2(X1,1, X1,2, X2) =

∑
�=0,...,4 ρ̃4−�(X1,1, X1,2)X

�
2,

ρ� ← ExpFundSym2(X1,1, X1,2, ·, ρ̃�,−u1,1, u1,2) (	 = 0, . . . , 4)
3: u2(X) ← X4 +

∑
�=0,...,3(ρ4−�/ρ0)X

�

[Calculation of v2(X)]

4: Using notation A∗(X1,j , X2) = α0(X1,j)X
2
2 + α1(X1,j)X2 + α2(X1,j) (j = 1, 2),

set δ1(X1,j) ← −α1(X1,j)

α0(X1,j)
, δ2(X1,j) ← α2(X1,j)

α0(X1,j)
(j = 1, 2).

5: H̃1(X, X1,1, X2,3, X2,4)←ExpFundSym2(X2,1, X2,2, X1,1, H1, δ1(X1,1), δ2(X1,1)).

6: ˜̃H1(X, X1,1, X1,2) ← ExpFundSym2(X2,3, X2,4, X1,2, H̃1, δ1(X1,2), δ2(X1,2)).

7: Setting L̃(X, X1,1, X1,2)←d(X1,1)
˜̃H1(X, X1,1, X1,2) + d(X1,2)

˜̃H1(X, X1,2, X1,1),
L(X) ← ExpFundSym2(X1,1, X1,2, X, L̃,−u1,1, u1,2).

8: v2(X) ← L(X)J∗
s (X) mod u2(X).

[Calculation of u2(X)]

By substituting X1,1 and X1,2 to X1 in the LHS of the equation (3), we obtain
two quadratic polynomials A∗(X1,1, X2) and A∗(X1,2, X2) w.r.t. X2 respectively.
We set ũ2(X1,1, X1,2, X2) := A∗(X1,1, X2)A∗(X1,2, X2). Then ũ2 is symmetric
w.r.t. X1,1 and X1,2. Therefore, defining ρ̃4−�(X1,1, X1,2) as in Algorithm 1 step
2 (i.e. ũ2 =

∑
�=0,...,4ρ̃4−�(X1,1, X1,2)X�

2 ), these polynomials ρ̃4−�(X1,1, X1,2)’s
are symmetric. Therefore, for � = 0, . . . , 4, we can set ρ� := ExpFundSym2

(X1,1, X1,2, ·, ρ̃�,−u1,1, u1,2) (∈ Fq). Finally we have u2(X) = X4+
∑

�=0,...,3

(ρ4−�/ρ0) X� (here, the numerators and denominators of ρ� are represented by
polynomials of u1,1, u1,2 of degree at most 2).

[Calculation of v2(X)]

We substitute indeterminates X2,j (j = 1, . . . , 4) to variables x2,j (j = 1, . . . , 4)
in Hr (r = 1, 2) in the formulas (7) respectively. Initially we set Hr the obtained
rational expressions Hr(X,X2,1, X2,2, X2,3, X2,4) respectively. The total degrees
w.r.t. X2,j of the numerators and denominators of Hr are at most 5.

Both Hr’s (r = 1, 2) are symmetric w.r.t. X2,1 and X2,2 respectively, and
also symmetric w.r.t. X2,3 and X2,4 respectively. Hence they are expressed by
polynomials of coefficients of polynomials A∗(X1,1, X2), A∗(X1,2, X2) of X2. In
the following, δ�(X1,j) ← α�(X1,j)

α0(X1,j)
(j = 1, 2). Next, for r = 1, 2, we calculate

H̃r ← ExpFundSym2(X2,1, X2,2, X1,1,Hr, δ1(X1,1), δ2(X1,1)) ,

˜̃Hr ← ExpFundSym2(X2,3, X2,4, X1,2, H̃r, δ1(X1,2), δ2(X1,2)) .
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However, by the permutation (13)(24) (product of two transpositions) of in-
dices j in the formulas (7), H1(X) changes to H2(X) and vice versa. Hence
˜̃H1(X,X1,2, X1,1) = ˜̃H2(X,X1,1, X1,2). Consequently, as in Algorithm 1, we cal-

culate ˜̃H1(X,X1,1, X1,2) only. Thus, as L̃ in Algorithm 1 is invariant under ex-
change between X1,1, X1,2 (two roots of u1(X) = 0), coefficients of L̃ are ex-
pressed by polynomials of coefficients of u1(X). At last, we obtain v2(X) as
L(X)J∗

s (X) mod u2(X).
We investigate the degrees of the above polynomials. The degrees of the

numerators and denominators of δ�’s are at most 2. Therefore, the degrees w.r.t.
X1,1, X1,2 of the numerators and denominators of ˜̃Hr are at most 20. As the
degrees of the numerators and denominators of d(X) are at most 4, the degrees
w.r.t. u1,1,u1,2 of the numerators and denominators of L are at most 24. Those
w.r.t. v1,1,v1,2 are at most 1.

[Efficient Implementation]

In the above algorithms, we have shown the feasibility of calculation of the RM ψ
without solving quadratic equations. However, the above degree estimates show
that the direct implementation of Algorithm 1 seems inefficient.

Practically, based on Algorithm 1, we should take an “explicit formulas”
approach like [26, 29]. That is, by writing up the formulas on finite field operation
level, we can reduce the amount of the calculation of ψ more. In [26, 29], we see
that explicit formulas (implementations) for the main (or dominant) cases are
important practically. Similarly, in case of the calculation of ψ, the analysis of
the main case is important. Hence, in the next subsection, for a subfamily {Cβ,γ}
(with simpler equations of the algebraic correspondence) of {C0(a, b, c)}, such
main case is analysed.

4.3 Mestre-Hashimoto (MH) Curves : BH Curves with More
Efficient Endomorphisms

In this subsection, specializing parameters a, b, c of {C0(a, b, c)}, we obtain a
subfamily {Cβ,γ} ([17, 18, 20, 32, 33]) with much more efficiently computable ψ
than those used in the previous subsections. We call the general curve “Mestre-
Hashimoto (MH) curve”. The algorithms for the dominant case are described in
Tables 2 and 3.

We substitute −1 to the parameter c in the formula (2). And we divide the
obtained RHS of the formula (2) by X. Next we substitute 2−β

2 to the parameter
b and −β2

4 +2β+γ−4 to the parameter a in the obtained degree 5 polynomial. By
using the polynomial, we obtain a parametrized genus 2 HEC Cβ,γ [17, 18, 32, 33].
Here β(�= 0), γ ∈ Fq and “the discriminant of the RHS” �= 0.

Cβ,γ :Y 2=βX5−(β+γ−3)X4+(β2−3β+5−2γ)X3−γX2+(β−3)X−1 . (8)

For cryptographic purposes, we consider only the case that β has a square root
in Fq in the following. Then the RHS can be transformed to a monic poynomial.
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Table 2. Algebraic correspondence calculation algorithm

Input : u1(X), v1(X) (∈ Fq[X])

Output : u2(X), v2(X) (∈ Fq[X])

Step Expression Cost

1
w1 ← u2

1,1, w2 ← u1,1u1,2, w3 ← u2
1,2, w4 ← u1,1v1,1,

w5 ← u1,1v1,2, w6 ← u1,2v1,1, w7 ← u1,2v1,2, w8 ← βu1,1,
w9 ← βu1,2, w10 ← βv1,1

2S,8M

2 Du ← w2
9, Dv ← w1−2w2+w3−u1,1−w9+u1,2, Du,v ← DuDv,

Dinv
u,v ← 1/Du,v, Dinv

u ← DvDinv
u,v, Dinv

v ← DuDinv
u,v, w = w5 −w6

1I,1S,3M

3 u∗
2,1 ← w8(u1,1 + w9 − u1,2) − 2w9, u2,1 ← Dinv

u u∗
2,1 2M

4 u∗
2,2 ← (w8−w9+β−1)u1,1+βw9−4w9+u1,2+1, u2,2 ← Dinv

u u∗
2,2 3M

5 u∗
2,3 ← w8 − 2u1,1 − 2w9 + 2u1,2 + 2, u2,3 ← Dinv

u u∗
2,3 1M

6 u∗
2,4 ← −u1,1 + u1,2 + 1, u2,4 ← Dinv

u u∗
2,4 1M

7 v∗
2,1 ← w9(w − v1,2), v2,1 ← Dinv

v v∗
2,1 2M

8 w∗ ← (−w10 + 2v1,1 − v1,2)u1,2, v∗
2,2 ← w8w − w4 + w∗ + v1,2,

v2,2 ← Dinv
v v∗

2,2

3M

9 v∗
2,3 ← −w4 + (β − 1)w5 + w∗ + w6 + 2v1,2, v2,3 ← Dinv

v v∗
2,3 2M

10 v∗
2,4 ← −w + v1,2, v2,4 ← Dinv

v v∗
2,4 1M

total 1I,3S,26M

However, we notice that the following formulas (11) can be applied verbatimly
to the non-monic equation case (8) because of an invariance of the formulas (9).
See the remark before the formulas.

For Cβ,γ , the algebraic correspondence (3) and (4) become simply as follows
due to Hashimoto [18] (see also [17]). Here the correspondence Xψ ⊂ Cβ,γ×Cβ,γ

and the coordinates of Cβ,γ×Cβ,γ are given as (X1, Y1, X2, Y2). Those are invari-
ant under the transformation (X1, Y1, X2, Y2) $→ (X1, β

−1/2Y1, X2, β
−1/2Y2).

β(X1X2)2 − (β − 1)(X1X2) + (X1 + X2) + 1 = 0 ,
X2(X2 + 1)Y1 = X1(X1 + 1)Y2 .

(9)

According to the formulas (9), Algorithm 1 simplifies to the algorithm in Ta-
ble 2 based on the concise formulas (11). We describe the calculation algorithm
(or formulas) of (u3(X), v3(X)) := ψ(u1(X), v1(X)) when deg u1 = 2 and con-
stants Du, Dv defined below �= 0 (those are conditions of the dominant case).
We express the divisor D2 in the diagram (6) as follows.

u2(X) = X4 + u2,1X
3 + u2,2X

2 + u2,3X + u2,4 ,
v2(X) = v2,1X

3 + v2,2X
2 + v2,3X + v2,4 .

(10)

The coefficients u2,�, v2,�,∈ Fq, � = 1, . . . , 4 in formulas (10) are determined by
formulas(9) as follows.
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Duu2,1 = β((u1,1 + (β − 1)u1,2)u1,1 − 2u1,2) ,
Duu2,2 = (βu1,1 − βu1,2 + β − 1)u1,1 + (β2 − 4β + 1)u1,2 + 1 ,
Duu2,3 = (β − 2)u1,1 − 2(β − 1)u1,2 + 2 , Duu2,4 = −u1,1 + u1,2 + 1 ,
Dvv2,1 = βu1,2(w − v1,2) ,
Dvv2,2 = u1,1(βw − v1,1) + ((−β + 2)v1,1 − v1,2)u1,2 + v1,2 ,
Dvv2,3 = (−v1,1 + (β − 1)v1,2)u1,1 + ((−β + 3)v1,1 − v1,2)u1,2 + 2v1,2 ,
Dvv2,4 = −w + v1,2 .
(Du =β2u2

1,2 , Dv =(u1,1−u1,2)2−u1,1−(β−1)u1,2 , w=u1,1v1,2−u1,2v1,1 .)

(11)

First we calculate some intermediates Du, Dv, D−1
u and D−1

v (see [26, 46]).
After that, the RHS of the above formulas (11) are calculated and multiplied
by D−1

u or D−1
v . As we see in Table 2, we complete the calculation with 3 finite

field squarings, 23 multiplications and 2 inversions (S, M and I in Table 2 mean
squaring, multiplication and inversion respectively).

Finally, (u3(X), v3(X)) ∈ JacCβ,γ
(Fq) s.t. deg v3(X) < deg u3(X) ≤ 2 is

obtained by reducing a divisor defined by (u2(X), v2(X)) in a linearly equivalent
class. (u3(X), v3(X)) is ψ(u1(X), v1(X)) (For reduction in the linearly equivalent
class, see [31, 35] for example).

Table 3. Algebraic correspondence calculation algorithm (projective coordinate)

Input : U1(X), V1(X) (∈ Fq[X]) and Z (∈ Fq)

Output : U2(X), V2(X) (∈ Fq[X]) and DU , DV (∈ Fq)

Step Expression Cost

1

W1 ← U2
1,1, W2 ← U1,1U1,2, W3 ← U2

1,2, W4 ← U1,1V1,1,
W5 ← U1,1V1,2, W6 ← U1,2V1,1, W7 ← U1,2V1,2, W8 ← βU1,1,
W9 ← βU1,2, W10 ← βV1,1, Z0 ← Z2, Z1 ← ZU1,1, Z2 ← ZU1,2,
Z3 ← ZV1,1, Z4 ← ZV1,2, Z∗ ← ZW9

3S,13M

2 DU ← W 2
9 , DU ← Z0DU , DV ← W1−2W2+W3−Z1−Z∗+Z2,

DV ← ZZ0DV , W ← W5 − W6

1S, 3M

3 U2,1 ← W8(U1,1 + W9 − U1,2) − 2Z∗ 1M

4 U2,2 ← (W8 − W9 + βZ − Z)U1,1 + (β − 4)Z∗ + Z2 + Z0 3M

5 U2,3 ← Z(W8 − 2U1,1 − 2W9 + 2U1,2 + 2Z) 1M

6 U2,4 ← −Z1 + Z2 + Z0

7 V2,1 ← W9(W − Z4) 1M

8
W ← (−W10 + 2V1,1 − V1,2)U1,2,
V2,2 ← W8W + (−W4 + W )Z + V1,2Z0

4M

9 V2,3 ← Z(−W4 + (β − 1)W5 + W + W6 + 2Z4) 2M

10 V2,4 ← Z(−W + Z4) 1M

total 4S, 29M

In [26], to avoid finite field inversion, two types of projective coordinates P
and N are proposed. When a divisor (5) is expressed as

u1(X) = X2 + (U1,1/Z)X + (U1,2/Z) , v1(X) = (V1,1/Z)X + (V1,2/Z) (12)
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where U1,�, V1,�, Z ∈ Fq (� = 1, 2), 5-component coordinate [U1,1, U1,2, V1,1, V1,2,
Z] is called P coordinate system. By using P coordinate system, we can remove
finite field inversions in the ψ computation as is seen in Table 3.

For (u3(X), v3(X)) (= ψ(u1(X), v1(X))), the same representation (12) with
one denominator is used. However, we use the following expression (13) with
different denominators DU and DV for the intermediate divisor D2 to compute
ψ efficiently. Using Algorithm 2 in Appendix, we can obtain the desired divisor
D3 in the P coordinate system. That is, we express the divisor (10) as

u2(X)=U2(X)/DU =X4+(U2,1/DU )X3

+(U2,2/DU )X2+(U2,3/DU )X+(U2,4/DU ) ,
v2(X)=V2(X)/DV =(V2,1/DV )X3+(V2,2/DV )X2

+(V2,3/DV )X+(V2,4/DV )

(13)

where U2,�, V2,�, DU , DV ∈ Fq. Then we can calculate U2,�, V2,�, DU , DV by 4
finite field squarings and 29 multiplications (see Table 3).

The amounts of finite field operations in reduction (in a linearly equivalence
class) step are 2 squarings, 9 multiplications and 1 inversion in the affine (A)
coordinate case, and 3 squarings and 20 multiplications in the projective (P)
coordinate case (see [35] and Appendix).

According to [26], a doubling on the Jacobian group are completed by the
costs in the right of Table 4 (see also [45, 46]). And the amounts of finite field
operations in ψ calculation are tabulated in the left of Table 4. The upper data
are those without the reduction step and the lower data are total amounts for
ψ. Therefore, the cost of ψ in the P coordinates is comparable to 1.3 times that
of a doubling in P on the Jacobian. Using the coordinate system N in [26], the
amount of operations changes a little, hence, we can compute ψ with enough
efficiency like the P coordinate system.

Table 4. Amounts of finite fields operations

Operation Cost

ψP = P 4S, 29M
7S, 49M

ψA = A 1I, 3S, 26M
2I, 5S, 35M

Operation Cost

2N = P 7S, 38M

2P = P 6S, 38M

2N = N 7S, 34M

2P = N 6S, 34M

2A = A 1I, 5S, 22M

Consequently, we can say that, even using any coordinate systems A,P, and
N , the efficiency is at most 1.5 times that of a doubling. By that, ψ on JacC(Fq)
is efficient enough to be used in the GLV method.

4.4 Complexity Comparison with the CM Case

In the genus 2 case, ψ’s proposed so far are automorphisms (Table 1), and are
much more efficiently computable. However, in the GLV method, computation of
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“simultaneous multiple points scalar multiplication” is a dominant step. There-
fore, the difference of computation amount of RM ψ and that of CM only lead to
the difference less than 1/100 of total amount of scalar multiplication. Therefore,
we can say that we can achieve almost the same efficiency using the RM ψ as in
the CM case.

We can’t obtain a meaningful advantage when we apply RM ψ in ψ-adic
expansion in [9] because the method is very effective when an efficient endomor-
phism is much faster than doubling. Moreover it should be noted that the idea
in [9] only work if the norm of the endomorphism is larger than 1, therefore it
can’t be applied directly to the RM presently.

DPA countermeasures in [10] are also applicable in the RM case with a small
speed loss as in [10] because that is a randomization of decomposition (1) of a
scalar k.

4.5 Examples of MH Curves Without Special Properties of
Previous CM Curves

As in Table 5, we’ve obtained random curves with prime orders n := �JacCβ,γ
(Fq)

(where q := pl). All were obtained using functions of Magma [30], and satisfy
security conditions of Rück [39] and Frey-Rück [12] (i.e. qr �≡ 1 mod n(1 ≤
r ≤ 104)). C2 and C3 are defined over extension fields of prime degree over
prime fields, and we can check that the use of these curves avoid Weil descent
attacks. Also we verified they are absolutely simple using Howe-Zhu’s criteria
([22] Theorem 6), and we can verify easily that the MH family in subsection 4.3
contains curves with parametrized absolute invariants which are different from
each other.

Table 5. Example parameters of curves

p 28902710783
C1 (β, γ) (16698884424, 5332701667)

n 835369018786460055929 (70 bit prime)
λ 278725084566799059271

(p, l) (3,53)

C2 (β, γ)

([0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 2, 0, 1, 0, 1, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 0, 0, 1, 1,
2, 0, 0, 2, 2, 2, 2, 1, 0, 2, 0, 0, 0, 2, 1, 0, 1, 0, 2, 2], [1, 1, 1, 2, 2, 1, 2, 0, 1, 1, 0, 2, 2,
2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 2, 0, 1, 1, 1, 0, 0, 2, 2, 0, 2, 0, 0, 2, 2, 1, 0, 2, 0, 1, 0, 2, 1, 1,
1, 2, 1, 1, 1, 2])

n 375710212613764324447035609379277305461602499899281 (169 bit prime)
λ 53884982625321801032821744090234364849160884115411

(p, l) (5,37)

C3 (β, γ)
([2, 3, 4, 0, 0, 4, 1, 3, 1, 3, 4, 1, 0, 4, 4, 1, 1, 2, 1, 4, 4, 0, 2, 3, 1, 3, 2, 0, 1, 0, 0, 3, 1,
4, 0, 1, 1], [3, 1, 0, 0, 4, 0, 3, 0, 1, 0, 2, 0, 1, 3, 1, 1, 1, 1, 1, 2, 0, 0, 0, 4, 3, 4, 0, 2,
3, 4, 2, 1, 0, 3, 2, 3, 3])

n 5293955920341054807488920035801349672258069275409741 (172 bit prime)
λ 3356990070572605689466802561620623416584134941956091
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That is, the “random” RM curves are not limited to ones with some “special”
properties mentioned in section 3.

C1 is a prime field curve (i.e. q = p). According to [16], using optimized
programs for such curves, we can obtain curves with 160 bit prime n in practical
time. A minimal polynomial of indeterminate θ defining a finite field for C2 is
θ53 + 2θ4 + 2θ3 + 2θ2 + 1. In Table 5, [a1, . . . , al]’s representing coefficients β, γ

mean
∑l−1

i=0 al−iθ
i ∈ Fq. For C3, the polynomial is θ37 + 4θ2 + 3θ + 3, and β, γ

are represented as for those of C2 also. For all curves, β has a square root in Fq

(see subsection 4.3).
To estimate the efficiency of the GLV method using ψ, we decomposed ran-

dom 104 k’s to k1, k2 as in the formula (1) by the methods in [25, 40]. And we
have investigated the average of the bitlengths of max{|k1|, |k2|}. The method
in [40] is that in section 5 of that paper, not the generalized one in section 8
(using LLL) because ψ satisfies the quadratic equation ψ2 + ψ − 1 = 0.

The mean values are 33.5 for C1, 82.7 for C2, and 84.6 for C3. Those are less
than log2(n)/2 respectively, therefore we verified experimentally the “decompo-
sition of k” methods in [25, 40] for CM’s of EC are effective also for the RM ψ
(satisfying the quadratic equation).

5 RM Curves of Genus 2 in [4, 21]

In this section, we describe another candidate RM [4, 21] for the GLV method.
We refer a fact from [4].

Fact. Let Δ,U ,V ∈ F∗
q ,W ∈ Fq. A genus 2 RM curve C : Y 2 = f(X) where

coefficients of f are explicitly given by rational expressions of Δ, U , V and W in
[4] has an endomorphism ψ on JacC satisfying ψ2 = 2, which is defined by the
following formulas (14) (where coordinate of C×C are given by (X1, Y1, X2, Y2)).

2∑
�=0

2∑
m=0

Φ�,mX�
1X

m
2 = 0 , Y2 = Y1

(V − 2)(Ψ1(X1)X2 + Ψ2(X1))

(X2
1 + UX1 + V)(

∑2
�=0 Φ�,2X�

1)
2

. (14)

Here Φ�,m are constants given by polynomials of U ,V, and Ψ1(X), Ψ2(X) are
polynomials of U ,V, X of degree 3 w.r.t. X.

We can calculate the RM ψ like the calculation based on Algorithm 1 because
“the formulas (3) and (4)” and “the formulas (14)” have similar forms. As in
subsection 4.5, for this curve family, we obtained almost prime order Jacobian
groups for appropriate random parameters Δ,U ,V,W.

6 Conclusions

In this paper, we discussed applications of the GLV method to curves of genus
2 with real multiplication (RM). It is the first time to use RM in cryptography.
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And we have shown that for Mestre-Hashimoto (MH) curves, the application of
ψ takes at most 1.5 times as long as a doubling on the Jacobian group. Hence
the GLV method with the RM ψ’s can achieve the almost same efficiency as that
with CM endomoprhisms. And for some concrete parameters in subsection 4.5,
the effectivity of previously known “decomposition of k” methods are verified
experimentally.

We have verified that the general curve in MH family doesn’t have special
properties of previous families of CM GLV curves of genus ≤ 2.

As we have seen in sections 4 and 5, Algorithm 1 can be applied for wide
range of RM’s. Future studies include both of improving RM computations in
this paper and searching for other applications of Algorithm 1. Especially, the
optimal costs in the left one of Table 4 in various coordinate systems should be
pursued intensively.
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Appendix : Reduction Step Algorithm for the Projective Coordinate

We describe the reduction step algorithm from the projective representation
(13) used in subsection 4.3. In the following, all notations are the same as in
subsection 4.3.

To obtain U3,�, V3,�, Z̃ ∈ Fq (� = 1, 2) s.t.

u3(X) = X2 + (U3,1/Z̃)X + (U3,2/Z̃) , v3(X) = (V3,1/Z̃)X + (V3,2/Z̃) ,

first we compute η1(X)/η2(X) (=D2
V (f(X)−v2(X)2)/(DUu2(X))) s.t. η1(X) :=

D2
V f(X)−V2(X)2 and η2(X) := U2(X). In the process (Algorithm 2), we divide

η1(X) = η1,0X
6 + . . . + η1,6 (not-necessarily monic) by η2(X) = η2,0X

4 + . . . +
η2,4 (not-necessarily monic). Here this division can be completed very efficiently
according to [35]. Coefficients of η̃1(X), ˜̃η1(X) etc. in Algorithm 2 are indexed
similarly as η1(X) or η2(X).

Next we obtain a linear polynomial V3(X) by reducing the cubic polyno-
mial V2(X) (not-necessarily monic) by the quadratic polynomial U3(X) (not-
necessarily monic).

At last, in step 6 in Algorithm 2, we obtain the denominator Z̃ and equalize
the denominator of u3(X) and that of v3(X).

We attached computational amounts of finite field operations to titles of
calculations in Algorithm 2. Therefore, we know the total amount of finite field
operations are 3S, 20M.

Algorithm 2 Reduction step from the projective representation (13)
Input U2(X), V2(X), DU , DV , f(X) (= RHS of equation (2))
Output U3(X) = U3,0X

2 + U3,1X + U3,2, V3(X) = V3,1X + V3,2, Z̃(= U3,0).
[Calculation of U ∗

3 (X)] 3S, 9M

1: Set η1(X) ← “degree ≥ 4 part of D2
V f(X) − V2(X)2” and η2(X) ← U2(X).

2: η̃1(X)← “degree ≥ 4 part of η2,0η1(X)−η1,0η2(X)X2”,2

˜̃η1(X)← “degree ≥ 4 part of η2,0η̃1(X)−η̃1,0η2(X)X”.2

3: U∗
3,0 ← η1,0, U∗

3,1 ← η̃1,0, U∗
3,2 ← ˜̃η1,0, U∗

3 (X) ← U∗
3,0X

2 + U∗
3,1X + U∗

3,2.
[Calculation of V3(X)] 8M

4: V ∗
3 (X) ← U∗

3,0V2(X) − V2,1U
∗
3 (X)X. 2

5: V3(X) ← U∗
3,0V

∗
3 (X) − V ∗

3,1U
∗
3 (X). 2

[Correction of the coefficients of U3(X) and denominator Z̃] 3M

6: U3(X) ← DV U∗
3 (X), Z̃ ← U3,0 (leading coefficient of U3(X)).

2 There is no need to calculate the cancelling leading coefficient.
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Abstract. Hyperelliptic curve cryptosystems (HECC) can be good al-
ternatives to elliptic curve cryptosystems, and there is a good possibility
to improve the efficiency of HECC due to its flexible algebraic struc-
ture. Recently, an efficient scalar multiplication technique for applica-
tion to genus 2 curves using a degenerate divisor has been proposed.
This new technique can be used in the cryptographic protocol using a
fixed base point, e.g., HEC-DSA. This paper considers two important
issues concerning degenerate divisors. First, we extend the technique for
genus 2 curves to genus 3 curves. Jacobian variety for genus 3 curves
has two different degenerate divisors: degree 1 and 2. We present explicit
formulae of the addition algorithm with degenerate divisors, and then
present the timing of scalar multiplication using the proposed formu-
lae. Second, we propose several window methods using the degenerate
divisors. It is not obvious how to construct a base point D such that
deg(D) = deg(aD) < g for integer a, where g is the genus of the under-
lying curve and deg(D) is the degree of divisor D. We present an explicit
algorithm for generating such divisors. We then develop a window-based
scheme that is secure against side-channel attacks.

Keywords: hyperelliptic curve cryptosystem, scalar multiplication,
degenerate divisor, window method.

1 Introduction

Hyperelliptic curve cryptosystems (HECC) are an extension of elliptic curve
cryptosystems (ECC). The operand size of HECC is 1/g-th that of ECC be-
cause of the algebraic structure of HECC. Therefore, HECC is attractive from the
viewpoint of implementation. However, the addition algorithm of HECC [Can87]
requires more group operations because it is more complex than the addition
algorithm of ECC. Harley [Har00a, Har00b] has recently proposed a useful al-
gorithm, which we will call the Harley algorithm. The Harley algorithm is an
explicit representation of the Cantor algorithm for genus 2 curves of odd char-
acteristic. The extension and optimization of the Harley algorithm are being
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actively investigated with the intention of making the addition algorithms of
HECC comparable to those of the ECC [MCT01, SMC+02, Lan02].

Not only studies seeking to optimize the explicit formulae, but also studies
to investigate side-channel attacks on HECC are being conducted. Differential
Power Analysis (DPA) is a major threat to the implementation of cryptographic
algorithms. Since HECC is an extension of ECC, various countermeasures against
DPA can be applied to HECC. However, degenerate divisors are important with
respect to the security of HECC. A degenerate divisor of a genus-g hyperelliptic
curve over a finite field Fq is a reduced divisor D, the degree of which is smaller
than g, e.g. D = (u, v) such that u = xg−1 +

∑
i<g−1 uix

i, v =
∑

i<g−1 vix
i,

where ui, vi ∈ Fq. Even if the curve parameters or coordinates are randomized,
the HECC is vulnerable to an exceptional procedure attack using degenerate di-
visors [Ava03, KKA+04]. On the other hand, the degenerate divisors can be used
in a positive way. Katagi et al. showed an efficient scalar multiplication using
a degenerate divisor for a genus 2 hyperelliptic curve cryptosystem [KKA+04].
They also proved that the discrete logarithm problem with a degenerate base
point is not substantially weaker than that with a random base point. However,
to our knowledge, no explicit formula of degenerate divisors for a genus 3 hy-
perelliptic curve has been proposed. Moreover, the method by which to extend
this method to a window-based scheme remains unclear — an algorithm that
generates a pair of degenerate divisors must be considered.

1.1 Our Contribution

In this paper, we first investigate the addition formula using degenerate divisors
for genus 3 hyperelliptic curves. We present some explicit addition formulae and
precisely estimate their computational time. For example, an addition formula
with a degenerate divisor of degree 2 (or 1) requires 1I + 52M (or 1I + 21M),
respectively, where I and M are the time of computing an inversion and a mul-
tiplication, respectively. Using the degenerate divisor we can achieve a faster
scalar multiplication of hyperelliptic curve cryptosystems. Our estimations show
that the improvement over a standard double-and-add-always algorithm is 15%
(or 34%) using a divisor of degree 2 (or 1), respectively. The representation of
the degenerate divisor (u, v) is shorter than that of the standard divisor, so that
we achieve a compressed representation for a base point of hyperelliptic curve
cryptosystems.

Next, we investigate window methods using degenerate divisors to compute
scalar multiplication. In this case, we have to generate a pair of degenerate divi-
sors (D, aD) for some integer a. First, we estimate the probability of degenerate
pairs for both genus 2 and genus 3 hyperelliptic curves. We show that there exist,
with a reasonable probability, pairs of degenerate divisors (D, aD) of degree 1
for genus 2 and of degree 2 for genus 3. We then show an algorithm for gener-
ating a degenerate pair for small a. From the explicit formulae described above,
the divisor aD = (ua, va) is expressed as the polynomial of ui, vi over Fq, where
ui, vi is the component of the divisor D = (u, v). We present some examples of
degenerate divisors with the parameter size used for cryptographic application.
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Note that the degree of this polynomial increases in the exponential time of the
bit-length of a, and thus we can find a degenerate pair only for small a. Finally,
we compare the efficiency and memory of the proposed schemes with those of the
SPA-resistant wNAF method, which is one of the most efficient window meth-
ods [OT03]. Because of the short representation of pre-computed base points,
we can achieve an efficient scalar multiplication using a smaller table size.

This paper is organized as follows: In section 2, the property of hyperelliptic
curve cryptosystems is briefly reviewed. In section 3, we present the proposed
scheme using degenerate divisors for a genus 3 HECC. In section 4, we propose a
window-based scheme for computing scalar multiplication using the degenerate
divisor. In section 5, we conclude this paper.

2 Hyperelliptic Curve Cryptosystems

In this section we review hyperelliptic curve cryptosystems related to our study.

2.1 Hyperelliptic Curves

A hyperelliptic curve C of genus g over a finite field Fq is defined as y2 +h(x)y =
f(x), where f(x) is a monic polynomial of Fq[x] of degree 2g + 1 and h(x) is a
polynomial over Fq[x] of deg h ≤ g. A point on curve C is denoted by P = (x, y),
and its inverse is defined as −P = (x,−y−h(x)). We call a point P that satisfies
P = −P a ramification point.

In contrast to ECC, points on a hyperelliptic curve do not form a group.
Rather than points, divisors are deployed. A divisor D is a formal sum of points∑

miPi, where mi ∈ Z. The degree of a divisor D is defined as
∑

i mi. The
Jacobian variety Jc(Fq) is defined by the quotient group D0/P, where D0 is a
divisor of degree 0 and P is a principal divisor. The principal divisor is the divisor
of a rational function on C, which is a finite formal sum of the zeros and poles.

For cryptographic application, the Mumford representation is useful [Mum84].
A semi-reduced divisor can be expressed by two polynomials (u, v) of Fq[x].

u(x) =
∏

i

(x− xi)mi , v(xi) = yi, deg v < deg u, v2 + hv − f ≡ 0 mod u.

If deg u ≤ g, then the semi-reduced divisor is referred to as a reduced divisor.
Elements in Jc(Fq) are uniquely represented as reduced divisors. We denote here
the degree of the reduced divisor by deg(D).

2.2 Secure Scalar Multiplication in the Face of SPA

The fundamental operation for HECC is scalar multiplication dD = D + · · · +
D (d additions), where d is an integer and D is a reduced divisor. Let Di =
(ui(x), vi(x)) ∈ Jc(Fq) be the reduced divisors, i = 1, 2. The reduced divisor D3

of addition D1 + D2 is computed using the Cantor algorithm [Can87] [Kob89].
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This operation is denoted by HECDBL if D1 = D2, or by HECADD otherwise.
A standard algorithm for computing dD is as follows:

Algorithm 1. Double-and-Add-Always Method
Input: d = (dn−1 · · · d1d0)2, D ∈ Jc(K), (dn−1 = 1)
Output: dD
1. D[0] ← D
2. for i from n− 2 to 0 do
3. D[0] ← HECDBL(D[0]), D[1] ← HECADD(D[0],D), D[0] ← D[di]
4. Return(D[0])

This double-and-add-always method computes HECADD for both di = 0
and 1. Therefore, timing attacks (TA) or Simple Power Analysis (SPA) cannot
ascertain the bit hamming weight of d [Cor99].

Okeya and Takagi proposed an SPA-resistant window method for
ECC [OT03], and it is also applicable to HECC. This method formulates the
fixed pattern |0 · · · 0x| 0 · · · 0x| · · · |0 · · · 0x| for some x. Though an SPA attack
distinguishes HECDBL and HECADD in a scalar multiplication by measuring
a single power consumption, only the identical sequence |D · · ·DA|D · · ·DA| · · ·
|D · · ·DA| is obtained, where D and A are denoted by HECDBL and HECADD,
respectively. Therefore, the attacker cannot guess any bit information of the
scalar. This method reduces the required number of HECADD, as compared
with the double-and-add-always method, and thus increasing the efficiency.

2.3 Efficient Scalar Multiplication Using Degenerate Divisors

We next present an efficient scalar multiplication method using degenerate divi-
sors, which was proposed in [KKA+04].

The Cantor algorithm is a general algorithm used for HECADD and
HECDBL, but its performance is quite low. On the other hand, the Harley
algorithm is an explicit representation of the Cantor algorithm in terms of the
degree classification of the divisors [Har00a, Har00b]. The Harley algorithm in-
cludes the most frequent case for addition and doubling of divisors. The most
frequent case is denoted by MFCADD and MFCDBL, respectively. MFCADD
and MFCDBL satisfy the following conditions:

MFCADD : deg(D1) = deg(D2) = deg(D3) = g, D1 �= D2, gcd(u1, u2) = 1,

MFCDBL : deg(D1) = deg(D3) = g, D1 = D2, gcd(h + 2v1, u1) = 1.

The most frequent case appears with overwhelming probability [Nag00]. Some
other cases are caused by a degenerate divisor, which is defined as follows:

Definition 1. Let C be a hyperelliptic curve over Fq, and let Jc(Fq) be the
Jacobian of curve C. We call a reduced divisor D = (u, v) ∈ Jc(Fq) degenerate
if the degree of D is smaller than g, namely, deg u < g.

We randomly choose a degenerate divisor as the base point. The scalar mul-
tiplication using degenerate divisors is much faster than that using the standard



300 M. Katagi et al.

divisors. The double-and-add-always method (Algorithm 1) in Section 2.2 is a
left-to-right procedure, thus the base point D is added to D[i] during scalar
multiplication dD. Base point D is designated as a degenerated divisor (e.g.,
deg(D) < g), and its addition formulae can be calculated more efficiently than
the standard HECADD. In the case of genus 2 curves, the scalar multiplica-
tion using degenerate divisors is approximately 20% faster than using standard
divisors if the secret scalar is 160 bits [KKA+04].

The use of a degenerate divisor as the base point does not reduce the hardness
of the underlying discrete logarithm problem due to the random self reducibility.
The previously reported efficient scalar multiplication method with a fixed base
point can be applied only to ElGamal-type encryption, the sender of Diffie-
Hellman, and DSA. The scalar of these schemes is usually an ephemeral random
number, and thus we are only interested in SPA. A standard countermeasure
against SPA is the double-and-add-always method (Algorithm 1) in Section 2.2.

3 Proposed Algorithms for Genus 3 HECC

In this section, we present an efficient scalar multiplication using a degenerate
divisor for HECC of genus 3. We deal with genus 3 HECC over a binary field
F2n , but the same discussions can be applied to genus 3 HECC over a general
finite field Fq.

3.1 Degenerate Divisor for Genus 3 HECC

For the genus 3 case, the degenerate divisors are random divisors of degree 1 or
2. We investigated the formulae with genus 3 degenerate divisors.

Let D1 = (u1, v1), D2 = (u2, v2) be reduced divisors of the Jacobian Jc(F2n).
Denote by D3 the addition of D1 + D2. There are exceptional group operations
with degenerate divisors discussed in this paper as follows:

ExADD1+3→3: deg(D1) = 1, deg(D2) = deg(D3) = 3, D1 �= D2, gcd(u1, u2) = 1,

ExADD1+2→3: deg(D1) = 1, deg(D2) = 2, deg(D3) = 3, D2 = 2D1,

ExADD2+3→3: deg(D1) = 2, deg(D2) = deg(D3) = 3, D1 �= D2, gcd(u1, u2) = 1,

ExDBL1→2: deg(D1) = 1, deg(D3) = 2, D1 = D2, gcd(h, u1) = 1,

ExDBL2→3: deg(D1) = 2, deg(D3) = 3, D1 = D2, gcd(h, u1) = 1.

Table 1 shows the cost of the Harley algorithm and its degenerate versions.
We re-estimated the cost of the Harley algorithm based on the previous refer-
ences [Pel02]. The degenerate algorithms, moreover, are newly derived because
most research has focused only on the most frequent cases of the Harley algo-
rithm. The degenerate cases, as well as those for genus 2 HECC, are faster than
the most frequent cases because the lower degree of the divisors reduces the
number of field operations.
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Table 1. Number of Multiplications and Inversions of the Harley Algorithm (genus 3)

Addition Formula Cost

MFCADD 1I + 78M
MFCDBL 1I + 81M

ExADD1+3→3 1I + 21M
ExADD1+2→3 1I + 28M
ExADD2+3→3 1I + 52M
ExDBL1→2 1I + 21M
ExDBL2→3 1I + 53M

3.2 Efficient Scalar Multiplication Using Degenerate Divisors

For genus 3 HECC, we can choose a divisor of degree 1 or 2 as the base point,
and then ExADD1+3→3 or ExADD2+3→3 is used for HECADD. ExADD1+3→3 and
ExADD2+3→3 are faster than MFCADD. Therefore, a scalar multiplication using
a degenerate divisor is accelerated.

If we use the double-and-add-always method that is resistant to SPA, an
addition chain in the scalar multiplication shows a fixed pattern which repeats
HECDBL and HECADD as described in section 2.2. In particular, if dn−2 = 0,
then the addition chain generates the following initial sequence for the base
point D:

D −→ 2D −→ 3D
−→ 4D −→ 5D

Otherwise, if dn−2 = 1, we have the following:

D −→ 2D −→ 3D −→ 6D −→ 7D

Here, we denote D0 as MFCDBL, D1 as ExDBL1→2, D2 as ExDBL2→3, A1 as
ExADD1+3→3, A2 as ExADD1+2→3 and A3 as ExADD2+3→3. When we choose a
divisor of degree 1 as the base point D, the initial pattern of the addition chain
differs based on the bit dn−2. The initial pattern for dn−2 = 0 is D1A2D2A1,
but the pattern for dn−2 = 1 is D1A3D0A1. This means that the second most
significant bit of d is vulnerable to SPA or TA. However, this vulnerability is only
limited to dn−2 because the addition chain generates the fixed pattern D0A1 for
other bits of d, so that an attacker cannot guess the other bits of the secret
scalar.

On the other hand, when we choose a divisor of degree 2 as the base point,
the initial pattern of the addition chain is D2A3D0A3, which is independent
from the bit dn−2. Thus an attacker cannot guess any bit of the secret scalar d.

We compare the computational costs of the scalar multiplication using a stan-
dard divisor and a degenerate divisor. If we choose a standard divisor, namely a
divisor of degree 3, as the base point, the total cost is 159× ((I + 81M) + (I +
78M)) = 318I + 25281M for a 160-bit scalar d. Next, we estimate the case in
which a divisor of degree 1 is chosen as the base point. As we pointed out, the
addition chain shows a different pattern based on the bit dn−2. Therefore, the
total cost of scalar multiplication is (I + 11M) + (I + 28M) + 1/2((I + 45M) +
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(I + 81M)) + (I + 21M) + 157× ((I + 81M) + (I + 21M)) = 318M + 16137M .
Thus, the scalar multiplication using a degenerate divisor of degree 1 is ap-
proximately 34% faster than that using a standard divisor under 1I = 5.2M
(see Appendix B.1). On the other hand, if we choose a divisor of degree 2
as the base point, the first HECDBL costs 1I + 45M(ExDBL2→3), and the
other HECDBL and HECADD cost 1I + 81M (MFCDBL) and 1I + 52M
(ExADD2+3→3), respectively. Therefore, the total cost of scalar multiplication is
(1I+45M)+(1I+52M)+((1I+81M)+(1I+52M))×158 = 318I+21111M . Thus,
the scalar multiplication of a degenerate divisor of degree 2 is approximately 15%
faster than that of a standard divisor under I = 5.2M . The experimental results
of these comparisons are shown in Appendix B.2.

4 Application of Window Method

In this section, we propose a more efficient method than the double-and-add-
always method using degenerate divisors.

We choose a degenerate divisor D, which satisfies the condition deg(D) =
deg(aD) < g with previously known integer a, as the base point. Using a
divisor that satisfies this condition, we can apply the SPA-resistant wNAF
method [OT03] to the HECC scalar multiplication, as described in section 2.2.
This method is faster than applying the SPA-resistant wNAF technique to the
HECC using degree-g divisors under the same window size. To find such a divi-
sor, however, is not easy because a divisor satisfying deg(D) < g exists with a
very low probability.

4.1 Probability of a Pair of Degenerate Divisors (D, aD)

We investigate the probability of finding a pair of degenerate divisors (D, aD).

Lemma 2. Assume that the base field is K = Fq. If we choose a hyperelliptic
curve C of genus g and degenerate divisors D of degree g−1(g > 1) are randomly
distributed in JC(K), then the number of pairs (D, aD) satisfying deg(D) =
deg(aD) = g − 1 is roughly qg−2. Similarly, in the case of degenerate divisors
D of degree g − 2 (g > 2), the number of pairs (D, aD) satisfying deg(D) =
deg(aD) = g − 2 is roughly qg−4.

Proof. First, the number of degenerate divisors with g − 1 is qg−1 because the
number of degenerate divisors is equivalent to the number of monic polynomials
of degree g−1. Next, #Jc(K) is roughly qg, based on the Hasse-Weil theorem. If
two degenerate divisors are selected independently, the probability that they will
be a pair (D, aD) is (1/q)2. In the same way, the probability of independently
selecting degenerate pairs of degree g − 2 is (1/q)4. Therefore, the number of
pairs (D, aD) is (qg)(1/q2) = qg−2 and (qg)(1/q4) = qg−4. 
�

From Lemma 2, the average number of pairs (D, aD) for genus 2, genus 3
with degree 1, and genus 3 with degree 2 are 1, 1/q, and q, respectively. The



Some Improved Algorithms for HECC Using Degenerate Divisors 303

probability of finding the degree 1 degenerate pairs for genus 3 is very low.
Therefore, we focus on degenerate pairs for genus 2 and genus 3 with degree 2.

4.2 Algorithm for deg(D) = deg(5D) = 1 for Genus 2

In this section, we describe how to find a pair of degenerate divisors (D, aD) for
genus 2 curves. First, we consider a = 3. From the following lemma, however,
no pair that satisfies the condition deg(D) = deg(3D) = 1 exists.

Lemma 3. Assume that D ∈ JC(K) is a degenerate divisor of prime order
larger than 2. There exists no pair (D, 3D) satisfying deg(D) = deg(3D) = 1.

Proof. A degenerate divisor D of deg(D) = 1 is represented as D = P − P∞
using P on C. 2D = D + D = P + P − 2P∞. We consider 3D, derived from
D + 2D. If the degree of 3D is 1, P satisfies P = −P , which implies that the
order of D is 2. 
�

Next, we consider a = 5. In the following, we describe how to find divisor D
such that deg(D) = deg(5D) < g in the case of g = 2.

As we noted earlier, an exhaustive search for deg(5D) = 1 is difficult because
there is a low probability of finding the base point D that satisfies deg(D) =
deg(5D) = 1. Such a divisor D that satisfies deg(D) = deg(5D) = 1 is computed
by using:

D
ExDBL1→2

−−−−→ 2D
MFCDBL
−−−−→ 4D

ExADD1+2→1

−−−−→ 5D.

We first use ExDBL1→2 of a hyperelliptic curve of genus 2. ExDBL1→2 for
g = 2 is shown in [KKA+04–Algorithm 5]. Let D = (x + u, v) be a divisor of
degree 1 and let 2D = (x2 + u1x + u0, v1x + v0). The coefficients of 2D are
represented as follows:

u1 = 0, u0 = u2,

v1 =
u4 + f3u

2 + f1 + h1v

u2 + h1u + h0
, v0 =

u4 + f3u
2 + f1 + h1v

u2 + h1u + h0
u + v.

Next, we present Harley’s doubling formula MFCDBL using the outputs from
the previous step, namely, u0, u1, v0, v1. Let 4D = (x2 + w1x + w0, z1x + z0).

t1 = (h0 + u0 + u1(h1 + u1))(f3 + v1 + u2
1) + (h1 + u1)(v0 + v1(v1 + h1))

t0 = (u1(h0 + u0 + u1(h1 + u1)) + u0(h1 + u1))(f3 + v1 + u2
1)

+(h0 + u0 + u1(h1 + u1))(v0 + v1(v1 + h1))
r = u0(u0 + h0 + h1(h1 + u1)) + h0(h0 + u0 + u1(h1 + u1))

w1 =
1
rt1

(1 +
1
rt1

)

w0 =
r

t1
(
t0
t1

(1 +
t0
r

) + h1 + u1)

z1 = (
t1
r

+
t0
r

)(u1 + w1 + u0 + w0) +
t1
r

(u1 + w1) +
t0
r

(u0 + w0)
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+(
t1
r

(u1 + w1) + 1)w1 + v1 + h1

z0 =
t0
r

(u0 + w0) + (
t1
r

(u1 + w1) + 1)w0 + v0 + h0

5D is derived from D + 4D via ExADD1+2→2 for genus 2. ExADD1+2→2 for
genus 2 is shown in [Lan02–Table 2]. Since, this formula has no branch to output
a degree 1 divisor, we have only to consider the case in which D and 4D are not
coprime. The following condition applies:

D = P − P∞, 4D = −P + Q− 2P∞ (1)

In this case, D + 4D results in the degree 1 divisor 5D = Q − P∞. Recall
that the inverse point of P = (u, v) is −P = (u, v + h(u)). Condition (1) yields
two equations for P = (u, v):

w(u) = w1u + w0 = 0 (2)

z(u) = z1u + z0 = v + h(u) (3)

Equations 2 and 3 are represented as G1(u, v) = 0 and G2(u, v) = 0, respec-
tively. Gi is simplified as follows using the relation v2 = h(u)v + f(u).

Gi = ai(u) + bi(u)v = 0 (i = 1, 2) (4)

Let the conjugate of Gi(u, v) be Gi = ai + bi(v + h) [MWZ96]. The norm of
Gi(u, v), Ni, is a univariate polynomial function of u.

As a result, we derive that the degree of N1 and N2 are 53 and 72, respectively.
We can easily solve these equations because univariate polynomial equations are
solved in polynomial time.

We summarize this algorithm as follows:

Algorithm 2. Finding deg(D) = deg(5D) = 1 for genus 2
1. Set the curve parameter h1,0 and f1,3

2. Solve the two univariate polynomial equations of u, N1(u) = 0
and N2(u) = 0.

3. Return D = (u, v) if the two solutions have a common root else goto 1.

We next show an example of a degenerate divisor in Appendix C.1 using
Algorithm 2. We had to generate random curves for cryptographic use a few
times in order to find this example. The random curves were generated using
MAGMA2.11-2 [MAG].

4.3 Applying Window Method for a = 5

For genus 2 HECC, we cannot directly apply the SPA-resistant wNAF method
[OT03] because a �= 3. We will explain how to construct an SPA-resistant addi-
tion chain using the base point D such that deg(D) = deg(aD) for a > 3.
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We first construct a fixed pattern:

D...D︸ ︷︷ ︸
k1

DA...DA︸ ︷︷ ︸
k2

,

where (k1 + k2) is the bit-length of the scanned bit.
In the following we examine the situation in which k1 = 1, k2 = 2, and a = 5.

We represent here all non-zero digits (i.e., {±1,±3,±5,±7}) appearing in the
width-3 NAF method, as follows:

001 = 001 = 001 + 0d0, 001̄ = 001̄ = 001̄ + 0d0,
003 = 011 = 001 + 010, 003̄ = 01̄1̄ = 001̄− 010,
005 = 101 = 005 + 0d0, 005̄ = 1̄01̄ = 005̄ + 0d0,
007 = 111 = 005 + 010, 007̄ = 1̄1̄1̄ = 005̄− 010,

where d indicates a dummy operation.
In this case, the density of non-zero digits is equal to 2/31. Therefore, the

total efficiency is nECDBL + 2
3nECADD.

4.4 Algorithm for deg(D) = deg(3D) = 2 for Genus 3

Unlike the case of degenerate divisors for genus 2 curves, it is possible to find
a pair (D, 3D) satisfying deg(D) = deg(3D) = 2 for genus 3 curves because
D and 3D become coprime. Therefore, we can directly apply the SPA-resistant
wNAF method [OT03] for the base point D such that deg(D) = deg(3D) = 2.
The width w is equal to 2, that is to say, the density of non-zero digits is equal
to 1/2.

In order to find such a divisor, we use the explicit formulae for computing
3D. The divisor D that satisfies deg(D) = deg(3D) = 2 is computed using the
following formulae:

D
ExDBL2→3

−−−−→ 2D
ExADD2+3→2

−−−−→ 3D

Note that the addition formula ExADD2+3→2 has a branch in step 4 in Algo-
rithm 4. If t1 = 0 in step 4, then the degree of v is reduced from 4 to 3, so that
the degree of u3 in step 6 is 2. Therefore, we utilize the condition t1 = 0 in order
to find the divisor D.

First, in order to find the solution of t1 = 0, we must derive 2D = (x3+u12x
2+

u11x+u10, v12x
2 +v11x+v10) as a function of D = (x2 +u21x+u20, v21x+v20).

We analyze the formula ExDBL2→3 and derive the relations D and 2D. Next, we
convert the representation from the divisor D to two points P1 = (x1, y1) and
P2 = (x2, y2) on C. If we choose P1 randomly, then the condition t1 = 0 gives
the equation of x2 and y2. Finally, we derive a univariate polynomial equation

1 The minimal non-zero density of an SPA-resistant scheme with two bases D and aD
(a > 3) is 4/7 for a = 13. See Appendix.
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N3(x2) = 0 using the same technique in the genus 2 case. (The degree of equation
N3(x2) is 79.)

We summarize this algorithm as follows:

Algorithm 3. Finding deg(D) = deg(3D) = 2 for genus 3
1. Set the curve parameter h2,1,0 and f0,1,2,3,4,5

2. Generate random point P1 = (x1, y1) on C
3. Solve a univariate polynomial equation of x2, N3(x2) = 0
4. Calculate y2 of P2 from x2 if a solution exists else goto 2.
5. Return D = (x2 + u21x + u20, v21x + v20) from P1 and P2.

We show an example of a divisor in Appendix C.2 using Algorithm 3. Com-
pared with a degenerate pair for the genus 2 case, we need not generate many
curves because many candidates exist in the genus 3 with degree 2 case. The
curve we selected is isomorphic to [Ver02].

4.5 Choice of Degenerate Base Point and Standard Base Point

We have proposed wNAF methods using degenerate divisors of genus 2 and
3. In this section, we compare the proposed methods with other SPA-resistant
scalar multiplication methods. From the perspective that the wNAF methods
use a pre-computation table, we discuss both table size and the number of group
operations. In the genus 2 case, the results are shown in Table 2. The table size is
represented by n bits, which is an extension degree of the base field. If we choose
a degenerate divisor as the base point, then the base point is represented by
D = (x+x0, y0). The table size, therefore, must be n×2 bits. On the other hand,
if we choose a standard divisor as the base point, the table size must be 2n× 2
bits. The number of group operations is obtained from the addition formulae
in [KKA+04]. In addition, we used the relation I = 5.8M , which is the result
of our computer experiment (see Appendix B.1). The proposed method applied
to wNAF using the pair (D, aD) is 11% faster than the double-and-add-always
method using a degenerate divisor. Using the same table size, the proposed
method is 30% faster than the double-and-add-always method using a standard
divisor. The results shown in Table 2 indicates that the proposed wNAF method
is efficient for memory constrained devices. Conversely, the proposed method is
not suitable for devices that have a large memory because the probability of
finding multiple points of a degenerate divisor, such that (D, aD, bD, ..), is low.

In the case of genus 3, the results are shown in Table 3. The number of
operations is obtained from the addition formulae in Table 1. The results lead
to a similar conclusion, but it is not always clear whether the degree of the
degenerate divisor should be 1 or 2. The double-and-add-always method using a
degree 1 divisor is faster than the wNAF method using a degree 2 divisor when
I = 5.2M (see Appendix B.1). In our computer experiment, the degenerate
divisor of degree 1 is faster and requires less memory. This result is dependent
on the computer environment for implementation. If I > 11M , then wNAF using
a degree 2 divisor is faster.
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Table 2. Degenerate base point and Standard base point (genus 2)

Base Point Table Size (bits) Scheme # of operations (I = 5.8M)

degenerate 2n double-and-add 318I + 6038M(7882M)
degenerate∗ 4n wNAF (w = 3) 267I + 5477M(7025M)
standard 4n double-and-add 318I + 8268M(10112M)
standard 8n wNAF (w = 2) 239I + 6293M(7679M)
standard 16n wNAF (w = 3) 214I + 5723M(6964M)
standard 32n wNAF (w = 4) 197I + 5239M(6381M)

* method proposed in this paper.

Table 3. Degenerate base point and Standard base point (genus 3)

Base Point deg(D) Table Size (bits) Scheme # of operations (I = 5.2M)

degenerate∗ 1 2n double-and-add 318I + 16137M(17791M)
degenerate∗ 2 4n double-and-add 318I + 21111M(22765M)
standard 3 6n double-and-add 318I + 25281M(26935M)

degenerate∗ 2 8n wNAF (w = 2) 239I + 17003M(18236M)
standard 3 12n wNAF (w = 2) 239I + 19119M(20362M)
standard 3 24n wNAF (w = 3) 214I + 17172M(18285M)
standard 3 48n wNAF (w = 4) 197I + 15837M(16861M)

* method proposed in this paper.

5 Summary

In this paper, we proposed explicit addition formulae with degenerate divisors
for genus 3 hyperelliptic curves. The proposed technique can be applied to scalar
multiplication of hyperelliptic curve cryptosystems using a fixed base point, e.g.,
DSA. We carefully estimated the efficiency of scalar multiplication using degen-
erate divisors. The proposed scheme using degenerate divisors of degree 1 or 2
attains a speed-up of approximately 34% or 15%, respectively, compared to the
use of a standard divisor. In order to represent degenerate divisors, we require a
shorter representation, and thus the base point can be compressed to 1/3 or 2/3.

Next, we investigated window-based methods for scalar multiplication using
degenerate divisors. We estimated the probability of a pair of degenerate divisors
D and aD for integer a and then presented an algorithm for generating such a
pair for small a. Finally, we showed an efficiency comparison of schemes using
window methods with degenerate divisors. The proposed scheme using degener-
ate divisors achieves a fast scalar multiplication using smaller memory than the
conventional scheme using standard divisors.

Window-based methods require a pair of degenerate divisors (D, aD) for some
integer a. The proposed method attempts to solve a polynomial obtained from
the explicit formulae using degenerate divisors. The degree of the polynomial
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increases exponentially, and the polynomial can be solved for only for small a.
Constructing a pair (D, aD) presents a problem when finding an algorithm for
large a.
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Diploma Thesis, Rühr-Universität Bochum, 2002.

[SMC+02] T. Sugizaki, K. Matsuo, J. Chao, and S. Tsujii, “An Extension of Harley
Addition Algorithm for Hyperelliptic Curves over Finite Fields of Charac-
teristic Two,” Technical Report ISEC2002-9, IEICE, pp.49-56, 2002.

[Ver02] F. Vercauteren, “Computing Zeta Functions of Hyperelliptic Curves over
Finite Fields of Characteristic 2,” Crypto 2002, LNCS 2442, Springer-
Verlag, pp.369-384, 2002.



Some Improved Algorithms for HECC Using Degenerate Divisors 309

A Proposed Explicit Formulae for Genus 3

Algorithm 4. ExADD2+3→3

Input: D1 = (u1, v1), deg u1 = 3, D2 = (u2, v2), deg u2 = 2
Output: D3 = (u3, v3) = D1 + D2
step procedure cost
1 Compute r = res(u1, u2) :

w0 ← u2
20, w1 ← u2

11, w2 ← u2
21, w3 ← u12 + u21,

w4 ← w0(u20 + u12w3), w5 ← u21(u10 + u11w3), w5 ← u20(w5 + w1),
w6 ← w3w2 + u21u11, w6 ← u10(u10 + w6), r ← w4 + w5 + w6 11M

2 Compute ru−1
1 mod u2 ≡ i1x + i0 :

i2 ← u21u12, i3 ← u21u11, i4 ← u20u12,
i1 ← i2 + w2 + u20 + u11, i0 ← w2w3 + i3 + i4 + u10 4M

3 Compute t ≡ t1x + t0 = r(v1 + v2)u
−1
1 mod u2 :

c1 ← v11 + v21 + v12u21, c0 ← v20 + v10 + v12u20,
t2 ← i1c1, t3 ← i0c0, t1 = t2u21 + (i1 + i0)(c1 + c0) + t2 + t3,
t0 ← t3 + t2u20. 7M

4 Compute s = 1/r ≡ s1x + s0 :
z1 ← rt1, z2 ← 1/z1, z3 ← z2r, z4 ← z2t1, z5 ← z3r, s1 ← z4t1, s0 ← z4t0. 1I+6M
If t1 = 0, goto exceptional procedure

5 Compute v = su1 + v1 ≡ s1x4 + k3x3 + k2x2 + k1x + k0 :
t0 ← s0u12, t1 ← s0u10, t2 ← s1u11,
k3 ← (s1 + s0)(1 + u12) + s1 + t0, k2 ← t0 + t2 + v12,
k1 ← (s1 + s0)(u11 + u10) + t2 + t1 + v11, k0 ← t1 + v10. 5M

6 Compute u3 = s−2
1 (f + hv + v2)/(u1u2) :

u32 ← z5(z5 + 1) + u12 + u21, t0 ← k2
3, t1 ← u2

12,
t2 ← z5(z5(f6 + u12 + u21 + t0 + k3) + u21 + h2 + u12),
u31 ← i2 + u11 + u20 + t1 + w2 + t2,
t3 ← (t1 + w2)(u21 + u12) + i3 + i4 + u10,
t4 ← i2 + u20 + w2 + u11 + t1 + f5 + (u21 + u12)(t0 + f6 + k3) + k2,
t4 ← z5(t4 + k3h2) + h2(u12 + u21) + t1 + w2 + i2 + u20 + u11 + h1, t4 ← z5t4,
u30 ← t3 + t4. 11M

7 Compute v3 = v32x2 + v31x + v30 ≡ su1 + v1 + h mod u3 :
t0 ← s0(u32 + u12), t1 ← s1(u31 + u11), t2 ← s1(u12 + u32),
v32 ← t0 + t1 + t2u32 + u32 + v12 + h2,
t4 ← s0(u30 + u10), t5 ← (s1 + s0)(u31 + u11 + u30 + u10),
v31 ← t5 + t1 + t4 + t2u31 + u31 + v11 + h1,
v30 ← t4 + t2u30 + u30 + v10 + h0. 8M

total ExADD3+2→3 1I+52M

Algorithm 5. ExADD1+3→3

Input: D1 = (u1, v1), deg u1 = 3, D2 = (u2, v2), deg u2 = 1
Output: D3 = (u3, v3) = D1 + D2
step procedure cost
1 Compute r = res(u1, u2) :

w0 ← u2
20, w1 ← w0(u12 + u20), w2 ← u20u11, r ← w1 + w2 + u10. 3M

2 Compute inverse of u1 mod u2 :
inv ← 1/r. 1I

3 Compute s0 = inv(v1 + v2) mod u2 :
z0 ← w0v12, s0 ← inv(v10 + v20 + u20v11 + z0). 3M

4 Compute u3 = (f + hv + v2)/(u1u2), v = s0u1 + v1 :
u32 ← s2

0 + s0 + u20 + u12 + f6

t0 ← f6 + s2
0 + u12, t1 ← u12t0, t2 ← u20u32, t3 ← h2s0,

u31 ← t1 + t2 + t3 + u11 + v12 + f5,
t4 ← u20(t6 + v12 + f5 + t3 + u11), t5 ← v12(v12 + u12 + h2),
t6 ← u12(u12(f6 + u12) + f5),
u30 ← w0u32 + t4 + t5 + u12t0 + s0h1 + t6 + u10 + f4 + v11. 12M

5 Compute v3 = v32x2 + v31x + v30 ≡ s0u1 + v1 + h mod u3 :
v32 ← v12 + h2 + s0(u12 + u32) + u32,
v31 ← v11 + h2 + s0(u11 + u31) + u31,
v30 ← v10 + h2 + s0(u10 + u30) + u30. 3M

total ExADD3+1→3 1I+21M
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B Experimental Results

The experiment was implemented on an Intel Xeon Processor (2.80 GHz)
using the Linux 2.4 (RedHat) operation system. We employed the gcc 3.3
compiler and the number theoretic library NTL5.3 [NTL] with GMP4.0 [GMP].

B.1 Timing of Field Operations

In order to obtain an appropriate relation between multiplication M and inver-
sion I, we conducted an experiment. Let F283 be defined as F2[t]/f(t), where
f(t) = t83 + t7 + t4 + t2 + 1 and let F259 be defined as F2[t]/f(t), where
f(t) = t59 + t7 + t4 + t2 + 1. Table 4 shows the timing obtained in our ex-
periment. In our computational environment, the timing ratios of the inversion
by the multiplication is estimated to be I/M = 5.8 or 5.2 from 107 random
samples, respectively.

Table 4. Timing of inversion and multiplication (in μs)

mul (M) inversion (I) I/M

F283 0.74 4.29 5.77
F259 0.53 2.76 5.18

B.2 Scalar Multiplication Using Degenerate Divisors for Genus 3

In order to demonstrate the efficiency of the proposed algorithms, we imple-
mented the proposed schemes in section 3. For our experiment we chose the
hyperelliptic curve of genus 3 from [Ver02]. The timing of scalar multiplication
is an average of 104 scalar multiplications. Table 5 shows that the improvement
over the double-and-add-always method using a standard divisor is 7% (or 27%)
using a degenerate divisor of degree 2 (or 1).

Table 5. Improved timing of scalar multiplication (genus 3)

Base Point Timing

standard (weight 3) 32.7ms
degenerate (weight 2) 30.5ms
degenerate (weight 1) 23.8ms

C Some Examples of D with deg(D) = deg(aD)

C.1 Example of D with deg(D) = deg(5D) = 1 for Genus 2

Finite Field F283 :

F2[t]/f(t), f(t) = t83 + t7 + t4 + t2 + 1
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Hyperelliptic curve C2:

y2 + (x2 +
∑1

i=0 hix
i)y = x5 +

∑3
i=0 fix

i,

h1 = 3b0533db4d29cf09ab889 h0 = 5b78506748b8b438bc2a1
f3 = 799ce3fba76a739ca9f4d f2 = 0
f1 = 5aaceb489dbd99e2b9289 f0 = 572a506ced9f3560b1acd

Group order of the Jacobian JC2(F283):

2× 46768052394559882445431556020942751487541543239469.

Degenerate base point D:

D = (x + x1, y1)

x1 = 2a87b03b3d0fad48bac8 y1 = 3991e099305a0cdec6fa5

5D = (x + x2, y2)

x2 = e464319c1b8b1988fb75 y2 = 51f16e7d156b43b406478

C.2 Example of D with deg(D) = deg(3D) = 2 for Genus 3

Finite Field F259 :

F2[t]/f(t), f(t) = t59 + t7 + t4 + t2 + 1

Hyperelliptic curve C3 [Ver02]:

y2 + (x3 +
∑2

i=0 hix
i)y = x7 +

∑5
i=0 fix

i over F259

h2 = fd34cf935a40744 h1 = ad088ab2fb72242
h0 = a25cacf3751cb
f5 = 66b8ddf5319e95 f4 = 53aa4f37e88bcc
f3 = f3632bafee934d5 f2 = 68170b377ee7c81
f1 = 69c43841ed3704 f0 = cada3798772ba56

Group order of the Jacobian JC3(F259):

2× 95780971407243394633762332360123160334059170481903949.

Degenerate base point D:

D = (x2 + u11x + u10, v11x + v10)

u11 = 57ef5eed895c0c4 u10 = 27bcb5afa12dcd2
v11 = 21e335606275529 v10 = 52e9fd32a37658c

3D = (x2 + u21x + u20, v21x + v20)

u21 = 1fbfc19ba156e11 u20 = 3470af7f7fd7511
v21 = 6729f750620f0a6 v20 = 24be045a800c3ad
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D Proof of the Minimality

If we scan more than three bits, then schemes with lower than non-zero density
can be achieved. Indeed, in the case of k1 = 2, k2 = 3, we can construct schemes
with non-zero density 3/5 for a = 5, 7, 9, 13. There is an SPA-resistant scheme
for k1 = 3, k2 = 4, and a = 13. However, there is no SPA-resistant scheme if we
scan larger bits. We can prove the following theorem:

Theorem 4. The minimal non-zero density of the SPA-resistant scheme with
two bases D and aD is 4/7 for a = 13.

Proof. If we try to construct an SPA-resistant scheme with a different pattern
from |D...D|DA...DA|, then all digits appearing in the width-w NAF method
can not be represented. Therefore, the SPA-resistant scheme should have the
pattern |D...D|DA...DA|.

We have already shown a construction of the scheme with non-zero density
4/7. In order to achieve non-zero density smaller than 4/7, we should scan more
than 11 bits. However, the largest integer 212−1 of 12 bits can not be represented
by the pattern with k1 = 6 and k2 = 7. If we choose bits larger than 11, then
the difference becomes larger. Consequently, there is no SPA-resistant scheme
smaller than 4/7. 
�
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Abstract. We present a modification of KASUMI type permutations
and analyze the security of it using the notion of pseudorandomness. Our
modified KASUMI type permutation can be computed more efficiently
than the original KASUMI type permutation. Furthermore, our results
have a slightly better (same) upper bound of success probability against
arbitrary attackers in the sense of (super) pseudorandomness.
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1 Introduction

Brief history. Luby and Rackoff [4] introduced a theory for the security of
block ciphers by using the notion of pseudorandomness. One of the purposes
of the security analysis using the notion of pseudorandomness is to measure
the security of the structures used in the block ciphers. Roughly speaking, the
security of the structure is analyzed after the main functions (such as round
functions in Feistel transformations) is replaced with a pseudorandom function
or pseudorandom permutation. With this replacement, Luby and Rackoff showed
that the three round DES type permutation is a pseudorandom permutation and
the four round one is a super-pseudorandom permutation. [4]

KASUMI is a block cipher which has been adopted as a standard of 3GPP [1],
where 3GPP is the body standardizing the next generation of mobile telephony.
The overall structure of KASUMI is a Feistel permutation and each round func-
tion consists of two functions, FL function and FO function. Each FO function
consists of a three round MISTY type permutation, where each round function
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is called an FI function. And each FI function consists of a four round MISTY
type permutation. See [1, 2] for details.

Recently Iwata, Yagi, and Kurosawa [2] presented results about the pseu-
dorandomness of KASUMI for adaptive adversarial model. They first idealized
KASUMI as follows.

– Each FL function is ignored.
– Each FI function is idealized by an independant (pseudo) random permuta-

tion.

They called such an idealized KASUMI a “KASUMI type permutation,” and
proved that the four round and six round idealized KASUMI type permutations
are pseudorandom and super-pseudorandom, respectively, for adaptive adver-
saries.

Motivation. The results of [2] are related to the following question:

• How to provide a construction method of a (super) pseudorandom permua-
tion with large input size using several independent pseudorandom permu-
tations with small input size.

More specifically, their results show that if we only consider the KASUMI-
like structure which has Feistel structure as the overall structure and MISTY
structure as the round structure, there exist

1. a construction method of a 4n-bit input size pseudorandom permuation using
“twelve” independent n-bit input size pseudorandom permutations, and

2. a construction method of a 4n-bit input size super pseudorandom permuation
using “eighteen” independent n-bit input size pseudorandom permutations.

The results of [2] shows that the high level structure of KASUMI block cipher
can be used to get the above results.

Here, we can think a next natural question. That is, how to reduce the num-
ber of using n-bit input size pseudorandom permutations in order to obtain a
4n-bit input size (super) pseudorandom permuation, while it preserves security
of the above results.

Our contribution. In this paper, we show that if we only consider the
KASUMI-like structure, there exist

1. a construction method of a 4n-bit input size pseudorandom permuation using
“ten” n-bit input size pseudorandom permutations and

2. a construction method of a 4n-bit input size super-pseudorandom permua-
tion using “sixteen” n-bit input size pseudorandom permutations.

We will first define a modification of the high level structure of KASUMI
block cipher and then prove our above results with the modified structure in the
adaptive adversarial model.
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Our modification is similar to the KASUMI type permutation except the
use of just two round MISTY-type permutation as the round function of it.
Details can be shown in Section 2.2. Here note that two round MISTY-type
permutation can be computed parallelly (the values of each round functions
can be computed simultaneously). So our modification can be computed more
efficiently than the original KASUMI type permutation. Furthermore our re-
sults have slightly better (same) upper bound of success probability of arbi-
trary attacker in the sense of (super) pseudorandomness. A summary of our
results is given by Table 1. The model of attacker and the meaning of q will
be described momentarily.

Table 1. Summary of the previous results and our contributions. (# BP means the
number of basic permutations and UP an upper bound of success probability.)

Pseudorandom Super-pseudorandom
# BP UP # BP UP

[2] 12
15

2
· q(q − 1)

2n − 1
18

9q(q − 1)

2n − 1

this paper 10
7q(q − 1)

2n − 1
16

9q(q − 1)

2n − 1

2 Preliminaries

Our overall treatment follows the nicely laid out framework of Iwata, Yagi, and
Kurosawa [2].

2.1 Notation

For a bit string x ∈ {0, 1}4n, we denote the first n bits of x by xLL, the next n bits
of x by xLR, the third n bits of x by xRL, and the last n bits of x by xLL. That
is, x = (xLL, xLR, xRL, xRR). For a set of l-bit strings {x(i)|x(i) ∈ {0, 1}l}1≤i≤q,
we say {x(i)}1≤i≤q are distinct if x(i) �= x(j) for all 1 ≤ i < j ≤ q.

If S is a set, s R← S denotes the process of picking an element from S uniformly
at random. Denote by Pn the set of all permutations over {0, 1}n, which consists
of (2n)! permutations in total. For functions f and g, g ◦ f denotes the function
x $→ g(f(x)).

2.2 A Modification of KASUMI Type Permutation

In this section, we provide the definition of our modification of KASUMI type
permutations. We call it “the MKASUMI type permutation”.

Definition 1 (The basic MKASUMI type permutation). Let x ∈ {0, 1}4n.
For any permutations p1, p2 ∈ Pn, define the basic MKASUMI type permutation
ψp1,p2 ∈ P4n as
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ψp1,p2(x) � y

where yLL � xRL, yLR � xRR, yRL � xRL ⊕ p1(xRR) ⊕ p2(xRL) ⊕ xLL, and
yRR � xRL ⊕ p1(xRR)⊕ xLL.

Definition 2 (The r round MKASUMI type permutation). Let r ≥ 1 be
an integer, and p1, p2, ..., p2r ∈ Pn be permutations. Define the r round MKA-
SUMI type permutation ψ(p1, p2, ..., p2r) ∈ P4n as

ψ(p1, p2, ..., p2r) � ψp2r−1,p2r
◦ ψp2r−3,p2r−2 ◦ · · · ◦ ψp1,p2

See Fig. 1 for illustrations. In this paper, for 1 ≤ i ≤ q and 1 ≤ j ≤ 2r, let
I
(i)
j denote the input to pi when the input to ψ is x(i) and the output is y(i).

Similarly, let O
(i)
j denote the output of pi when the input to ψ is x(i) and the

output is y(i).
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Fig. 1. Eight round MKASUMI type permutation ψ(p1, ..., p16) and five round MKA-
SUMI type permutation ψ(p1, ..., p10)
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2.3 Pseudorandom and Super-Pseudorandom Permutations

Our adaptive adversary A is modeled as a Turing machine that has black-box
access to an oracle (or oracles). The computational power of A is unlimited,
but the total number of oracle calls is limited to a the number q. After making
at most q queries to the oracle(s) adaptively, A outputs a bit. In this paper,
we assume that A never asks a query if its answer is determined by a previous
query-answer pair.

The pseudorandomness of a block cipher Ψ over {0, 1}4n captures its com-
putational indistinguishability from P4n, where the adversary is given access to
the forward direction of the permutation. In other words, it measures security
of a block cipher against adaptive chosen plaintext attack.

Definition 3 (Pseudorandomness). Let a block cipher Ψ be a family of per-
mutations over {0, 1}4n. Let A be an adversary. Then, in the sense of pseudo-
randomness of Ψ , A’s advantage is defined by

Advprp
Ψ (A) � |Pr(ψ R← Ψ : Aψ = 1)− Pr(R R← P4n : AR = 1)|.

Aψ indicates A with an oracle which, in response to a query x, returns y ← ψ(x).
AR indicates A with an oracle which, in response to a query x, returns y ← R(x).

The super-pseudorandomness of a block cipher Ψ over {0, 1}4n captures its
computational indistinguishability from P4n, where the adversary is given access
to both directions of the permutation. In other words, it measures security of a
block cipher against adaptive chosen plaintext and adaptive chosen ciphertext
attacks.

Definition 4 (Super-Pseudorandomness). Let a block cipher Ψ be a family
of permutations over {0, 1}4n. Let A be an adversary. Then, in the sense of
super-pseudorandomness of Ψ , A’s advantage is defined by

Advsprp
Ψ (A) � |Pr(ψ R← Ψ : Aψ,ψ−1

= 1)− Pr(R R← P4n : AR,R−1
= 1)|.

Aψ,ψ−1
indicates A with an oracle which, in response to a query (+, x), returns

y ← ψ(x), and in response to a query (−, y), returns x ← ψ−1(y). AR,R−1

indicates A with an oracle which, in response to a query (+, x), returns y ←
R(x), and in response to a query (−, y), returns x← R−1(y).

3 Five Round MKASUMI Type Permutation Is
Pseudorandom

Theorem 1. For 1 ≤ i ≤ 10, let pi ∈ Pn be a random permutation. Let
ψ = ψ(p1, ..., p10) be a five round MKASUMI. And let R ∈ P4n be a random
permutation and Ψ � {ψ | ψ = ψ(p1, ..., p10), pi ∈ Pn for 1 ≤ i ≤ 10}.
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Then for any adversary A that makes at most q queries in total,

Advprp
Ψ (A) ≤ 7q(q − 1)

2n − 1
.

Proof. Let O be either R or ψ. The adversary A has oracle access to O. A
can make a query x and the oracle returns y = O(x). For the i-th query A
makes to O, define the query-answer pair (x(i), y(i)) ∈ {0, 1}4n×{0, 1}4n, where
A’s query was x(i) and the answer it got was y(i). Define view v of A as v =
〈(x(1), y(1)), ..., (x(q), y(q))〉.

Since A is computationally unbounded, we may without loss of generality as-
sume that A is deterministic. This implies that for every 1 ≤ i ≤ q the i-th query
x(i) is fully determined by the first i−1 query-answer pairs, and the final output
of A (0 or 1) depends only on v. Therefore, there exists a function CA(·) such that{

CA(x(1), y(1), ..., x(i−1), y(i−1)) = x(i) for 1 ≤ i ≤ q and
CA(v) = A’s final output.

We say that v = 〈(x(1), y(1)), ..., (x(q), y(q))〉 is a possible view if for every 1 ≤
i ≤ q, CA(x(1), y(1), ..., x(i−1), y(i−1)) = x(i).

Let vone � {v|CA(v) = 1 and v is possible}. Further, we let vgood be a set
of all possible view v = 〈(x(1), y(1)), ..., (x(q), y(q))〉 which satisfies the following
four conditions: (1) CA(v) = 1, (2) {y(i)

RL}1≤i≤q are distinct, (3) {y(i)
RR}1≤i≤q are

distinct, and (4) {x(i)
RL ⊕ x

(i)
RR ⊕ y

(i)
RL ⊕ y

(i)
RR}1≤i≤q are distinct.

Evaluation of pR. We first evaluate pR � Pr(R R← P4n : AR = 1). We have
pR = #{R|AR=1}

(24n)! . For each v ∈ vone, the number of R such that

R(x(i)) = y(i) for all 1 ≤ i ≤ q (1)

is exactly (24n − q)!. Therefore, we have pR =
∑

v∈vone

#{R|R satisfying (1)}
(24n)! =

#vone · (24n−q)!
(24n)! .

Evaluation of pψ. We evaluate pψ � Pr(ψ R← Ψ : Aψ = 1), where ψ
R← Ψ

means that pi
R← Pn for 1 ≤ i ≤ 10 and then let ψ ← ψ(p1, ..., p10). Then we

have pψ = #{(p1,...,p10)|Aψ=1}
((2n)!)10 .

We have the following lemmas. A proof of Lemma 1 is given in Section 4.

Lemma 1 (Main Lemma). For any fixed possible view v = 〈(x(1), y(1)), ...,
(x(q), y(q))〉 such that {y(i)

RL}1≤i≤q are distinct, {y(i)
RR}1≤i≤q are distinct, and

{x(i)
RL ⊕ x

(i)
RR ⊕ y

(i)
RL ⊕ y

(i)
RR}1≤i≤q are distinct, the number of (p1, ..., p10) which

satisfies

ψ(x(i)) = y(i) for 1 ≤ ∀i ≤ q (2)

is at least (1− 11
2 ·

q(q−1)
2n−1 ) · {2n!}6 · {(2n − q)!}4.
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Lemma 2. #vgood ≥ #vone − 3
2 ·

q(q−1)
2n−1 ·

(24n)!
(24n−q)! .

Proof. The proof is almost similar to the proof of [2]. So we omit it.

Then from Lemma 1 and 2, we have

pψ =
∑

v∈vone

#{(p1, ..., p10)|(p1, ..., p10) satisfying (2)}
{(2n)!}10

≥
∑

v∈vgood

#{(p1, ..., p10)|(p1, ..., p10) satisfying (2)}
{(2n)!}10

≥
∑

v∈vgood

(1− 11
2
· q(q − 1)

2n − 1
) · {(2

n − q)!}4
{(2n)!}4

≥ (#vone −
3
2
· q(q − 1)

2n − 1
· (24n)!
(24n − q)!

) · (1− 11
2
· q(q − 1)

2n − 1
) · {(2

n − q)!}4
{(2n)!}4

= (pR −
3
2
· q(q − 1)

2n − 1
) · (1− 11

2
· q(q − 1)

2n − 1
) · {(2

n − q)!}4
{(2n)!}4 · (24n)!

(24n − q)!

Now it is easy to see that {(2n−q)!}4

{(2n)!}4 · (24n)!
(24n−q)! ≥ 1 (this can be shown easily by

an induction on q). Then pψ ≥ (pR− 3
2 ·

q(q−1)
2n−1 )·(1− 11

2 ·
q(q−1)
2n−1 ) ≥ pR− 7q(q−1)

2n−1 . Ap-

plying the same argument to 1−pψ and 1−pR yields that 1−pψ ≥ 1−pR− 7q(q−1)
2n−1 ,

and we have |pψ − pR| ≤ 7q(q−1)
2n−1 .

From Theorem 1, it is very easy to show ψ = ψ(p1, ..., p10) is pseudoran-
dom even if each pi is a pseudorandom permutation by using a standard hybrid
argument [4].

4 Proof of Lemma 1

First, we need following three lemmas.

Lemma 3. Let v = 〈(x(1), y(1)), ..., (x(q), y(q))〉 be a fixed possible view. Then
#{(p1, p2, p3, p4)| ∃ i, j such that 1 ≤ i < j ≤ q and I

(i)
6 = I

(j)
6 } ≤ q(q−1)

2 ·
3·{(2n)!}4

2n−1 .

Proof. A proof is given in Appendix.

Lemma 4. Let v = 〈(x(1), y(1)), ..., (x(q), y(q))〉 be a fixed possible view. Then
#{(p1, p2, p3, p4)| ∃ i, j such that 1 ≤ i < j ≤ q and I

(i)
5 = I

(j)
5 } ≤ q(q−1)

2 ·
2·{(2n)!}4

2n−1 .

Proof. If we prove the lemma in the following four cases, the proof is almost
similar to the proof of Lemma 3. So we omit the details.
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Case 1: x(i)
RL �= x

(j)
RL.

Case 2: x(i)
RR �= x

(j)
RR and x

(i)
RL = x

(j)
RL .

Case 3: x(i)
LL �= x

(j)
LL, x(i)

RL = x
(j)
RL and x

(i)
RR = x

(j)
RR.

Case 4: x(i)
LR �= x

(j)
LR, x(i)

LL = x
(j)
LL, x(i)

RL = x
(j)
RL, and x

(i)
RR = x

(j)
RR.

Lemma 5. Let v = 〈(x(1), y(1)), ..., (x(q), y(q))〉 be a fixed possible view such that
{x(i)

RL ⊕ x
(i)
RR ⊕ y

(i)
RL ⊕ y

(i)
RR}1≤i≤q are distinct. Then

#{(p1, p2, p3, p4)| ∃ i, j such that 1 ≤ i < j ≤ q and O
(i)
8 = O

(j)
8 } ≤ q(q − 1)

2
· {(2

n)!}4

2n − 1

Proof. First, we fix i and j such that 1 ≤ i < j ≤ q, and consider the
condition O

(i)
8 = O

(j)
8 . Now observe that O(i)

8 = O
(j)
8 is equivalent to the following

condition:

p4(I
(i)
4 )⊕ x

(i)
RL ⊕ y

(i)
RL ⊕ x

(i)
RR ⊕ y

(i)
RR = p4(I

(j)
4 )⊕ x

(j)
RL ⊕ y

(j)
RL ⊕ x

(j)
RR ⊕ y

(j)
RR.

Then the number of p4 which satisfies the above condition is at most (2n)!
2n−1 ,

since our assumption. Therefore,

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies O
(i)
8 = O

(j)
8 } ≤ {(2n)!}4

2n − 1

and since we have
(
q
2

)
choice of i and j the lemma follows.

Proof of Lemma 1. (See figures in Appendix.)

Initially, x(1), ..., x(q), y(1), ..., y(q) are fixed.

Number of (p1, ..., p4). From Lemma 3, 4, and 5, the number of (p1, ..., p4)
such that:

– I
(i)
5 �= I

(j)
5 , I(i)

6 �= I
(j)
6 , and O

(i)
8 �= O

(j)
8 for 1 ≤ ∀i < ∀j ≤ q,

is at least {2n!}4 − q(q−1)
2 · {2n!}4

2n−1 −
2q(q−1)

2 · {2n!}4

2n−1 −
3q(q−1)

2 · {2n!}4

2n−1 . Fix any
(p1, ..., p4) which satisfy these three conditions.

Number of p5. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of
p5 such that

p5(I
(i)
5 )⊕ I

(i)
6 ⊕ I

(i)
3 = p5(I

(j)
5 )⊕ I

(j)
6 ⊕ I

(j)
3 ,

which is equivalent to I
(i)
7 = I

(j)
7 , is at most (2n)!

2n−1 , since I
(i)
5 �= I

(j)
5 .

Similarly, the number of p5 such that

p5(I
(i)
5 )⊕ I

(i)
3 ⊕ I

(i)
6 ⊕ y

(i)
LR ⊕ y

(i)
RL = p5(I

(j)
5 )⊕ I

(j)
3 ⊕ I

(j)
6 ⊕ y

(j)
LR ⊕ y

(j)
RL,

which is equivalent to O
(i)
9 = O

(j)
9 , is at most (2n)!

2n−1 , since I
(i)
5 �= I

(j)
5 .
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Then the number of p5 which satisfies:

– I
(i)
7 �= I

(j)
7 and O

(i)
9 �= O

(j)
9 for 1 ≤ ∀i < ∀j ≤ q,

is at least (2n)!− q(q−1){(2n)!}
2n−1 . Fix any p5 which satisfy the above two conditions.

Number of p6. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of
p6 such that

p6(I
(i)
6 )⊕I

(i)
6 ⊕O

(i)
3 ⊕O

(i)
5 ⊕x

(i)
RR⊕y

(i)
RR = p6(I

(j)
6 )⊕I

(j)
6 ⊕O

(j)
3 ⊕O

(j)
5 ⊕x

(j)
RR⊕y

(j)
RR,

which is equivalent to O
(i)
7 = O

(j)
7 , is at most (2n)!

2n−1 , since I
(i)
6 �= I

(j)
6 .

Similarly, the number of p6 satisfies

p6(I
(i)
6 )⊕ I

(i)
4 ⊕ I

(i)
6 ⊕O

(i)
5 = p6(I

(j)
6 )⊕ I

(j)
4 ⊕ I

(j)
6 ⊕O

(j)
5 ,

which is equivalent to I
(i)
8 = I

(j)
8 , is at most (2n)!

2n−1 , since I
(i)
6 �= I

(j)
6 .

Similarly, the number of p6 satisfies

p6(I
(i)
6 )⊕ I

(i)
3 ⊕ I

(i)
4 ⊕ y

(i)
LL ⊕ y

(i)
LR = p6(I

(j)
6 )⊕ I

(j)
3 ⊕ I

(j)
4 ⊕ y

(j)
LL ⊕ y

(j)
LR,

which is equivalent to O
(i)
10 = O

(j)
10 , is at most (2n)!

2n−1 , since I
(i)
6 �= I

(j)
6 .

Then the number of p6 satisfies:

– O
(i)
7 �= O

(j)
7 , I(i)

8 �= I
(j)
8 , and O

(i)
10 �= O

(j)
10 for 1 ≤ ∀i < ∀j ≤ q,

is at least (2n)!− 3q(q−1){(2n)!}
2(2n−1) . Fix any p6 which satisfy the above three condi-

tions.

Number of (p7, ..., p10). Now p1, ..., p6 are fixed in such a way that {I(i)
7 }1≤i≤q

are distinct, {O(i)
7 }1≤i≤q are distinct, {I(i)

8 }1≤i≤q are distinct, {O(i)
8 }1≤i≤q are

distinct, {O(i)
9 }1≤i≤q are distinct, and {O(i)

10 }1≤i≤q are distinct. We know from
our condition that {I(i)

9 }1≤i≤q are distinct and {I(i)
10 }1≤i≤q are distinct. There-

fore, we have exactly (2n − q)! choice of pi for each i = 7, 8, 9, 10.

Completing the proof. To summarize, we have:

– at least (1− 3 · q(q−1)
2n−1 ) · {2n!}4 choice of p1, ..., p4.

– at least (1− q(q−1)
2n−1 ) · {2n!} choice of p5.

– at least (1− 3
2 ·

q(q−1)
2n−1 ) · {2n!} choice of p6.

– exactly {(2n − q)!}4 choice of p7, ..., p10.

Then the number of (p1, ..., p10) which satisfy (2) is at least

(1− 3 · q(q − 1)
2n − 1

) · (1− q(q − 1)
2n − 1

) · (1− 3
2
· q(q − 1)

2n − 1
) · {2n!}6 · {(2n − q)!}4

≥ (1− 11
2
· q(q − 1)

2n − 1
) · {2n!}6 · {(2n − q)!}4.
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5 Eight Round MKASUMI Type Permutation Is
Super-Pseudorandom

Theorem 2. For 1 ≤ i ≤ 16, let pi ∈ Pn be a random permutation. Let ψ =
ψ(p1, ..., p16) be the eight round MKASUMI. And let R ∈ P4n be a random
permutation and Ψ � {ψ | ψ = ψ(p1, ..., p16), pi ∈ Pn for 1 ≤ i ≤ 16}.

Then for any adversary A that makes at most q queries in total,

Advsprp
Ψ (A) ≤ 9q(q − 1)

2n − 1
.

Proof. Let O be either R or ψ. The adversary A has oracle access to O and
O−1. There are two types of queries A can make: either (+, x) or (−, y). For
the i-th query A makes to O or O−1, define the query-answer pair (x(i), y(i)) ∈
{0, 1}4n ×{0, 1}4n, where either A’s query was (+, x) and the answer it got was
y(i) = O(x(i)) or A’s query was (−, y) and the answer it got was x(i) = O−1(y(i)).
Define view v of A as v = 〈(x(1), y(1)), ..., (x(q), y(q))〉.

Since A is computationally unbounded, we may without loss of generality as-
sume that A is deterministic. This implies that for every 1 ≤ i ≤ q the i-th query
x(i) is fully determined by the first i−1 query-answer pairs, and the final output
of A (0 or 1) depends only on v. Therefore, there exists a function CA(·) such that{
CA(x(1), y(1), ..., x(i−1), y(i−1)) = either (+, x(i)) or (−, y(i)) for 1 ≤ i ≤ q and
CA(v) = A’s final output.

We say that v = 〈(x(1), y(1)), ..., (x(q), y(q))〉 is a possible view if for every 1 ≤ i ≤
q, CA(x(1), y(1), ..., x(i−1), y(i−1)) ∈ {(+, x(i)), (−, y(i))}. Let vone � {v|CA(v) =
1 and v is possible}.
Evaluation of pR. We first evaluate pR � Pr(R R← P4n : AR,R−1

= 1). We
have pR = #vone · (24n−q)!

(24n)! as was done in the proof of Theorem 1.

Evaluation of pψ. We evaluate pψ � Pr(ψ R← Ψ : Aψ,ψ−1
= 1), where ψ

R← Ψ

means that pi
R← Pn for 1 ≤ i ≤ 16 and then let ψ ← ψ(p1, ..., p16). Then we

have pψ = #{(p1,...,p16)|Aψ,ψ−1
=1}

((2n)!)16 .

We have the following main lemma. A proof of this lemma is given in Appendix.

Lemma 6 (Main Lemma). For any fixed possible view v = 〈(x(1), y(1)), ...,
(x(q), y(q))〉, the number of (p1, ..., p16) which satisfies

ψ(x(i)) = y(i) for 1 ≤ ∀i ≤ q (3)

is at least (1− 9q(q−1)
2n−1 ) · {2n!}12 · {(2n − q)!}4.
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Then from Lemma 6 , we have

pψ =
∑

v∈vone

#{(p1, ..., p10)|(p1, ..., p16) satisfying (3)}
{(2n)!}16

≥
∑

v∈vgood

(1− 9q(q − 1)
2n − 1

) · {(2
n − q)!}4
{(2n)!}4

= #vone · (1−
9q(q − 1)
2n − 1

) · {(2
n − q)!}4
{(2n)!}4

= pR · (1−
9q(q − 1)
2n − 1

) · {(2
n − q)!}4
{(2n)!}4 · (24n)!

(24n − q)!
.

Since {(2n−q)!}4

{(2n)!}4 · (24n)!
(24n−q)! ≥ 1, pψ ≥ pR ·(1− 9q(q−1)

2n−1 ) ≥ pR− 9q(q−1)
2n−1 . Applying

the same argument to 1− pψ and 1− pR yields that 1− pψ ≥ 1− pR − 9q(q−1)
2n−1

and we have |pψ − pR| ≤ 9q(q−1)
2n−1 .

6 Discussion and Concluding Remarks

In this paper, we showed that 5 round MKASUMI type permutation is pseu-
dorandom and 8 round MKASUMI type permutation is super-pseudorandom.
Until now, we found a distinguisher for 3 round MKASUMI type permutation
in the notion of pseudorandomness and found a distinguisher for 4 round MKA-
SUMI type permutation in the notion of super pseudorandomness. It is easy to
make a distinguisher for 3 round MKASUMI type permutation in the notion
of pseudorandomness. So we omit it. We can distinguish 4 round MKASUMI
type permutation from random permutation in the notion of super pseudoran-
domness using just two plaintext queries and one ciphertext query as follows:
Choose two distinct plaintexts x(1) = (a, b, c, d) and x(2) = (a′, b, c, d) and denote
the corresponding two ciphertexts by y(1) = (e, f, g, h) and y(2) = (e′, f ′, g′, h′),
respectively. Then it is easy to see that

(1) O
(1)
3 ⊕ I

(1)
4 ⊕O

(2)
3 ⊕ I

(2)
4 = a⊕ a′,

(2) O
(1)
3 ⊕ I

(1)
4 ⊕ d = p7(f)⊕ e⊕ h,

(3) O
(2)
3 ⊕ I

(2)
4 ⊕ d = p7(f ′)⊕ e′ ⊕ h′

By (1), (2), and (3), p7(f) ⊕ p7(f ′) = a ⊕ a′ ⊕ e ⊕ e′ ⊕ h ⊕ h′. Hence we
can obtain the value of p7(f)⊕ p7(f ′) since we know a, a′, e, e′, h, and h′. Next,
choose ciphertext y(3) = (e, f ′, g⊕ p7(f)⊕ p7(f ′), h⊕ p7(f)⊕ p7(f ′)) and denote
the corresponding plaintext by x(3) = (a′′, b′′, c′′, d′′). Then it is easy to check
that c ⊕ c′′ = d ⊕ d′′ holds. Therefore we can make a distinguisher with this
property. But the following problems still remain to be solved.

– Can 4 round MKASUMI type permutation be pseudorandom?
– Can 5, 6, and 7 round MKASUMI type permutation be super-pseudorandom?
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In addition, it is still open whether 5 round original KASUMI type permutation
can be super-pseudorandom.
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Appendix

Proof of Lemma 3

First we fix i and j such that 1 ≤ i < j ≤ q, and consider the condition

I
(i)
6 = I

(j)
6 (4)

in the following four cases:

Case 1: x(i)
RR �= x

(j)
RR. First, consider the condition

p1(x
(i)
RR)⊕ x

(i)
RL ⊕ x

(i)
LL = p1(x

(j)
RR)⊕ x

(j)
RL ⊕ x

(j)
LL. (5)
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The number of p1 which satisfies (5) is at most (2n)!
2n−1 since x

(i)
RR �= x

(j)
RR. Thus

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies both (4) and (5)} ≤ {(2n)!}4
2n − 1

. (6)

Next, consider any p1 which does not satisfy (5), that is,

p1(x
(i)
RR)⊕ x

(i)
RL ⊕ x

(i)
LL �= p1(x

(j)
RR)⊕ x

(j)
RL ⊕ x

(j)
LL. (¬5)

For this p1, we consider the condition

p2(x
(i)
RL)⊕ p1(x

(i)
RR)⊕ x

(i)
RL ⊕ x

(i)
LL = p2(x

(j)
RL)⊕ p1(x

(j)
RR)⊕ x

(j)
RL ⊕ x

(j)
LL (7)

which is equivalent to I
(i)
4 = I

(j)
4 . Since (¬5) holds, the number of p2 which

satisfies (7) is at most (2n)!
2n−1 , and thus we have

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies (4), (¬5), and (7)} ≤ {(2n)!}4
2n − 1

. (8)

Next, consider any p1 which satisfies (¬5), and any p2 which dose not satisfy
(7). That is,

p2(x
(i)
RL)⊕p1(x

(i)
RR)⊕x

(i)
RL⊕x

(i)
LL �= p2(x

(j)
RL)⊕p1(x

(j)
RR)⊕x

(j)
RL⊕x

(j)
LL , (¬7)

which is equivalent to I
(i)
4 �= I

(j)
4 . For these p1, p2, and any p3, the number of p4

which satisfies

p4(I
(i)
4 )⊕O

(i)
3 ⊕ I

(i)
4 ⊕X

(i)
RL = p4(I

(j)
4 )⊕O

(j)
3 ⊕ I

(j)
4 ⊕X

(j)
RL ,

which is equivalent to (4), is at most (2n)!
2n−1 . Thus,

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies (4), (¬5), and (¬7)} ≤ {(2n)!}4
2n − 1

. (9)

Thus, from (6),(8), and (9), we have

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies (4)} ≤ 3 · {(2n)!}4
2n − 1

. (10)

Case 2: x
(i)
RL �= x

(j)
RL and x

(i)
RR = x

(j)
RR. For any p1, the number of p2 which

satisfies (7) is at most (2n)!
2n−1 since x

(i)
RL �= x

(j)
RL, and thus we have

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies (4) and (7)} ≤ {(2n)!}4
2n − 1

. (11)

Next, for any p1, any p2 which satisfies (¬7), and any p3, the number of p4

which satisfies (4) is at most (2n)!
2n−1 . Therefore we have

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies (4) and (¬7)} ≤ {(2n)!}4
2n − 1

. (12)
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Thus, from (11), and (12), we have

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies (4)} ≤ 2 · {(2n)!}4
2n − 1

. (13)

Case 3: x
(i)
LL �= x

(j)
LL, x

(i)
RL = x

(j)
RL, and x

(i)
RR = x

(j)
RR. For any p1 and any p2,

(¬7) is satisfied. Therefore, for any p1, any p2, and any p3, the number of p4

which satisfies (4) is at most (2n)!
2n−1 . Thus we have

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies (4)} ≤ {(2n)!}4
2n − 1

. (14)

Case 4: x
(i)
LR �= x

(j)
LR, x

(i)
LL = x

(j)
LL, x

(i)
RL = x

(j)
RL, and x

(i)
RR = x

(j)
RR. In this case,

there exists no p1, p2, p3, and p4 that satisfies (4). Therefore we have

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies (4)} = 0. (15)

Completing the proof. By taking the maximum of (10),(13),(14), and (15),

#{(p1, p2, p3, p4)| (p1, p2, p3, p4) satisfies (4)} ≤ 4 · {(2n)!}4
2n − 1

for any case. Finally, since we have
(
q
2

)
choice of i and j, the lemma follows.

Proof of Lemma 6

Initially, x(1), ..., x(q), y(1), ..., y(q) are fixed.

Number of (p1, ..., p4). From Lemma 3 and 4, the number of (p1, ..., p4) such
that I

(i)
5 �= I

(j)
5 and I

(i)
6 �= I

(j)
6 for 1 ≤ ∀i < ∀j ≤ q, is at least {2n!}4 − 2q(q−1)

2 ·
{2n!}4

2n−1 −
3q(q−1)

2 · {2
n!}4

2n−1 . Fix any (p1, ..., p4) which satisfy the above two conditions.

Number of (p13, ..., p16). From Lemma 3 and 4, the number of (p13, ..., p16)
such that I

(i)
11 �= I

(j)
11 and I

(i)
12 �= I

(j)
12 for 1 ≤ ∀i < ∀j ≤ q, is at least {2n!}4 −

2q(q−1)
2 · {2

n!}4

2n−1 −
3q(q−1)

2 · {2
n!}4

2n−1 . We have used the symmetry of MKASUMI type
permutation. Fix any (p13, ..., p16) which satisfy the above two conditions.

Number of p5. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of
p5 such that

p5(I
(i)
5 )⊕ I

(i)
6 ⊕ I

(i)
3 = p5(I

(j)
5 )⊕ I

(j)
6 ⊕ I

(j)
3 ,

which is equivalent to I
(i)
7 = I

(j)
7 , is at most (2n)!

2n−1 , since I
(i)
5 �= I

(j)
5 .

Then the number of p5 which satisfies I
(i)
7 �= I

(j)
7 for 1 ≤ ∀i < ∀j ≤ q, is at

least (2n)!− q(q−1)
2 · (2n)!

2n−1 . Fix any p5 which satisfy the above condition.
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Number of p11. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of
p11 such that

p11(I
(i)
11 )⊕ I

(i)
12 ⊕ I

(i)
13 = p11(I

(j)
11 )⊕ I

(j)
12 ⊕ I

(j)
13 ,

which is equivalent to I
(i)
9 = I

(j)
9 , is at most (2n)!

2n−1 , since I
(i)
11 �= I

(j)
11 .

Then the number of p11 which satisfies I
(i)
9 �= I

(j)
9 for 1 ≤ ∀i < ∀j ≤ q, is at

least (2n)!− q(q−1)
2 · (2n)!

2n−1 . Fix any p11 which satisfy the above condition.

Number of p6. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of
p6 such that

p6(I
(i)
6 )⊕I

(i)
6 ⊕O

(i)
3 ⊕O

(i)
5 ⊕x

(i)
RR⊕I

(i)
9 = p6(I

(j)
6 )⊕I

(j)
6 ⊕O

(j)
3 ⊕O

(j)
5 ⊕x

(j)
RR⊕I

(j)
9 ,

which is equivalent to O
(i)
7 = O

(j)
7 , is at most (2n)!

2n−1 , since I
(i)
6 �= I

(j)
6 .

Similarly, the number of p6 satisfies

p6(I
(i)
6 )⊕ I

(i)
4 ⊕ I

(i)
6 ⊕O

(i)
5 = p6(I

(j)
6 )⊕ I

(j)
4 ⊕ I

(j)
6 ⊕O

(j)
5 ,

which is equivalent to I
(i)
8 = I

(j)
8 , is at most (2n)!

2n−1 , since I
(i)
6 �= I

(j)
6 .

Similarly, the number of p6 satisfies

p6(I
(i)
6 )⊕ I

(i)
3 ⊕ I

(i)
4 ⊕ I

(i)
11 ⊕ I

(i)
12 = p6(I

(j)
6 )⊕ I

(j)
3 ⊕ I

(j)
4 ⊕ I

(j)
11 ⊕ I

(j)
12 ,

which is equivalent to O
(i)
10 = O

(j)
10 , is at most (2n)!

2n−1 , since I
(i)
6 �= I

(j)
6 .

Then the number of p6 satisfies O
(i)
7 �= O

(j)
7 , I(i)

8 �= I
(j)
8 , and O

(i)
10 �= O

(j)
10 for

1 ≤ ∀i < ∀j ≤ q, is at least (2n)! − 3q(q−1)
2 · (2n)!

2n−1 . Fix any p6 which satisfy the
above three conditions.

Number of p12. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of
p12 such that

p12(I
(i)
12 )⊕I

(i)
7 ⊕I

(i)
12 ⊕O

(i)
11 ⊕O

(i)
13 ⊕y

(i)
LR = p12(I

(j)
12 )⊕I

(j)
7 ⊕I

(j)
12 ⊕O

(j)
11 ⊕O

(j)
13 ⊕y

(j)
LR,

which is equivalent to O
(i)
9 = O

(j)
9 , is at most (2n)!

2n−1 , since I
(i)
12 �= I

(j)
12 .

Similarly, the number of p12 satisfies

p12(I
(i)
12 )⊕ I

(i)
12 ⊕ I

(i)
14 ⊕O

(i)
11 = p12(I

(j)
12 )⊕ I

(j)
12 ⊕ I

(j)
14 ⊕O

(j)
11 ,

which is equivalent to I
(i)
10 = I

(j)
10 , is at most (2n)!

2n−1 , since I
(i)
12 �= I

(j)
12 .

Similarly, the number of p12 satisfies

p12(I
(i)
12 )⊕ I

(i)
5 ⊕ I

(i)
6 ⊕ I

(i)
13 ⊕ I

(i)
14 = p12(I

(j)
12 )⊕ I

(j)
5 ⊕ I

(j)
6 ⊕ I

(j)
13 ⊕ I

(j)
14 ,

which is equivalent to O
(i)
8 = O

(j)
8 , is at most (2n)!

2n−1 , since I
(i)
12 �= I

(j)
12 .
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Then the number of p12 satisfies O
(i)
9 �= O

(j)
9 , I(i)

10 �= I
(j)
10 , and O

(i)
8 �= O

(j)
8 for

1 ≤ ∀i < ∀j ≤ q, is at least (2n)!− 3q(q−1)
2 · (2n)!

2n−1 . Fix any p12 which satisfy the
above three conditions.

Number of (p7, ..., p10). Now p1, ..., p6, p11, ..., p16 are fixed in such a way
that {I(i)

7 }1≤i≤q are distinct, {O(i)
7 }1≤i≤q are distinct, {I(i)

8 }1≤i≤q are distinct,
{O(i)

8 }1≤i≤q are distinct, {I(i)
9 }1≤i≤q are distinct, {O(i)

9 }1≤i≤q are distinct,
{I(i)

10 }1≤i≤q are distinct, and {O(i)
10 }1≤i≤q are distinct.

Therefore, we have exactly (2n − q)! choice of pi for each i = 7, 8, 9, 10.

Completing the proof To summarize, we have:

– at least (1− 5
2 ·

q(q−1)
2n−1 )2 · {2n!}8 choice of p1, ..., p4, p13, ..., p16.

– at least (1− 1
2 ·

q(q−1)
2n−1 )2 · {2n!}2 choice of (p5, p11).

– at least (1− 3
2 ·

q(q−1)
2n−1 )2 · {2n!}2 choice of (p6, p12).

– exactly {(2n − q)!}4 choice of p7, ..., p10.

Then the number of (p1, ..., p16) which satisfy (3) is at least

(1− 5
2
· q(q − 1)

2n − 1
)2 · (1− 1

2
· q(q − 1)

2n − 1
)2 ·(1− 3

2
· q(q − 1)

2n − 1
)2 ·{2n!}12 ·{(2n − q)!}4

≥ (1− 9q(q − 1)
2n − 1

) · {2n!}12 · {(2n − q)!}4.
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Abstract. In CRYPTO’89, Merkle presented three double-block-length
hash functions based on DES. They are optimally collision resistant in
a black-box model, that is, the time complexity of any collision-finding
algorithm for them is Ω(2�/2) if DES is a random block cipher, where
	 is the output length. Their drawback is that their rates are low. In
this article, new double-block-length hash functions with higher rates
are presented which are also optimally collision resistant in the black-
box model. They are composed of block ciphers whose key length is twice
larger than their block length.

Keywords: double-block-length hash function, black-box model, block
cipher.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It is one of the most important primitives
in cryptography [14] and should satisfy preimage resistance, second-preimage
resistance and collision resistance. Informally, preimage resistance means that,
given an output, it is infeasible to obtain an input which produces the output.
Second-preimage resistance means that, given an input, it is infeasible to obtain
another input which produces the same output as the given input. Collision
resistance means that it is infeasible to obtain two different inputs which produce
the same output. For simplicity, a cryptographic hash function is called a hash
function in this article.

A hash function usually consists of iteration of a compression function with
fixed input/output length and is called an iterated hash function. Compression-
function constructions are classified into two types: based on block ciphers and
from scratch. The topic of this article is the former. It minimizes design and
implementation effort with secure block ciphers. Its major drawback is slow
processing speed. However, it is compensated by fast block ciphers such as AES.
Furthermore, some recent work has pointed out weakness of SHA families [1, 18].
Thus, block-cipher-based hash functions may become more important.

Block-cipher-based hash functions are classified into two categories: single-
block-length (SBL) and double-block-length (DBL). A SBL hash function is a
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hash function whose output length is equal to the block length. The output
length of a DBL hash function is twice larger than the block length.

It is well-known that the birthday attack can find a collision of a hash function
with time complexity O(2�/2), where � is the output length of the hash function.
The block length of widely used block ciphers is 64 or 128. Thus, SBL hash
functions are no longer secure in terms of collision resistance.

For DBL hash functions, many constructions have been presented [4, 7, 8,
9, 10, 12, 15]. Among them, three DBL hash functions by Merkle [15] have been
shown to be optimally collision resistant in a black-box model: the time complex-
ity of any collision-finding algorithm for them is Ω(2�/2), where � is the output
length. However, their rates are at most 0.276 and they are not so efficient.

In this article, DBL hash functions are proposed which are more efficient and
optimally collision resistant in the black-box model. They can be represented in
a simple form. They are of parallel type and their rates are 1/2. They are based
on block ciphers whose key length is twice larger than the block length. Thus,
they can be constructed with AES or other previous AES candidates, which
support 128-bit blocks and 256-bit keys.

The DBL hash functions proposed in this article consist of two different block
ciphers to be provably secure. Though it seems their drawback, a genuine tweak-
able block cipher [13] will help obtain virtually two different block ciphers with
different tweaks. Furthermore, it is possible to transform a DBL hash function
with different block ciphers to the one with only one block cipher with slightly
lower rate by the method used in MDC-2 [4].

Collision resistance as well as preimage resistance of the proposed DBL hash
functions is proved in the black-box model. In this model, for the proposed
DBL hash functions, second-preimage resistance can be regarded as preimage
resistance for the output corresponding to the given input. In the black-box
model, a block cipher is assumed to be an invertible keyed random permutation.
This is an ideal but still proper assumption in that most of the attacks on block-
cipher-based hash functions do not utilize the internal structure of the block
ciphers. The technique in [3] is used in the security proofs in this article. It is
assumed that two block ciphers are independent in our analysis.

The rest of this article is organized as follows. Section 2 includes notations,
definitions and related work. In Section 3, provably secure DBL hash functions
with rate 1/2 consisting of two block ciphers are presented. Security proofs are
also shown. In Section 4, it is mentioned how to construct provably secure DBL
hash functions with one block cipher. A concluding remark is given in Section 5.

2 Preliminaries

2.1 Related Work

Preneel, Govaerts and Vandewalle [16] discussed the security of SBL hash func-
tions against several attacks. They considered SBL hash functions with compres-
sion functions represented by hi = e(k, x)⊕ z, where e is an (n, n) block cipher,



332 S. Hirose

k, x, z ∈ {hi−1,mi, hi−1 ⊕ mi, v} and v is a constant. They concluded that 12
out of 64(= 43) hash functions are secure against the attacks. However, they did
not provide any formal proofs.

Black, Rogaway and Shrimpton [3] presented a detailed investigation of prov-
able security of SBL hash functions given in [16] in the black-box model. The
most important result shown in their paper is that the time complexity of any
collision-finding algorithm against 20 hash functions including the 12 mentioned
above is Ω(2�/2), where � is the output length.

Knudsen, Lai and Preneel [11] discussed the security of DBL hash functions
with rate 1 based on (n, n) block ciphers. Hohl, Lai, Meier and Waldvogel [7]
discussed the security of compression functions of DBL hash functions with rate
1/2. On the other hand, the security of DBL hash functions with rate 1 based
on (n, 2n) block ciphers was discussed by Satoh, Haga and Kurosawa [17] and
by Hattori, Hirose and Yoshida [6].

Many schemes with rate less than 1 were also presented. Merkle [15] presented
three DBL hash functions based on DES with rates at most 0.276. They are
optimally collision resistant in the black-box model. MDC-2 and MDC-4 [4] are
also DBL hash functions based on DES with rates 1/2 and 1/4, respectively. Lai
and Massey proposed the tandem/abreast Davies-Meyer [12]. They consist of a
(n, 2n) block cipher and their rates are 1/2. It is an open question whether the
four schemes are optimally collision resistant or not.

Knudsen and Preneel studied the schemes to construct secure compression
functions with longer outputs from secure ones based on error-correcting codes
[8, 9, 10]. It is also an open question whether optimally collision resistant com-
pression functions are constructed by their schemes.

Recently, Black, Cochran and Shrimpton [2] showed that it is impossible to
construct a highly efficient block-cipher-based hash function provably secure in
the black-box model. A block-cipher-based hash function is highly efficient if it
makes exactly one block-cipher call for each message block and all block-cipher
calls use a single key.

2.2 Cryptographic Hash Functions

A cryptographic hash function H is a function which maps an input of arbitrary
length to an output of fixed length. H should satisfy the following properties.

Preimage resistance For a given output y, it is intractable to find an input x
such that y = H(x).

Second-preimage resistance For a given input x, it is intractable to find an
input x′ such that H(x) = H(x′) and x �= x′.

Collision resistance It is intractable to find a pair of inputs x and x′ such
that H(x) = H(x′) and x �= x′.

A hash function H : {0, 1}∗ → {0, 1}� usually consists of a compression
function f : {0, 1}� × {0, 1}�′ → {0, 1}� and an initial value h0 ∈ {0, 1}�. An
input m is divided into the �′-bit blocks m1,m2, . . . ,ml. Then,

hi = f(hi−1,mi)
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is computed successively for 1 ≤ i ≤ l and hl = H(m). H is called an iterated
hash function.

Unambiguous padding is applied to m if its length is not a multiple of �′. It
is outside the scope of this article and is not described here.

2.3 Block Ciphers and a Black-Box Model

A block cipher with the block length n and the key length κ, e : {0, 1}κ ×
{0, 1}n → {0, 1}n, is called an (n, κ) block cipher. An (n, κ) block cipher is an
invertible keyed permutation: e(k, ·) is a permutation for every k ∈ {0, 1}κ, and
it is easy to compute both e(k, ·) and e(k, ·)−1. The set of all (n, κ) block ciphers
is denoted by B(n, κ).

Most of the attacks on hash functions based on block ciphers do not utilize
the internal structure of the block ciphers. Thus, the security of hash functions
based on block ciphers is often analyzed in a black-box model, that is, under the
assumption that e(k, ·) is a random invertible permutation for each k.

In the black-box model, an encryption e and a decryption e−1 can be simu-
lated by the following two oracles. An encryption oracle e returns a randomly
selected ciphertext for a query which is a pair of a key and a plaintext. A de-
cryption oracle e−1 returns a randomly selected plaintext for a query which is a
pair of a key and a ciphertext. The oracles e and e−1 share a table of triplets of
keys, plaintexts and ciphertexts, (ki, xi, yi)’s, which are produced by the queries
and the corresponding answers. Referring to the table, they randomly select an
answer to a new query under the restriction that e(k, ·) is a permutation for
every k. They also add the triplet produced by the query and the answer to the
table.

Without loss of generality, it is assumed that any adversary with the two
oracles e and e−1 asks only once on a triplet of a key, a plaintext and a ciphertext
obtained by a query and a corresponding answer: Once the adversary obtains
(k, x, y) by a query and the answer, he just keeps it and asks neither (k, x) nor
(k, y) afterward.

2.4 DBL Hash Functions

DBL hash functions with two block-cipher calls in their compression functions
are discussed in the article. Let f be a compression function such that

(hi, gi) = f(hi−1, gi−1,mi),

where hi, gi,mi ∈ {0, 1}n and n is the block length. f consists of fU and fL such
that{

hi = fU (hi−1, gi−1,mi)
gi = fL(hi−1, gi−1,mi).

hi is not fed into fL and this kind of compression function is called the parallel
type. This type of compression function is considered in this article.
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Each of fU and fL is composed of a block cipher as follows:{
hi = eU (kU , xU )⊕ zU

gi = eL(kL, xL)⊕ zL,

where kU , xU , zU and kL, xL, zL are uniquely defined by hi−1, gi−1,mi.
The rate r of an iterated hash function of block-cipher-based f is defined by

r =
|mi|

(# of block-cipher calls in f)× n
.

It is a measure of the efficiency of block-cipher-based hash functions.
The major difference should be noticed between the DBL hash functions

previously proposed and ones proposed in the article. eU and eL are identical
for the former, but are different for the latter.

2.5 Definitions of Security

As has been discussed in this section, the security of DBL hash functions is
analyzed in the black-box model. Insecurity is quantified by success probability
of an optimal resource-bounded adversary. In the black-box model, the resource
is the number of the queries to encryption and decryption oracles.

For a set S, z ←R S represents random sampling from S under the uniform
distribution. For a probabilistic algorithm M, z ←R M(x) means that z is an
output ofM with an input x and the output distribution is based on the random
choices of M and the input distribution.

Collision Resistance. The following experiment FindColHF(A,H) is introduced
to define the collision resistance of a DBL hash function H with two block
ciphers eU and eL. The adversary A is a collision-finding algorithm of H with
oracles eU , e

−1
U and eL, e

−1
L . Let e±1

P represent a pair of oracles eP and e−1
P for

P ∈ {U,L}.
FindColHF(A,H)

eU ←R B(n, κ); eL ←R B(n, κ);
(m,m′) ←R Ae±1

U
,e±1

L ;
if m �= m′ ∧H(m) = H(m′) return 1; else return 0;

FindColHF(A,H) returns 1 iff A finds a collision. Let Advcoll
H (A) be the

probability that FindColHF(A,H) returns 1. The probability is taken over the
uniform distribution on B(n, κ) and coin tosses of A.

Definition 1 (Collision resistance of a hash function). For q ≥ 1, let

Advcoll
H (q) = max

A

{
Advcoll

H (A)
}
,

where A makes at most q queries to each of e±1
U and e±1

L .
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The following experiment FindColCF(A, f, h0) is introduced to define the
collision resistance of a compression function f with two block ciphers eU and
eL. h0 is an initial value of an iterated hash function of f .

FindColCF(A, f, h0)
eU ←R B(n, κ); eL ←R B(n, κ);
((h,m), (h′,m′)) ←R Ae±1

U
,e±1

L ;
if ((h,m) �= (h′,m′) ∧ f(h,m) = f(h′,m′)) ∨ f(h,m) = h0 return 1;
else return 0;

FindColCF(A, f, h0) returns 1 iff A finds a collision of f or a preimage of h0.
Let Advcomp

f (A) be the probability that FindColCF(A, f, h0) returns 1.

Definition 2 (Collision resistance of a compression function). For q ≥ 1,
let

Advcomp
f (q) = max

A

{
Advcomp

f (A)
}
,

where A asks at most q queries to each of e±1
U and e±1

L .

Preimage Resistance. The following experiment FindPreImg(A, G) is introduced
to define the preimage resistance of G with two block ciphers eU and eL. G is a
hash function or a compression function.

FindPreImg(A, G)
eU ←R B(n, κ); eL ←R B(n, κ); y ←R {0, 1}�;

x←R A(y)e±1
U

,e±1
L ;

if G(x) = y return 1; else return 0;

FindPreImg(A, G) returns 1 iffA finds a preimage of G for an output y chosen
randomly. Let Advimg

G (A) be the probability that FindPreImg(A, G) returns 1.

Definition 3 (Preimage resistance). For q ≥ 1, let

Advimg
G (q) = max

A

{
Advimg

G (A)
}
,

where A makes at most q queries to each of e±1
U and e±1

L .

Generally speaking, second-preimage resistance is stronger security require-
ment than preimage resistance. A preimage may have some information of an-
other preimage which produces the same output. However, in the black-box
model, for the hash functions or the compression functions considered in the sub-
sequent sections, a preimage has no information useful to find another preimage.
Thus, only preimage resistance is discussed in this article.
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3 Provably Secure DBL Hash Functions with Two Block
Ciphers

In this section, the security of DBL hash functions with compression functions
shown in Fig. 1 is analyzed. Let f be a compression function such that (hi, gi) =
f(hi−1, gi−1,mi) and{

hi = fU (hi−1, gi−1,mi)
gi = fL(hi−1, gi−1,mi).

fU and fL consist of (n, 2n) block ciphers eU and eL, respectively, and are
represented as follows:{

hi = eU (kU1||kU2, xU )⊕ zU

gi = eL(kL1||kL2, xL)⊕ zL,

where ‘‖’ is the concatenation and kU1, kU2, xU , zU , kL1, kL2, xL, zL ∈ {0, 1}n

are represented by linear combinations of hi−1, gi−1,mi ∈ {0, 1}n. Namely,⎛⎜⎜⎝
kU1

kU2

xU

zU

⎞⎟⎟⎠ = U

⎛⎝hi−1

gi−1

mi

⎞⎠ ,

⎛⎜⎜⎝
kL1

kL2

xL

zL

⎞⎟⎟⎠ = L

⎛⎝hi−1

gi−1

mi

⎞⎠
and both U and L are 4× 3 {0, 1}-matrices.

3.1 Collision Resistance

In this subsection, a sufficient and simple condition of U and L is presented for
an iterated hash function of f to be collision resistant.

gi−1

hi−1 hi

mi

fU

fL

eL

eUxU

kU2

zU

gixL

kL2 zL
kL1

kU1

Fig. 1. A Diagram of Compression Functions with Two Block Ciphers and with Rate

1/2
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The collision resistance of compression functions is focused on in the remain-
ing part. It has been shown in [5, 15] that an iterated hash function is collision
resistant if its compression function is. The following lemma states the fact in
the black-box model.

Lemma 1. [3] Let H be an iterated hash function of f . Then, for q ≥ 1,
Advcoll

H (q) ≤ Advcomp
f (q).

First, a notation and a simple lemma are given for later use. For 1 ≤ r ≤ 4,
let U(r) and L(r) denote 3× 3 {0, 1}-matrices obtained by deleting the r-th row
of U and L, respectively.

Lemma 2. If both U(3) and U(4) are non-singular, then

zU ∈ {xU , xU ⊕ kU1, xU ⊕ kU2, xU ⊕ kU1 ⊕ kU2}.

Proof. Since U(4) is non-singular, zU can be represented by a linear combination
of xU , kU1, kU2. On the other hand, since U(3) is non-singular, zU cannot be
represented by any linear combinations of kU1, kU2. 
�

A sufficient condition is given for a compression function to be collision re-
sistant in the following lemma.

Lemma 3. Suppose that all of U(3), U(4), L(3), L(4) are non-singular. Then,
for every 1 ≤ q ≤ 2n−1 + 1,

Advcomp
f (q) ≤ q(q + 1)/22n−1.

Proof. Let A be a collision-finding algorithm of f with oracles e±1
U and e±1

L . A
asks q queries to each of e±1

U and e±1
L .

Since both U(4) and L(4) are non-singular and⎛⎝kU1

kU2

xU

⎞⎠ = U(4)

⎛⎝hi−1

gi−1

mi

⎞⎠ ,

⎛⎝kL1

kL2

xL

⎞⎠ = L(4)

⎛⎝hi−1

gi−1

mi

⎞⎠ ,

the correspondence between (kU1, kU2, xU ) and (kL1, kL2, xL) is 1-to-1. Thus,
once a pair of an input and an output of eU , (kU1, kU2, xU , yU ), is fixed by A’s
query to eU or e−1

U and its reply, an input to eL, (kL1, kL2, xL), is uniquely de-
termined. Similarly, A’s query to eL or e−1

L and its reply also uniquely determine
an input to eU .

On the other hand, it is necessary to ask a query to each of e±1
U and e±1

L in
order to obtain a pair of an input and an output of f . The fact mentioned above
implies that the correspondence between a pair of a query and a reply of e±1

U

and that of e±1
L is 1-to-1. Hence, without loss of generality, it is assumed that A

asks a query to an oracle and the corresponding query to the other oracle at a
time.

Since hi = eU (kU1||kU2, xU )⊕ zU = yU ⊕ zU and

zU ∈ {xU , xU ⊕ kU1, xU ⊕ kU2, xU ⊕ kU1 ⊕ kU2}
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from Lemma 2, hi depends both on xU and on yU and one of xU and yU is
determined randomly by a reply of the oracle. Thus, hi is randomly determined
by the oracle. gi is also randomly determined by the other oracle.

It is assumed that zU = xU and zL = xL in the rest of the proof. The proof
is similar for the other cases.

For every 1 ≤ j ≤ q, let Cj be the event such that

(xUj ⊕ yUj = h0 ∧ xLj ⊕ yLj = g0)∨
∃j′ < j (xUj ⊕ yUj = xUj′ ⊕ yUj′ ∧ xLj ⊕ yLj = xLj′ ⊕ yLj′),

where xUj , yUj and xLj , yLj correspond to the pairs of the j-th query and its
reply of e±1

U and e±1
L , respectively. Then,

Pr[Cj ] ≤
j

(2n − (j − 1))2
.

Thus, if q ≤ 2n−1 + 1, then

Advcomp
f (A) ≤ Pr[C1 ∨ · · · ∨ Cq] ≤

q∑
j=1

Pr[Cj ]

≤
q∑

j=1

j

(2n − (j − 1))2
≤

q∑
j=1

j

(2n − 2n−1)2

=
q(q + 1)
22n−1

.


�

The following theorem is led immediately from Lemmas 1 and 3.

Theorem 1. Let H be an iterated hash function of f . Suppose that all of U(3),
U(4), L(3), L(4) are non-singular for f . Then,

Advcoll
H (q) ≤ q(q + 1)/22n−1

for every 1 ≤ q ≤ 2n−1 + 1.

From this theorem, any constant probability of success in finding a collision
implies that q = Ω(2n).

3.2 Preimage Resistance

Preimage resistance of iterated hash functions presented in the previous subsec-
tion is discussed here.

The following lemma shows the relationship between preimage resistance of
an iterated hash function and that of its compression function. This lemma is
also implicit in [19].

Lemma 4. [3] Let H be an iterated hash function of f . Then, for q ≥ 1,
Advimg

H (q) ≤ Advimg
f (q).
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The preimage resistance of compression functions given in the previous sub-
section is presented in the following lemma.

Lemma 5. Suppose that all of U(3), U(4), L(3), L(4) are non-singular. Then,
for every g ≥ 1,

Advimg
f (q) ≤ q/(2n − q)2.

Proof. Let A be a preimage-finding algorithm of f with oracles e±1
U and e±1

L . A
asks q queries to each of e±1

U and e±1
L . Let w be the input of A and w = (wU , wL),

where wU , wL ∈ {0, 1}n.
It is necessary to ask a query to each of e±1

U and e±1
L in order to obtain a pair

of an input and an output of f . As in the proof of Lemma 3, the correspondence
between a pair of a query and a reply of e±1

U and that of e±1
L is 1-to-1. Hence,

without loss of generality, it is assumed that A asks a query to an oracle and
the corresponding query to the other oracle at a time.

Since hi = yU ⊕ zU and

zU ∈ {xU , xU ⊕ kU1, xU ⊕ kU2, xU ⊕ kU1 ⊕ kU2}

from Lemma 2, hi depends both on xU and on yU and one of xU and yU is
determined randomly by a reply of the oracle. Thus, hi is randomly determined
by the oracle. gi is also randomly determined by the other oracle.

It is assumed that zU = xU and zL = xL in the rest of the proof. The proof
is similar for the other cases.

For every 1 ≤ j ≤ q, let Ij be the event such that

xUj ⊕ yUj = wU ∧ xLj ⊕ yLj = wL

where xUj , yUj and xLj , yLj correspond to the pairs of the j-th query and its
reply of e±1

U and e±1
L , respectively. Then,

Pr[Ij ] ≤
1

(2n − (j − 1))2
.

Thus,

Advimg
f (A) ≤ Pr[I1 ∨ · · · ∨ Iq] ≤

q∑
j=1

Pr[Ij ] ≤
q∑

j=1

1
(2n − (j − 1))2

≤ q

(2n − q)2
.


�

The following theorem is led immediately from Lemmas 4 and 5.

Theorem 2. Let H be an iterated hash function of f . Suppose that all of U(3),
U(4), L(3), L(4) are non-singular for f . Then, for every q ≥ 1,

Advimg
H (q) ≤ q

(2n − q)2
.
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Theorem 2 implies nothing about the preimage resistance for q ≥ 2n−2n/2+1.
It states, however, that the success probability is (asymptotically) negligible as
long as q = c 2n for any positive constant c < 1:

Advimg
H (c 2n) ≤ c

(1− c)2
1
2n

.

For example, if c = 1/2, then Advimg
H (2n−1) ≤ 1/2n−1.

4 Provably Secure DBL Hash Functions with One Block
Cipher

Let e be an (n, κ) block cipher and n + 2 ≤ κ. In this section, the security of
DBL hash functions with compression functions shown in Fig. 2 is analyzed. The
left-side function is focused on. Let us call it f .

hihi−1

gigi−1

mi
vU
vL

hihi−1

gi

gi−1
mi

vU
vL

Fig. 2. Compression Functions with One Block Cipher

The compression function f is represented as follows:{
hi = e(gi−1||mi||vU , hi−1)⊕ hi−1

gi = e(hi−1||mi||vL, gi−1)⊕ gi−1,

where mi ∈ {0, 1}� for some 1 ≤ � < κ − n, and vU and vL are constants in
{0, 1}κ−n−� such that vU �= vL.

Since vU �= vL, in the black-box model, e with vU and e with vL can be
regarded as two independent random block ciphers. Furthermore, there exists
1-to-1 correspondence between a pair of an input and an output of e with vU

and that of e with vL.
From these observations, it is clear that the following lemma can be proved

in the similar way as Lemma 3.

Lemma 6. For the compression function f , if 1 ≤ q ≤ 2n−1 + 1, then

Advcomp
f (q) ≤ q(q + 1)/22n−1.
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The following theorem states the collision resistance of an iterated hash function
of f . This is immediately lead from Lemmas 1 and 6.

Theorem 3. Let H be an iterated hash function of f . Then,

Advcoll
H (q) ≤ q(q + 1)/22n−1

for every 1 ≤ q ≤ 2n−1 + 1.

For preimage resistance, similarly, the following theorem is obtained.

Theorem 4. Let H be an iterated hash function of f . Then, for q ≥ 1,

Advimg
H (q) ≤ q

(2n − q)2
.

In the black-box model, it is sufficient that vU , vL ∈ {0, 1} and vU �= vL.
However, in practice, vU , vL should be longer in order to avoid weak keys and to
increase independence. Suppose that �con be the length of vU or vL and κ = 2n.
Then, the rate of H is (1−�con/n)/2. For example, the rate is 7/16 if �con = n/8.

The idea that two block ciphers are obtained from one block cipher by fixing
a part of the key with different constants is found in the design of MDC-2 [4].
However, the security proof as shown above does not seem to be applied to
MDC-2.

5 Conclusion

In this article, DBL hash functions provably secure in the black-box model have
been presented. They are based on (n, 2n) block ciphers and can be represented
in a simple form. Future work is to explore more efficient DBL hash functions
optimally collision resistant.
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Abstract. In [12] Vaudenay presented side-channel attacks on the CBC
encryption mode cipher under the padding oracle attack models, which
enable an adversary to determine the correct message with knowledge of
ciphertext. Black and Urtubia generalized these attacks in several direc-
tions, considering various padding schemes [4]. In this paper we extend
these attacks to other kinds of modes of operation for block ciphers.
Specifically, we apply the padding oracle attacks to multiple modes of
operation with various padding schemes. As a results of this paper, 12
out of total 36 double modes and 22 out of total 216 triple modes are
vulnerable to the padding oracle attacks. It means that the 12 double
modes and the 22 triple modes exposed to these types of attacks do not
offer the better security than single modes.

Keywords: Padding oracle attacks, Multiple modes of operation,
Block ciphers.

1 Introduction

Vaudenay showed various ways to perform an efficient side-channel attack named
padding oracle attack on modes of operation [12]. This attack requires an oracle
which on receipt of a ciphertext, decrypts it and replies to the sender whether
the padding is VALID or INVALID. Black and Urtubia generalized Vaudenay’s
attack to various padding schemes and the CBC mode of operation [4]. After-
wards, Paterson and Yau [9] introduced padding oracle attacks on the ISO CBC
mode encryption standard and Klima and Rosa [8] showed that the CBC mode
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using ABYT-PAD can be attacked in the PKCS#7 format. Based on these kinds
of attacks, in this paper, we evaluate the security of multiple modes of operation
with various padding schemes.

Biham presented multiple modes of operation which are made of the con-
nected several single modes (e.g. ECB, CBC, OFB, CFB, CBC−1, CFB−1) [2].
There exist 36(= 62) double and 216(=63) triple modes in total. Especially, the
double and triple DES can be considered as modes of operation (ECB|ECB) and
(ECB|ECB−1|ECB), respectively.

Wagner analyzed the multiple modes of operation proposed by Biham [13].
However, his method is too unrealistic. So, Hong et al. use only known-IV chosen
texts to attack many triple modes of operation which are combined with cascade
operations [5]. Hong et al. presented that 123 out of 216 triple modes are analyzed
with complexities less than Biham’s results, and showed that the security of many
triple modes decreases when the initial values are exposed. This paper analyzes
all the double and triple modes of operation with various padding schemes under
the padding oracle attack models, which are different from the above attack
methods. As a result, 12 out of total 36 double modes and 22 out of total 216
triple modes are vulnerable to these types of attacks.

This paper is organized as follows. Preliminaries are presented in Section
2. Section 3 discusses padding oracle attacks on multiple modes of operation.
Finally, we summarize our conclusion in Section 4.

2 Preliminaries

This section presents some notations and padding methods which are used
throughout this paper, and then describes multiple modes of operation which
are targets in our attacks.

2.1 Notations

· P : A plaintext with message and padding
· M : An unpadded message string
· LM : The length of the message string M (bit)
· C = (IV,C1, C2, · · · , Cq) : A ciphertext output after a mode encryption
· IV : An initial vector used in a mode
· Ci : The i-th ciphertext block, (i starts with 1)
· Cj

i : The j-th byte of i-th ciphertext block, (j starts with 0)
· n : A block size of block cipher (byte)
· ej : A 32-bit binary string in which the j-th bit is one and the others are

zeros, (j starts with 0)
· X||Y : The concatenation of strings X and Y
· X ⊕ Y : The exclusive-or of strings X and Y
· O : An oracle to distinguish whether the deciphered plaintext is correct

padding or not
· VALID or INVALID : Responses of oracle, whether the deciphered plain-

text is correct or incorrect
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2.2 Padding Methods

Let the size of message be (8n× q + m) bit (0 ≤ m < 8n, 0 ≤ q).

· CBC-PAD : If m �= 0 and one byte is left to padding, we append a single
0x01 to message M , if there are two bytes of padding needed, we append
0x0202 to M , and so on. If m = 0 then we append one block nn · · ·n to
M(in case n = 16, then we append one block 0x1010 · · · 10).
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· ESP-PAD : If the last block is one byte left to padding, we append a single
0x01 to message M , if there are two bytes of padding needed, we append
0x0102 to M , and so on. If m = 0 then we append one block 0x010203 · · ·n
to M .

· XY-PAD : This padding method uses two distinct constant byte values X
and Y . We transform M by first appending X one time, then adding the
necessary number of Y values. If m = 0 then we append one block XY · · ·Y
to M .

· ISO(9797-1)-Padding method 3 : If the last block is t(> 0) bits left to
padding, we append t-bit string 0t to M together with LM to the first block,
i.e., P = LM ||M ||0t. If m = 0 then P = LM ||M .

· ISO(10118-1)-Padding method 3 : If the last block is t(> 0) bits left to
padding, we append a 64-bit message length LM from the least significant
bit at the last block and padding ′100 · · · 0′ between message M and length
LM , i.e., P = M ||10 · · · 0||LM .

2.3 Multiple Modes of Operation

Multiple modes of operation consist of multiple layers where each layer can be
of the form ECB, CBC, OFB, CFB, CBC−1 or CFB−1. Figs. 1 and 2 show
examples of double and triple modes of operation, respectively. In this paper, we
focus on total 36 double modes and 216 triple modes.

3 Padding Oracle Attacks on Double and Triple Modes

We investigate all double and triple modes whether the padding oracle attacks
are possible or not. As a result, we accomplished that 12 double modes and 22
triple modes can be attacked under the padding oracle attack models. In this
section we describe the outline of the padding oracle attack and present padding
oracle attacks on multiple modes of operation with various padding schemes.

3.1 Padding Oracle Attacks

Vaudenay [12] recently made the observation that if one can ascertain somehow
the padding error status, it can be used as a side-channel to mount a chosen
ciphertext attack in the symmetric key setting. He showed that given an oracle
O which accepts a ciphertext and returns either VALID or INVALID depending
on whether the deciphered plaintext is properly padded, one can recover the un-
derlying plaintext. Namely, the padding oracle attack is to recover the plaintext
with the oracle which on receipt of a ciphertext, decrypts it and replies to the
sender whether the padding is VALID or INVALID.

3.2 Padding Oracle Attacks on Double Modes of Operation

In the padding oracle attack model, we find the plaintext to correspond to a
given ciphertext by using the padding oracle. We here present padding oracle
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attacks on double modes of operation. We begin by attacking CBC|CBC mode
of operation using various padding methods. Our attack consists of two stages;
in the first stage, we find a padding length of message and in the second, we find
the plaintext to correspond to a given ciphertext.

CBC-PAD

– Stage of Finding the Padding Length
Let oracle O and ciphertext C = (IV1, IV2, C1, C2, · · · , Cq) be given. Then,
we can perform a binary search to discover the padding length of message
as follows; To begin with, we manipulate Cq−2, i.e., we change Cq−2 into
C

′
q−2 such that the difference of Cq−2 and C

′
q−2 is only one byte in the mid-

dle (one half) position and then require a response (VALID or INVALID)
of oracle O with respect to (IV1, IV2, C1, · · · , Cq−3, C

′
q−2, Cq−1, Cq). At this

time, if a change in any padding part of the corresponding plaintext block Pq

is induced then oracle O will always return INVALID. On the other hands,
if a change in any message part of the corresponding plaintext block Pq is
induced then oracle O will always return VALID. In case we have the VALID
response from oracle O, we require a response of oracle O with respect to
(IV1, IV2, C1, · · · , Cq−3, C

′′
q−2, Cq−1, Cq), where the difference of Cq−2 and

C
′′
q−2 is only one byte in the three fourths position. On the other hands,

in case oracle O gives the INVALID response, we require a response of or-
acle O with respect to (IV1, IV2, C1, · · · , Cq−3, C

′′
q−2, Cq−1, Cq), where the

difference of Cq−2 and C
′′
q−2 is only one byte in the one fourth position. We

repeatedly perform this process every a single byte of Cq−2 and thus we can
find the padding length in log2(n) queries where n is the length of a block
in bytes.

– Stage of Finding the Plaintext
As described above could find the length of the padding by using log2(n)
queries. It follows that we know what is the padding among 0x01, 0x0202,
0x030303, · · · . In order to get all the last plaintext block, we change cipher-
text block Cq−2 and then require a response of oracle O with respect to the
altered ciphertext. For example, if the padding is of 0x0202, then we manip-
ulate the last two bytes of the ciphertext block Cq−2 to be appeared padding
0x0303 of the deciphered plaintext. For the altered ciphertext, we again alter
C13

q−2 into t⊕ C13
q−2 (0 ≤ t ≤ 28 − 1) and require responses of oracle O with

respect to these 28 altered ciphertexts. In case oracle O responds VALID
among the 28 queries (it can be done with about 27 queries on aerage), we
can use the value t satisfying the VALID response to recover the underlying
plaintext byte P 13

q (= t ⊕ 0x03). Refer to the Fig. 3. This method can be
applied repeatedly to recover the last plaintext block Pq. Furthermore, we
can use this method repeatedly to find all plaintext blocks P1, P2, · · · , Pq.
Especially, in order to find plaintext blocks P1 and P2 we alter IV1 and IV2

respectively, and require responses of oracle O with respect to the altered
ciphertexts. We should do 128× n oracle queries to find one block of plain-
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Fig. 3. Padding oracle attack : CBC|CBC

text on average. So we needs about 128 × n× q + log2(n) oracle queries on
average to find the corresponding plaintext for the given ciphertext C.

ESP-PAD, XY-PAD

With the same method, we can recover the corresponding plaintexts for a given
ciphertext on the CBC|CBC mode when this mode uses ESP-PAD or XY-PAD
as its padding scheme. We summarize the results in Table 1.

Table 1. Attack Complexities on Double Modes of Operation

Padding Methods CBC-PAD ESP-PAD XY-PAD ISO(9797-1) ISO(10118-1)
-PAD 3 -PAD 3

Complexities 128nq 128nq 128nq (8n − 1)(q − 1) (8n − 1)(q − 1)
(# oracle queries) +log2(n) +log2(n) +log2(n) +log2(8n) + 2 +log2(8n) + 2

Double modes CBC|CBC, CBC|OFB, OFB|CBC,

that can be broken OFB|OFB, OFB|CFB, CFB|OFB, CBC|CBC, CBC|OFB,

by the padding CFB|CFB, OFB|CFB−1, CFB|CFB−1, OFB|CBC, OFB|OFB

oracle attacks CFB−1|OFB, CFB−1|CFB, CFB−1|CFB−1

∗ q : Number of plaintext/ciphertext block size
∗ n : A block size of the block cipher (byte)

ISO(9797-1)-Padding Method 3

– Stage of Finding the Padding Length
In this padding scheme, if a given ciphertext C has greater than or equal
to 4 blocks, we can find the padding length of message by using the tech-
nique of the foregoing first stage. However, in case C has less than 4 blocks,
we should use an additional technique to find the padding length of mes-
sage. This is due to the fact that this padding scheme puts the message
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length into the first block. For the convenience, we assume that the size
of a block is a 128-bit. If a given ciphertext has three blocks, i.e., C =
(IV1, IV2, C1, C2, C3), then the first block with the message length will be
changed when we alter the given ciphertext block C1 as before. Therefore, we
use C

′
= (IV1⊕ e7, IV2, C1, C1, C2, C3) instead of C = (IV1, IV2, C1, C2, C3)

as an oracle query. At this time, if the response of oracle is VALID then the
message length LM is 256 (Note that LM is the bit length of the message M
corresponding to C), because the message length is in 128 < LM ≤ 256. If the
response of oracle is INVALID, then we have 128 < LM ≤ 256. Thus the re-
sponse of oracle is VALID for the query C

′′
= (IV1⊕e8,7, IV2, C1, C1, C2, C3).

Based on the VALID query C
′′
, we can find the padding length of message

by using the technique of the previous first stage. That is, we perform a
binary search in bit for the second C1 of C

′′
as described above. So, we find

the length of padding in at most log2(128)+2 queries where 128 is the length
of block in bit. In case a given ciphertext has two blocks, it is easy to see
that the length of message can be found by the above method.

– Stage of Finding the Plaintext
As stated above, we let the size of a block be a 128-bit. Following is the
algorithm for recovering the plaintext.

Input : LM , IV1, IV2, C1, C2, · · · , Cq

Output : P 1
i , P 2

i , · · · , P 127
i the rightmost 127 bits of Pi, 1 ≤ i ≤ q

where P j
i means the j-th bit of Pi, (0 ≤ j ≤ 127).

If 3 ≤ i ≤ q
for j = 127 to 1 do

IV
′
1 = IV1 ⊕ LM ⊕ (256 + j)

C
′
= (IV

′
1 , IV2, C1, Ci−2, Ci−1, Ci){

b = 0, if O(C
′
) = V ALID

b = 1, if O(C
′
) = INV ALID

P j
i = b

If (b=1)

Ci−2 = Ci−2 ⊕ ej (In case i = 3, Ci−2 represents only the second C1 in C
′
.)

end for

return P 1
i , P 2

i , · · · , P 127
i

If i = 2, we use C
′′

= (IV
′
1 , IV2, C1, IV2, C1, C2) instead of

C
′
= (IV

′
1 , IV2, C1, Ci−2, Ci−1, Ci) to find the plaintext

in the above sub-algorithm.

Algorithm to find the plaintext
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Using the above algorithm we can recover the corresponding plaintext for a
given ciphertext except for the most significant bit P 0

i of each block. This is due
to the fact that this padding scheme does not append any strings to M when the
message is the multiple of 128-bit. So we should do an exhaustive search for the
(q− 1)-bit remaining bits using encryption oracle and thus we could find all the
underlying plaintext blocks. This attack needs total 127× (q−1)+ log2(128)+2
oracle queries and 2q−1 encryptions on average to find all the plaintext blocks.
Generally, this attack requires (8n − 1) × (q − 1) + log2(8n) + 2 oracle queries
and 2q−1 encryptions.

ISO(10118-1)-Padding Method 3

Using the same method used in attacking the CBC|CBC mode with the ISO(9797-
1)-Padding method 3, we can attack the CBC|CBC mode with the ISO(10118-
1)-Padding method 3 with the same complexity.

Results on Our Attacks: We evaluated the security of all possible double
modes of operation against the padding oracle attack. As a result, 12 out of 36
double modes are vulnerable to the padding oracle attack. The attack procedure
of the 12 double modes is similar to that of CBC|CBC mode and omitted here.
See Table 1 for the details of our results.

3.3 Padding Oracle Attacks on Triple Modes of Operation

Similarly, we can apply the padding oracle attacks to triple modes of operation
with various padding schemes. In our observation, 22 out of total 216 triple
modes are vulnerable to the padding oracle attacks. See Table 2 for the details
of our results.

Table 2. Attack Complexities on Triple Modes of Operation

Padding Methods CBC-PAD ESP-PAD XY-PAD ISO(9797-1) ISO(10118-1)
-PAD 3 -PAD 3

Complexities 128nq 128nq 128nq (8n − 1)(q − 1) (8n − 1)(q − 1)
(# oracle queries) +log2(n) +log2(n) +log2(n) +log2(8n) + 2 +log2(8n) + 2

CBC|CBC|CBC, CBC|CBC|OFB,

CBC|OFB|CBC, CBC|OFB|OFB,

OFB|CBC|CBC, OFB|CBC|OFB,

Triple modes OFB|OFB|CBC, OFB|OFB|OFB, CBC|CBC|CBC, CBC|CBC|OFB,

that can be broken OFB|OFB|CFB, OFB|OFB|CFB−1, CBC|OFB|CBC, CBC|OFB|OFB,

by the padding OFB|CFB|CBC, OFB|CFB|OFB, OFB|CBC|CBC, OFB|CBC|OFB,

oracle attacks OFB|CFB|CFB, OFB|CFB|CFB−1, OFB|OFB|CBC,OFB|OFB|OFB

CFB|OFB|CBC, CFB|OFB|OFB,

CFB|OFB|CFB, CFB|OFB|CFB−1,

CFB|CFB|CBC, CFB|CFB|OFB,

CFB|CFB|CFB, CFB|CFB|CFB−1
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4 Conclusion

We performed padding oracle attacks on multiple modes of operation. In the
case of double modes of operation, among 36 modes, we succeeded in attack-
ing 12 modes, and in the case of triple modes of operation, among 216 modes,
we succeeded in attacking 22 modes with various padding schemes under the
padding oracle attack models. The results imply that 12 double modes and 22
triple modes are vulnerable to these types of attacks and they do not offer the
better security than single modes. We believe that our results are valuable to an-
alyze the security of any multiple modes of operation. Any presence of message
integrity layer in encryption schemes with a padding methods would invalidate
the attacks described.
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Abstract. Self-inverse S-Boxes have been given much attention in the
design of block ciphers recently. In this paper, based on Walsh Hadamard
transform of Boolean functions, an evolutionary algorithm is investi-
gated to increase the nonlinearity of self-inverse S-Boxes. The improved
S-Boxes still remain self-inverse. Under this algorithm, randomly gener-
ated self-inverse S-Boxes can easily evolve into the ones with much higher
nonlinearity.
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Nonlinearity.

1 Introduction

S-Boxes are the only nonlinear component of most block ciphers. Whether or
not S-Boxes are good can heavily influence the security of the whole algorithm.
So how to generate cryptographically strong S-Boxes is a critical problem in the
design of block ciphers.

Many ways have been explored to construct S-Boxes. One important ap-
proach is exponent permutation in finite field, which was investigated in [12, 11].
The S-Box of AES(Advanced Encryption Standard) is an example of exponent
permutations, which is constructed with inverse mapping plus affine transfor-
mation in finite field. To construct S-Boxes with the truth table is also a good
avenue. For example, in [13, 14], S-Boxes were generated by using single output
Boolean functions. Some other examples were introduced in [10, 15, 9, 6, 16].

To generate S-Boxes with an evolutionary way has attracted much interest
in recent years. In [7] an evolutionary design with the genetic algorithm was dis-
cussed, and two evolutional strategies on 8×4 S-Boxes were provided. It was also
found that, if some improvement work was applied on the middle evolutionary
objects, the genetic algorithm can be more effective[7]. In [8], how to improve
the nonlinearity of bijective S-Boxes was investigated. The basic idea was, the
nonlinearity of bijective S-Boxes can be improved by swapping some pairs of
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output vectors. Literature [3] extended the work of [8] by providing some condi-
tions under which the nonlinearity and difference uniformity of bijective S-Boxes
can be improved simultaneously. In [2] the work of [8] was combined with the
genetic algorithm.

As we know, self-inverse S-Boxes have been given much attention in the de-
sign of block ciphers which have SP structure. Self-inverse S-Boxes can save
the storage space in implementation because encryption and decryption use the
same S-Boxes. If a block cipher also owes a self-inverse structure, it can en-
sure the equivalent security of both encryption and decryption. A self-inverse
S-Box is also called an involution[1]. The S-Box of Anubis [1] is an involution.
A recursive structure is used to construct the S-Box. In [5], how to remove the
linear redundancy of finite field based involutions was investigated which also
maintained a high level of several important cryptographic properties and self
inverse property still holds for resulting S-Boxes. However, the method is only
efficient for finite field based involutions because the good properties of resulting
S-Boxes heavily rely on the original S-Boxes. In this paper, random involutions
are considered, and an evolutionary algorithm is investigated to improve the
nonlinearity of randomly generated self-inverse S-Boxes.

This paper is organized as follows. In Section 2 some basic theories of Boolean
functions are introduced. Then the evolutionary algorithm is presented in Section
3. Under the given algorithm, the experimental results for 10000 8× 8 randomly
generated self-inverse S-Boxes are provided in Section 4. Finally, the conclusion
remarks are presented in section 5.

2 Basic Theory

First, let f(x) : Fn
2 −→ F2 denote a Boolean function, and f̂(x) = (−1)f(x) is

the polarity form of f(x). It is easily seen that f̂(x) = 1 when f(x) = 0, and
f̂(x) = −1 when f(x) = 1.

A linear Boolean function can be defined as Lw(x) = w1x1 ⊕ w2x2 ⊕ · · · ⊕
wnxn, w ∈ Fn

2 . Its polarity form is L̂w(x). An affine Boolean function is a
linear Boolean function plus a constant, which can be represented as Aw,c(x) =
Lw(x)⊕ c. Ln represents the set of all linear and affine n-ary Boolean functions.
The nonlinearity of a Boolean function is the minimum hamming distance to
any affine function.

F̂ (w) =
∑

x f̂(x)L̂w(x) is called the Walsh Hadamard transform(WHT) on
f(x). Denote WHmax as the maximum absolute value taken by F̂ (w). If Nf rep-
resents the nonlinearity of boolean functions, Nf = 1

2 (2n−WHmax). Apparently,
the nonlinearity can be increased by reducing WHmax.

A S-Box is also a Boolean function, which is a mapping from n binary inputs
to m binary outputs. If n = m and the outputs of a S-Box differs from each
other, the S-Box is called bijective. Obviously, it is also reversible. If the inverse
of a S-Box is itself, we call it a self-inverse S-Box or an involution.

Given a S-Box S(x) : Fn
2 −→ Fm

2 (also called n×m S-Box), Nf = mindH(u ·
S(x), l(x))(l ∈ Ln, 0 �= u ∈ Fm

2 ) is the nonlinearity of S(x). dH represents the
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hamming distance. Let I(x) = y represent an involution from n bits to n bits
with I(y) = I−1(y) = x. Denote Iθ(x) = Lθ(y). The Walsh Hadamard transform
of I(x) has a square matrix of size 2n. The element Îθ(w) represents the WHT
of Lθ(y).

Theorem 1. The WHT matrix of an involution I(x) is symmetric.

Proof: As we know, an involution is also a bijective S-Box. It has been proven
in [8] that Îθ(w) = Î−1

w (θ). And:

Î−1
w (θ) =

∑
x

I−1
w (x)L̂θ(x)

=
∑

x

L̂w(I−1(x))L̂θ(x)

=
∑

x

L̂w(I−1(I(y)))L̂θ(x)

=
∑

x

L̂w(y)L̂θ(x)

= Îw(θ)

so Îθ(w) = Îw(θ), which completes the proof.
Theorem 1 can reduce the computation complexity on the WHT matrix of

an involution. Similarly to a single Boolean function, if WHmax is denoted as
the maximum absolute value of Îθ(w), Nf = 1

2 (2n −WHmax).
In the next section, the hill climbing algorithm will be introduced to increase

Nf of involutions with WHT matrix. Under this algorithm, bad involutions can
easily evolved into good ones in nonlinearity.

3 Hill Climbing Self-inverse S-Boxes

In [8] a method (called hill climbing) is proposed to improve the nonlinearity
of bijective S-Boxes. Under this method, to swap two output vectors of a S-
Box can improve the nonlinearity if they satisfy some conditions. Now define
I(x) = y as an involution. According to the method in [8], if two different input
vectors x1 and x2 satisfy some conditions, they are swapped. The new S-Box
I

′
(x) has the higher nonlinearity than I(x). So I

′
(x1) = I(x2),I

′
(x2) = I(x1).

For x that satisfies x �= x1 and x �= x2, I
′
(x) = I(x). If x2 satisfies I(x2) �= x1

and I(x2) �= x2, I
′
(I

′
(x1)) = I

′
(I(x2)) = I(I(x2)) = x2. Apparently I

′
(x) do

not satisfy self-inverse property any more. In [5], two pairs of output vectors
are swapped in order to maintain the self-inverse property. It is also adopted
in this paper. Different from [5], nonlinearity is considered when two pairs of
output vectors are swapped and the conditions are explored under which the
nonlinearity can be increased.
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For an involution I(x) = y, Îθ(w) is an element of Walsh Hadamard transform
matrix. WHmax is the maximum absolute value of Îθ(w). And some sets of (w, θ)
pairs are defined as follows:

W+
1 = {(w, θ) : Îθ(w) = WHmax}

W−
1 = {(w, θ) : Îθ(w) = −WHmax}

W+
2 = {(w, θ) : Îθ(w) = WHmax − 2}

W−
2 = {(w, θ) : Îθ(w) = −WHmax + 2}

W+
3 = {(w, θ) : Îθ(w) = WHmax − 4}

W−
3 = {(w, θ) : Îθ(w) = −WHmax + 4}

W+
4 = {(w, θ) : Îθ(w) = WHmax − 6}

W−
4 = {(w, θ) : Îθ(w) = −WHmax + 6}

W+
5 = {(w, θ) : Îθ(w) = WHmax − 8}

W−
5 = {(w, θ) : Îθ(w) = −WHmax + 8}

Theorem 2. Let I(x) = y : Fn
2 −→ Fn

2 be an involution. Further, let x1 and x2

be distinct input vectors with corresponding outputs y1 = I(x1) and y2 = I(x2),
which also satisfy I(x1) �= x2 and I(x2) �= x1. Let I

′
(x) be an S-Box the same

as I(x) except that I
′
(x1) = y2, I

′
(x2) = y1, I

′
(y1) = x2 and I

′
(y2) = x1. Then

the nonlinearity of I
′
(x) will exceed that of I(x) if and only if all of the following

conditions are satisfied:

(a) For all (w, θ) ∈W+
1 , condition (1) or (2) must be satisfied;

For all (w, θ) ∈W−
2,3, neither condition (1) nor (2) is satisfied;

(1.) Lw(x1) �= Lw(x2)
Lθ(y1) = Lw(x1)
Lθ(y2) = Lw(x2)
and not all the followings are true:
Lw(y1) �= Lw(y2)
Lθ(x1) = Lw(y2)
Lθ(x2) = Lw(y1)

(2.) not all the followings are true:
Lw(x1) �= Lw(x2) Lθ(y1) = Lw(x2)
Lθ(y2) = Lw(x1)
and
Lw(y1) �= Lw(y2)
Lθ(x1) = Lw(y1)
Lθ(x2) = Lw(y2)

For all (w, θ) ∈ W−
1 , the conditions are similar to (w, θ) ∈ W+

1 except the
signs change(‘=’ will change to ‘�=’ , ‘�=’ will change to ‘=’).
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For all (w, θ) ∈ W+
2,3, the conditions are similar to (w, θ) ∈ W−

2,3 except the
signs change.

(b) For all (w, θ) ∈W+
4,5

not all the followings are true:
Lw(x1) = Lw(x2)
Lθ(y1) = Lw(x2)
Lθ(y2) = Lw(x1)
Lw(y1) �= Lw(y2)
Lθ(x1) �= Lw(y2)
Lθ(x2) �= Lw(y1)
For all (w, θ) ∈ W−

4,5, the conditions are similar to (w, θ) ∈ W+
4,5 except the

signs change.

Proof: By definition we have Îθ(w) =
∑

x Îθ(x)L̂w(x) for the original S-Box
and Î

′
θ(w) =

∑
x Î

′
θ(x)L̂w(x) for the changed S-Box by swapping the two output

pairs for input pairs (x1, x2) and (y1, y2). For a (w, θ), ΔÎθ(w) = Î
′
θ(w)− Îθ(w).

As we know, the difference between the sum terms of Î
′
θ(w) and that of Îθ(w)

only involves x1, x2, y1, and y2. Cancelling, we are left with:

ΔÎθ(w) = Î
′
θ(x1)L̂w(x1) + Î

′
θ(x2)L̂w(x2)− Îθ(x1)L̂w(x1)− Îθ(x2)L̂w(x2)

+Î
′
θ(y1)L̂w(y1) + Î

′
θ(y2)L̂w(y2)− Îθ(y1)L̂w(y1)− Îθ(y2)L̂w(y2)

= Îθ(x2)L̂w(x1) + Îθ(x1)L̂w(x2)− Îθ(x1)L̂w(x1)− Îθ(x2)L̂w(x2)
+Îθ(y2)L̂w(y1) + Îθ(y1)L̂w(y2)− Îθ(y1)L̂w(y1)− Îθ(y2)L̂w(y2)

Since each output function is changing in either zero or two truth table positions,
we have ΔÎ ∈ {−8,−4, 0, 4, 8} for all (w, θ). TO increase the nonlinearity we
must reduce WHmax. For the convenience to study the required conditions,
denote Δ1 = Îθ(x2)L̂w(x1) + Îθ(x1)L̂w(x2)− Îθ(x1)L̂w(x1)− Îθ(x2)L̂w(x2), and
Δ2 = Îθ(y2)L̂w(y1)+ Îθ(y1)L̂w(y2)− Îθ(y1)L̂w(y1)− Îθ(y2)L̂w(y2). Δ1 ∈ −4, 0, 4,
Δ2 ∈ −4, 0, 4.

For all (w, θ) ∈ W+
1 , ΔÎ = −4 or −8 is required. It is equivalent to Δ1 =

−4,Δ2 �= 4 or Δ1 �= 4,Δ2 = −4.
When Δ1 = −4,Δ2 �= 4, (1) − (4) must hold simultaneously and either of

(5)− (8) must not hold.

(1) Îθ(x2)L̂w(x1) = −1
(2) Îθ(x1)L̂w(x2) = −1
(3) Îθ(x1)L̂w(x1) = 1
(4) Îθ(x2)L̂w(x2) = 1

(5) Îθ(y2)L̂w(y1) = 1
(6) Îθ(y1)L̂w(y2) = 1
(7) Îθ(y1)L̂w(y1) = −1
(8) Îθ(y2)L̂w(y2) = −1

Which is equivalent to condition (1.) in (a).
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When Δ1 �= 4,Δ2 = −4, (9)− (12) must not hold simultaneously and (13)−
(16) must hold simultaneously.

(9) Îθ(x2)L̂w(x1) = 1
(10) Îθ(x1)L̂w(x2) = 1
(11) Îθ(x1)L̂w(x1) = −1
(12) Îθ(x2)L̂w(x2) = −1

(13) Îθ(y2)L̂w(y1) = −1
(14) Îθ(y1)L̂w(y2) = −1
(15) Îθ(y1)L̂w(y1) = 1
(16) Îθ(y2)L̂w(y2) = 1

Which is equivalent to condition (2.) in (a).
Similarly, for all (w, θ) ∈ W−

1 , ΔB̂ = 4 or 8 is required. It is equivalent to
Δ1 = 4,Δ2 �= −4 or Δ1 �= −4,Δ2 = 4. It is not difficult to prove that the
conditions are similar to those for (w, θ) ∈W+

1 except the signs change.
For all (w, θ) ∈ W−

2,3, in order to reduce WHmax, ΔÎ = 4 or 8 or 0. Appar-
ently, the conditions should be the complement of those for (w, θ) ∈W+

1 , so both
condition (1) and (2) in (a) should be satisfied. Similarly, for all (w, θ) ∈ W+

2,3,
only the signs are changed from those of (w, θ) ∈W+

2,3.
For all (w, θ) ∈ W+

4,5, in order to reduce WHmax, ΔÎ �= 8. This requires
Δ1 �= 4 or Δ2 �= 4, which implies condition (b). Similarly, for all (w, θ) ∈ W−

4,5,
only the signs are changed from that of (w, θ) ∈W+

4,5.

Corollary 1. I
′
(x) is also an involution.

Proof: Here two cases need to be considered. One case is x �∈ {x1, x2, y1, y2}, so
y = I(x) �∈ {x1, x2, y1, y2}. Because I

′
(x) is same as I(x) except the outputs of

x1, x2, y1 and y2, I
′
(x) = I(x) and I

′
(y) = I(y). Hence, I

′
(I

′
(x)) = I

′
(I(x)) =

I(I(x) = x.
The other case is x ∈ x1, x2, y1, y2 and the following equations hold:

I
′
(I

′
(x1)) = I

′
(y2) = x1

I
′
(I

′
(x2)) = I

′
(y1) = x2

I
′
(I

′
(y1)) = I

′
(x2) = y1

I
′
(I

′
(y2)) = I

′
(x1) = y2

So I
′
(x) is an involution. Which completes the proof.

For S(x) : Fn
2 −→ Fm

2 , if some x∈ Fn
2 satisfy S(x) = x, we say S(x) has fixed

points. S-Boxes with fixed points will enhance chances to attack algorithms. So
fixed points are not encouraged in the design of S-Boxes. Theorem 2 can ensure
improved involutions have no fixed points if the original ones has no fixed points
either.

Corollary 2. If I(x) has no fixed points, I
′
(x) has no fixed points either.
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Proof: For x �∈ {x1, x2, y1, y2}, I
′
(x) = I(x) �= x. And because I(x1) �= x2,

I(x2) �= x1 also holds. So:

I
′
(x1) = I(x2) �= x1

I
′
(x2) = I(x1) �= x2

I
′
(y1) = x2 �= I(x1) = y1

I
′
(y2) = x1 �= I(x2) = y2

Which completes the proof.
On the basis of Theorem 2, a hill climbing algorithm will be proposed to

improve the nonlinearity of an involution. The basic idea is, for an involution,
two output vectors that satisfy the conditions in Theorem 2 will be swapped.
The procedure is repeated until the nonlinearity reaches a local maximum, which
means no output pairs can be swapped to increase the nonlinearity. When the
original S-Box has no fixed points, the final S-Box has no fixed points either.
The algorithm can also ensure the self-inverse property of the final S-Box.

InvolutionHillClimb(I(x))

(1) Calculate the Walsh-Hadamard transform matrix of I(x) and determine the
maximum value WHmax.

(2) Find the pairs of (w, θ) which belong to the sets W+
1 , W−

1 , W+
2,3, W

−
2,3, W

+
4,5

and W−
4,5.

(3) Repeat Until no pair satisfies tests:
(a) Select a input pair (x1, x2) and check it against the conditions in The-

orem 2.
(b) If the current pair satisfies the conditions then get the new involution

I
′
(x) and calculate the new WHT matrix, else select the next pair for

testing.
(4) Output I

′
(x).

The algorithm must stop because the nonlinearity has an upper bound. It
is not possible to increase the nonlinearity infinitely. For n × m S-Boxes, the
bound is 2n−1(1 − 2−n/2)[4]. According to Theorem 2, the maximum possible
input pairs (x1, x2) that need to be considered should be C2

n/2 − n/2. So in
the algorithm, before a input pair (x1, x2) is found to satisfy the conditions in
Theorem 2, the maximum possible input pairs that need to be checked should be
C2

n/2− n/2. And in the proof of Theorem 2, it is easily seen that the minimum
increment of nonlinearity is 4. So if the nonlinearity of the original involution
is nl, the maximum iterative times in the algorithm should be smaller than
(C2

n/2− n/2)× (2n−1(1− 2−n/2)− nl)/4.

4 Experiments and Results

8×m S-Boxes are popularly used in the design of block ciphers, and the maximum
nonlinearity is 112[4]. It is easy to construct best S-Boxes in nonlinearity with
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exponent permutations, but they do not satisfy self-inverse property. In this
section, the experimental results on 8× 8 involutions will be given.

First of all, 10000 8 × 8 involutions with no fixed points will be randomly
generated with the following algorithm:

GenerateInvolution

1. For every input x ∈ Fn
2 , set the mark value of x as 0.

2. Select a x whose mark value is 0. Set the new mark value of x is 1. Generate
a random value m ∈ Fn

2 whose mark value is 0.
3. Set I(x) = m and I(m) = x.
4. Set the new mark value of m is 1.
5. Repeat 2-4 steps until no x satisfies the condition.
6. Output the n ∗ n involution I(x).

Then the hill climbing algorithm in section 3 is applied on the generated 10000
involutions. Table 1 and Figure 1 respectively give the comparison results of the
original involutions and the improved ones after the hill climbing algorithm. From
table 1 we can see the nonlinearity of the original randomly generated involutions
is mainly distributed over (88, 90, 92, 94, 96), and their propagations are 8.34%
, 14.89%, 26.14%, 29.25% and 13.24%. The propagation of 98 is only 0.93%.
So highly nonlinear involutions are hardly obtained by the random generation.
When these random generated involutions are improved by the hill climbing
algorithm, the nonlinearity of the final involutions concentrates on (98, 100) and
their proportions are 53.9% and 42.17%. From Figure 1 we can also see the
improvement effect is apparent. Besides, most improved S-Boxes have higher
S-Boxes than Anubis because its nonlinearity is only 94[1].

Table 1. omparison results of original involutions and improved involutions

nonlinearity original S-Box improved S-Box

78 26 0

80 40 0

82 90 0

84 190 0

86 374 0

88 834 0

90 1489 0

92 2614 7

94 2925 12

96 1324 367

98 93 5390

100 1 4217

102 0 7

C
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Fig. 1. he comparison curve of original involutions and improved involutions

5 Conclusion

In this paper, Walsh Hadamard transform of self-inverse S-Boxes is studied.
On the basis of it, the hill climbing algorithm is introduced to improve self-
inverse S-Boxes. After being improved, the self-inverse characteristics still holds.
Then 10000 8 × 8 self-inverse sample S-Boxes are randomly generated with a
given algorithm in this paper. The Experimental results show that the original
involutions have been greatly improved in nonlinearity after being hill climbed.
Besides, most of the improved involutions has much higher nonlinearity than the
one of Anubis.

There are still some open problems for further research. The work in this
paper can be combined with the genetic algorithm to generate much stronger in-
volutions. Besides the nonlinearity, other properties of S-Boxes can be considered
to be improved with the similar idea in this paper.
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Abstract. The proliferation of group-centric computing and communi-
cation motivates the need for mechanisms to provide group access control.
Group access control includes mechanisms for admission as well as revo-
cation/eviction of group members. Particularly in ad hoc groups, such
as peer-to-peer (P2P) systems and mobile ad hoc networks (MANETs),
secure group admission is needed to bootstrap other group security ser-
vices. In addition, secure membership revocation is required to evict
misbehaving or malicious members. Unlike centralized (e.g., multicast)
groups, ad hoc groups operate in a decentralized manner and accommo-
date dynamic membership which make access control both interesting
and challenging. Although some recent work made initial progress as far
as the admission problem, the membership revocation problem has not
been addressed.

In this paper, we develop an identity-based group admission control
technique which avoids certain drawbacks of previous (certificate-based)
approaches. We also propose a companion membership revocation mech-
anism. Our solutions are robust, fully distributed, scalable and, at the
same time, reasonably efficient, as demonstrated by the experimental re-
sults.

Keywords: access control, ad-hoc group security, threshold signatures.

1 Introduction

Ad hoc groups are becoming increasingly popular these days. A number of peer-
to-peer (P2P) systems as well as mobile ad-hoc networks (MANETs) fall into
the category of ad hoc groups. These groups are characterized by two important
features, (1) lack of trusted authority and (2) dynamic membership, which often
implies dynamic topology. These features prompt a number of challenges for
routing as well as content placement and retrieval. They also make it difficult
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to develop effective and efficient security mechanisms. The need for security in
MANETs and P2P has been widely recognized by the research community and
the bulk of prior work has been in the context of traditional security services such
as secure group communication (group key agreement and key management) and
secure routing (in MANETs). Although these services are certainly important,
another equally important issue – group access control – has not received due
attention.

In a group setting, the traditional notion of access control is to prevent
unauthorized entities from accessing group resources. However, if we consider
group membership itself to be a resource, the problem of admission and revo-
cation/eviction of group members can be viewed as a form of access control. A
secure admission control is necessary to prevent unauthorized users from join-
ing a group, i.e., accessing the “membership” resource. Without such a mech-
anism, group membership is open to malicious users and the group becomes
vulnerable, e.g., to Sybil attacks [1]. Moreover, a group as a whole must be
able to contend with the possibility of group members becoming selfish1 or ma-
licious/compromised. Once detected, such rogue members need to be removed
from the group. This necessitates secure (and efficient) membership revocation
mechanisms.

Without effective group access control mechanisms, other group security ser-
vices: secure group communication [2, 3] and secure routing (in mobile ad hoc
networks), such as Ariadne [4], SPINS [5], etc., are difficult to achieve.

One fairly obvious application for the type of secure distributed group ac-
cess control that we envisage is in the domain of private P2P groups formed
atop wide-open (essentially public) P2P systems, such as Kazaa, Morpheus or
Gnutella. In fact, a recent article in the Time Magazine [6] examines the popular
trend of creating so-called “Darknets” [7] – secure private groups within Kazaa
and Morpheus – in order to escape the intensified crackdown on music and other
content sharing. Another example of a somewhat futuristic, military oriented
application of group access control in a mobile ad hoc network with unmanned
aerial vehicles (UAVs) is described in [8].

2 Related Work and Motivation

Previous work on admission control in ad hoc groups ([9], [10], [11], and [12]) em-
ployed a menu of cryptographic techniques to perform secure group admission.
The purpose is for a certain threshold of group members to make collaborative
decisions regarding the admission of a prospective member and provide it with a
signed group membership certificate. Among these signature schemes are: plain
(RSA or DSA) signatures, accountable subgroup multi-signatures (ASM) [13],

1 A selfish member is interested in obtaining service but refuses to provide it. Service
can range from sharing files in a content-sharing P2P to forwarding traffic in a
MANET.
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threshold signatures ([14], [9]). Unfortunately, these schemes have certain draw-
backs that make them unfit for practical group admission control scenarios.

Lineage Problem with Plain Signatures and Multisignatures. In partic-
ular, admission control based on either plain signatures or accountable sub-group
multisignatures has a lineage problem. This problem occurs when a membership
certificate is issued to a new member: each member (sponsor) who takes part
in the admission process needs to confirm (by signing) its agreement to admit
this new member. Essentially, a membership certificate has to be signed by some
number of membership sponsors.2 However, each sponsor needs to attach its own
certificate to its signature on a new member’s certificate in order to make group
certificates universally verifiable. However, a sponsor’s own certificate also has
to be counter-signed by its erstwhile sponsors, and so on, and so forth. This is
clearly unworkable since a member’s certificate would have to be accompanied
by a number of certificate chains that affirm its lineage.

Inapplicability of Known Threshold RSA Signatures. A (t−1, n) thresh-
old signature scheme [15] enables any subgroup of t members in a group to col-
laboratively sign a message on behalf of that group. This is achieved by secret-
sharing the signature key among the group members, and allowing them to
compute a signature on some message via a distributed protocol in which the
members use the shares of the signature key instead of the key itself. Threshold
signatures are naturally attractive for the purpose of admission control since
they prevent the aforementioned lineage problem: a membership certificate can
be signed by any set (of a certain size) of sponsors while the signature length is
constant and identities of individual sponsors are not revealed.

Various flavors of threshold RSA signatures exist in literature that might be
used to construct the admission control protocol. However, unfortunately, none
of these schemes are directly applicable (refer to [16] for details).

In an effort to mitigate the above problem of the known threshold RSA
signatures, Kong, et al. [9] proposed a new threshold RSA scheme, geared toward
providing security services in mobile ad-hoc networks. Subsequently the scheme
and its MANET applications were described in [9, 8], and most recently in a
journal version [17]. Unfortunately, this scheme is neither robust (i.e. it can not
tolerate malicious group members) nor secure. The robustness problem was first
pointed out in [12]. For an explicit attack exploiting the insecurity of the scheme,
the reader is referred to [18].

Limitation of Threshold DSA Signature. An alternative scheme (called
TS-DSA) [12] is based on the threshold DSS signature scheme [19]. This scheme
is robust and hence tolerates malicious insiders. However, the practicality of this
scheme is questionable since, as illustrated by experiments in [11], it is very

2 This number is determined by the group admission policy; common examples are
a certain fraction of current members or a fixed threshold. See [10] for a detailed
discussion of admission policies.
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costly due to O(t2) communication among the t signers. Furthermore, TS-DSA
remains secure as long as there are less than � t+1

2 � malicious members. In other
words, for the scheme to be able to tolerate t−1 faults, 2t−1 signers are required.

Our Contributions. In addition to the above discussion, the previously pro-
posed admission control mechanisms are certificate-based, making them quite
impractical3 for mobile ad hoc networks where the amount of communication
is directly related to the battery power of the mobile devices (refer to [20]).
In this paper, we develop a new group admission control technique, which we
refer to as ID-GAC (IDentity-based Group Admission Control). As the name
suggests, ID-GAC is an identity-based approach (and therefore more communi-
cation efficient), in contrast to previous, certificate-based schemes. Furthermore,
we present a membership revocation mechanism geared to work in conjunction
with ID-GAC.

Organization. After specifying the notation in Table 1, we define the security
model for a generic group access control system in Section 3. In Sections 4 and
5, we present the new ID-based admission control protocol and demonstrate its
security. Section 6 presents the membership revocation protocols. Experimen-
tal results are illustrated in Section 7 and finally, some outstanding issues are
discussed in Section 8 followed by the conclusion in Section 9.

Table 1. Notation

Mi group member i idi ID for Mi

t admission threshold tr revocation threshold
n total number of Mi-s G1, G2 cyclic GDH groups of order q
A generator of group G1 B group public key
ê map s.t. ê : G1 × G1 → G2 Ti membership token for Mi

SKi secret key of Mi PKi public key of Mi

Si(m) signature on message m MRL membership revocation list
SLi list of signers for Mi H hash func. such as SHA-1 or MD5
ssi secret share of Mi H1 hash func. s.t. H1 : {0, 1}∗ → G∗

1

pssj(i) partial share for Mi by Mj H2 hash func. s.t. H2 : {0, 1}∗ × G1 → Z∗
q

3 Security Model

In this section, we define a generic security model for peer-based membership
management. In other words, we describe what we mean by secure admission
control and secure membership revocation, respectively. Since this work is ap-
plied in nature, the model is specified informally.

3 The typical size of a group membership certificate is quite large, e.g., 5KB for 1024-
bit DSA parameters.
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3.1 Admission Control

A secure admission mechanism is a secure interactive protocol between a prospec-
tive member Mnew and a set of current group members {Mi | 1 ≤ i ≤ s} where
1 ≤ t ≤ s ≤ n. (In other words, the number of current members taking part in
the admission is at least the number necessary for the admission threshold which
is, in turn, no greater than the number of current members.) This protocol must
satisfy the following properties:

1. Completeness. When the protocol completes (in polynomial time), Mnew

has a group membership token, if at least t out of n group members vote
in favor of admission. In addition, Mnew also acquires the membership re-
vocation information if any, which allows it to keep track of revoked group
members. Optionally4, Mnew is also in possession of a means to take part in
future admission decisions.

2. Traceability. If one or more malicious sponsors do not provide correct
information in the course of the admission process, Mnew can detect, trace
and publicly identify such members.5

3. Impersonation Resistance. It is computationally infeasible for anyone,
who has not been successfully admitted via the admission protocol, to im-
personate a genuine group member (whether to members or non-members).

3.2 Membership Revocation

A secure membership revocation mechanism is a protocol among the members
of the group wherein any set of tr (≥ t) members attempt to revoke a current
member Mr who possesses a membership token Tr and/or a secret share ssr.
This mechanism needs to satisfy the following properties:

1. Completeness. At the end of this protocol, i.e. when tr revocation requests
are lodged against Mr, the latter is unable to: (1) prove group membership
and (2) participate in future admission decisions (in case Mr previously had
voting/admission rights).

2. Impersonation Resistance. Only a genuine group member (possessing a
valid membership token) can take part in the revocation process. In other
words, non-group members and previously revoked group members can not
lodge valid revocation requests.

3. Collusion Resistance. At the end of the protocol, Mr (if she possessed
a secret share) is unable to collaborate with any set of previously revoked
members and recover the group secret x. In other words, any set of revoked
share-holding members can not collude to interpolate the group secret.

4 Whether a new member gets voting rights that allow it to take part in future ad-
mission decisions depends upon group admission policy.

5 The group members misbehaving in this manner may then be revoked from the
group by triggering the revocation mechanism.
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Remark: As will be discussed in Section 6, every group member maintains an
updated list of the revoked members which we refer to as membership revocation
list (MRL).

4 ID-Based Group Admission Control (ID-GAC)

In this section, we present our new admission control mechanism ID-GAC. The
mechanism is based on the threshold version [21] of BLS signature scheme [22].
The description includes: set-up, admission process and security arguments fol-
lowing the model in Section 3. ID-GAC is an identity-based mechanism since the
membership token used to prove membership is derived from the group member’s
identity.

4.1 Setup

ID-GAC can be initialized by either: (1) a trusted dealer or (2) a group of 2t−1 or
more founding members. In either case, the dealer first initializes and generates
the appropriate elliptic curve domain parameters (p,Fp, a, b, A, q). The elliptic
curve is represented by the equation: y2 = x3 +ax+ b. G1 is set to be a group of
order q generated by A, G2 is a subgroup of F∗

p2 of order q, and ê : G1×G1 → G2

is defined to be a public bilinear mapping. Also, H1 : {0, 1}∗ → G∗
1 is the

hash function that maps binary strings to non–zero points in G1. All of this
information is published and all group members (as well as prospective members)
are assumed to have access to it.

Initialization by dealer. TD selects a random polynomial f(z) = f0 +f1z+
· · ·+ ft−1z

t−1 over Zq of degree t− 1, such that the group secret is f(0) = f0 =
x. In order to enable verifiable secret sharing (VSS) [23], TD computes and
publishes the witnesses Wi = fiA for (i = 0, · · · , t− 1). The witness value W0 =
xA, also denoted by B, is actually the group public key. Next, for each Mi, TD
computes the secret share ssi and the identity-based membership token Ti (valid
until the time exp6) such that: ssi = f(idi) (mod q) and Ti = xH1(idi||exp).
Note that TD is not required hereafter.

Self-Initialization by Founding Members. t or more founding members
Mi-s select individual polynomials fi(z) over Zq of degree t−1, such that fi0 = xi.
Then, using the DKG protocol [24], each Mi computes its own secret share ssi,

6 Membership tokens are valid for a certain period of time. The duration of the validity
period are be defined by the group policy (which is out of scope of this paper). For
simplicity, we assume that all membership certificates reflect the same expiration
period exp. In order to enable implicit revocation, each member Mi needs to be
provided with Ti = xH1(idi||exp). This structure implies that Ti is not valid after
the time exp. Once expired, the token needs to be renewed via the admission process.
The group founding members might be provided with long(er)-term membership
tokens. We assume that all nodes have reasonably synchronized clocks, within a
certain skew.
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such that ssi =
∑l

j=1 fj(idi) (mod q) (l ≥ 2t− 1). Once Mi gets its share, it is
rather easy to recover the secret using Lagrange interpolation. Also, the dealing
process supports VSS. Now, in order to provide each member with a membership
token, any set of t founding members must collaborate. For example, group
members M2,M3, · · · ,Mt+1 may collaborate and provide M1 with a membership
token as T1 =

∑t+1
j=2(ssj lj(0))H1(id1||exp) [= xH1(id1||exp)].

4.2 Admission Process

Let n (≥ t) be the number of current group members. In order to be admitted to
the group, a prospective member Mnew must collect at least t votes from current
group members. Figure 1 shows protocol message flows for the admission process.
The goal is for Mnew to obtain a membership token Tnew which can then be
used to prove membership. (In practice, Mnew also needs to obtain the current
membership revocation list – MRL – to keep track of revoked group members.)

1: Mnew
REQ = idnew, m, Snew(idnew, m)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Mi

2: Mnew
idi, Si(idi, H(REQ))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Mi

3: Mnew
SLnew, Snew(SLnew)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Mj

4: Mnew
Tj(new), [pssj(new)], Sj(Tj(new), SLnew, [pssj(new)])←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Mj

Fig. 1. ID-GAC Protocol

1. Mnew sends a signed join request message m as well as its identity idnew to
at least t current group members7.

2. Group members who wish to participate in the admission reply with their
respective id-s to Mnew along with the signature on the previous message
sent by Mnew.

3. Mnew picks (perhaps, at random) t sponsors Mj-s, forms a signer list SLnew

which contains the id-s of t responders, signs it, and sends it to each Mj .
4. Each signing member Mj sends back to Mnew the partial membership token

Tj(new) and (optionally) the partial share of the secret pssj(new) such that

Tj(new) = (ssj · lj(0))H1(idnew||exp) and

pssj(new) = ssj · lj(idnew) + rj (mod q)

7 In order to secure the protocol against common replay attacks [25], we note that it is
necessary to include timestamps, nonces and protocol message identifiers. However,
in order to keep our description simple, we omit these values.
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where, lj(x) =
t∏

i=1

x− idi

idj − idi
.

Mnew is also provided with a signed copy of the current MRL. Note that the
Lagrange coefficients lj(idnew)-s are publicly known, and therefore, Mnew

can derive ssj from pssj(new). This can be prevented using the shuffling
technique proposed in [9] by adding extra random value rj-s to each share.
These rj-s are secret random values and must sum up to zero by construction.
They must be securely shared among the t sponsoring Mj-s.

5. Finally, Mnew calculates its secret share ssnew (if provided) and the mem-
bership token Tnew by adding up the values obtained in the last step. The
share acquisition and membership token acquisition procedures are discussed
next.

4.3 Membership Token Acquisition

The membership token acquisition procedure is also performed as part of the 4-th
message of the above protocol. Each sponsor Mj computes a partial membership
token Tj(new) for Mnew and then sends it to Mnew. (It is important to note that
the partial membership token Tj(new) is actually a BLS [22] signature on idnew

using (ssj ·lj(0)) as the secret key for Mj .) Then, Mnew computes its membership
token Tnew by summing up Tj(new) (j = 1, · · · , t) and verifies the correctness by
checking ê(B,H1(idnew||exp)) = ê(A, Tnew). This equation can be easily shown
to be correct using the properties of the bilinear map ê.

4.4 Share Acquisition

The share acquisition procedure – whereby Mnew obtains its share ssnew from
sponsors – is performed as part of the 4-th message in the ID-GAC protocol (as
shown in Figure 1).

The t sponsoring members (Mj-s) compute the shuffled partial share
pssj(new) for Mnew as pssj(new) = ssj · lj(idnew) + rj (mod q) using the shuf-
fling technique [9]. Each Mj sends pssj(new) to Mnew. Then, Mnew computes
its share ssnew by summing up pssj(new) (j = 1, · · · , t) and verifying the cor-
rectness using VSS [23].

By verifying the secret share and the membership token as described above,
Mnew is assured of possessing correct credentials. Armed with the membership
token Tnew, Mnew can prove membership. Also, using a secret share ssnew, Mnew

can use the group secret x in collaboration with other (t−1) group members and
take part in future admission protocols. In Section 5, we discuss two schemes
that can be used to prove membership.

Next, we discuss the security of the proposed ID-GAC scheme.

4.5 Security Considerations

In this section, we argue the security of the proposed scheme, based on the
security model of Section 3.



370 N. Saxena, G. Tsudik, and J.H. Yi

1. Completeness. This property follows by inspection. At the end of the
protocol, Mnew receives the membership token Tnew which is verified as:
ê(B,H1(idnew||exp)) = ê(A, Tnew). Using Tnew, Mnew can prove member-
ship. Mnew also receives a secret share ssnew which is verified using VSS
as: ssnewA =

∑t−1
i=0 idnew

iWi. Using ssnew, Mnew can take part in future
admission decisions and can also recover the group secret x in collaboration
with any other t− 1 members. Of course, Mnew can obtain these credentials
in polynomial time.

2. Traceability. In case the verification of Tnew and/or ssnew fails, Mnew

must identify (trace) sponsors that sent invalid partial token(s) and/or par-
tial secret share(s). To verify each partial secret share, Mnew can perform
the VSS procedure. Correctness of each membership token share Tj(new)
can be verified as follows:

ê(Tj(new), A) = ê(H1(idnew||exp), lj(0)
t−1∑
i=0

idj
iWi).

If the above verification fails, Mnew concludes that Mj is cheating.
3. Impersonation Resistance. In order to make sure that Mnew is communi-

cating with only genuine group members, it can verify the partial credentials
as in traceability above and in the process can trace any impersonating
non-member.

5 Proving Membership

We employ two schemes that can be used by a group member to prove mem-
bership. We consider proving membership to internal parties (members) and
external parties (non-members). The internal membership proof (IMP ) is a
pairing-based secret handshake scheme proposed in [26]. The external member-
ship proof (EMP ) is the identity-based signature scheme in GDH groups as
proposed in [27].

6 Membership Revocation

In addition to implicitly revoking membership tokens via expiration (see footnote
6), rogue members need to be explicitly revoked, e.g., for reasons of selfishness,
maliciousness or compromise.

A secure membership revocation mechanism should satisfy all properties out-
lined in Section 3.2. One trivial solution is to have a set of t share holding group
members (revokers) collaborate and renew membership tokens for all members,
except the one being revoked. The revokers also need to update the secret shares
using proactivity in case the revoked member possessed an old share. This ap-
proach is clearly very inefficient.

In this section we present a practical revocation mechanism based on Mem-
bership Revocation Lists (MRLs). This is analogous to the simple and wide-
spread certificate revocation technique (CRLs [28]) used in traditional PKIs.
However, unlike CRLs, our solution is fully distributed.
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6.1 MRL Update

Upon every revoke operation, each group member needs to update its copy of the
MRL. Also, an entry needs to be removed from the MRL once the corresponding
member’s membership token expires.

6.2 Membership Validation

If and when a user V receives a signed message from another user Mu claiming
to be the group member (of a group with public key B), V needs to first verify
the validity of Mu’s membership and then the signature (using EMP signature
verfication). The validation procedures will be different (internal or external)
based on whether V is a group member or a non-member.

Internal Membership Validation. If V is a group member, validation involves
only a lookup of its MRL and checking the status of Mu. If MRL contains no
entry corresponding to idu, V concludes that Mu is a member in good standing.

External Membership Validation. An non-member V needs to perform the fol-
lowing protocol to validate Mu’s status.

1. V sends to the group a membership validation request for Mu’s membership.
2. Share holding group members interested in answering this request, reply

with their IDs to V .
3. V waits for at least t such responses, creates a signers’ list SLv containing

the IDs of the interested members and sends it to them.
4. These members then look up the status of Mu in their respective MRLs and

provide V with a signed response.
5. V verifies the signature on the status of Mu.

The above validation procedure is quite similar to the admission process de-
scribed in Section 4.2. Moreover, it could also be viewed as a distributed version
of the Online Certificate Status Protocol (OCSP) [29] in the context of certificate
revocation.

6.3 Revocation Process

To revoke an allegedly malicious or misbehaving member Mr, any current mem-
ber Ma can bootstrap the revocation process. The following steps need to be
performed.

1. Ma broadcasts a revocation request message referencing Mr, using EMP
signature generation.

2. All other group members Mj-s (j �= r) perform the internal membership
validation for Ma as in Section 6.2. 8 They then perform the MRL update

8 Although this is concerned with the group revocation policy, here we assume that a
member which is “under-review” can also lodge valid revocation requests.
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(as discussed in Section 6.1) to add Ma to the revoker list for Mr. The status
of Mr is then set to “under-review”. Once the number of revokers in this list
reach tr, the status of Mr is updated to “revoked”.

3. If Mr is the t̂(th) (t̂ ≤ t−1) member to be revoked9, the tr revokers collaborate
and update the shares using the proactive method. If less than t out of tr
revokers possessed the secret shares, the group founding members need to
perform the share update.

4. All available group members Mi-s (i �= r) possessing voting rights, then
contact the revokers (or founding members) and renew their shares.

6.4 Security Considerations

In this section, we argue that the above revocation mechanism is secure based
on the security model sketched in Section 3.2.

1. Completeness. By inspection: As soon as tr valid revocation requests are
lodged against Mr, each group member records them in its local copy of the
MRL and sets the status corresponding to idr as “revoked”. Now, Mr can
not prove membership via either IMP or EMP protocol and/or take part
in the admission process since its membership validation (as described in
Section 6.2) would fail.

2. Impersonation Resistance. As part of Step 1 of the revocation process
above, a revocation request submitted by Ma against Mr is signed using
EMP signing. Upon receiving such a request, each group member (except
Ma) first validates Ma’s status by doing an MRL lookup and then validates
Ma’s membership by verifying the signature on the request message (via
EMP verification). The former guarantees that Ma is itself not revoked
and the latter ensures that Ma is indeed a group member. Therefore, it is
impossible for a revoked member and computationally infeasible for a non-
member to lodge valid revocation requests. Thus, the proposed revocation
mechanism is impersonation resistant.

3. Collusion Resistance. The revocation procedure involves the secret share
updates atleast after every t− 1 members are revoked. Therefore, the share
of the tth revoked member will not correspond to the shares of t − 1 pre-
viously revoked members in yielding the group secret using the polynomial
interpolation. This implies that no set of revoked members can collude.

6.5 Discussion

The MRL-based solution requires group members to synchronize in order to
maintain up-to-date MRLs. However, it is certainly unrealistic to expect all
members to be on line all of the time. Any member can establish the freshness
of its MRL by performing a procedure similar to membership validation (in

9 How many revocation operations trigger a share update is determined by the group
revocation policy.
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Section 6.2). A set of t interested members (possessing the secret shares) respond
with the complete and signed MRL, as opposed to the membership validation
procedure, where they respond with the status of a particular member. This
procedure can also be performed periodically.

Discrepancies in MRLs might arise for a number of reasons. A group member
might go off-line or become unreachable temporarily. Such events are common in
asynchronous groups, such as most P2P systems and MANETs. More generally,
a group can become partitioned due to some network event, e.g., a router failure.
Suppose a partition occurs and a group is split into two subgroups GA and GB .
The two subgroups operate independently and their MRLs evolve separately. If
at a later time, GA and GB merge back into a single group, the two MRLs:
MRLA and MRLB, need to be appropriately merged. This particular scenario
presents a major challenge since the techniques described above will not work.
Consider what happens if, while the group is partitioned, members of GA decide
to revoke their counterparts in GB , and vice versa. (Not surprisingly, this remains
a major item for future work.)

7 Performance Analysis

We now present and discuss the performance measurement results for the pro-
posed ID-GAC admission and eviction techniques. In particular, we describe our
experience with the implementation of these schemes and experiments in P2P
and MANET settings, focusing on the respective costs of admission, traceability,
membership proofs and revocation. We also compare our results with the previ-
ously proposed DSA-based admission mechanism [12], [11], wherever applicable.

7.1 Implementation

The ID-GAC library is built using OpenSSL [30] and MIRACL [31] (optimized
using Comba method) libraries. The latter was needed to implement various
identity-based functions. Currently, ID-GAC consists of approximately 10, 000
lines of C/C++ source code and supports Linux 2.4.

We used the elliptic curve E defined by the equation: y2 = x3 + 1 over Fp

with p > 3 a prime satisfying p = 2 (mod) 3 and q being a prime factor10 of
p+ 1. The size of q is set to be 160 bits and p is a 512-bit prime. The group G1

is a subgroup of points generated by A such that A ∈ E(Fp). The group G2 is a
subgroup of F∗

p2 of order q. The bilinear map ê : G1×G1 → G2 is the well-known
Tate pairing. Note that the pairing value belongs to finite field of 1024 bits.

7.2 Basic Operations

To estimate the performance of ID-GAC, we first present the costs of the prim-
itive operations in Table 2. For measuring the costs of basic operations in ID-

10 By Euler’s theorem, q must divide #E(Fp). For the curve y2 = x3 + 1, #E(Fp) =
p + 1.
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GAC, we used a machine with an Intel P3 800MHz processor and 384MB mem-
ory. All experiments were repeated 1, 000 times for each measurement in order
to get fairly accurate average results.

7.3 Experimental Setup

We now describe the experimental setup used for the experiments in both P2P
(Gnutella [32]) and MANET settings. We used two laptops and two PDAs, each
configured with 802.11b in ad-hoc mode. For routing purposes, we used the
Optimized Link State Routing Protocol (OLSR) [33]. The two laptops (running
Linux 2.4) are equipped with 800/900-MHz P-III processors and 384/256MB
RAM, respectively. The two PDAs (running Linux Familiar) each have a 400MHz
XSCALE processor and 64MB RAM. In all experiments, we ran equal number
of processes (current group members) on both the laptops. The PDAs were used
for routing purposes only.

Table 2. Costs of Primitive Operations (P3-800MHz)

Function modulus (bits) exponent (bits) average time (msec)

DSA sign 1024 160 4.78

DSA verify 1024 160 5.74

Map-to-point (H1(·)) 512 160 3.13

BLS sign 512 160 8.91

Pairing 512 160 37.24

Note that both P2P and MANET experiments were done on the equipment
with same computing power. The main purpose of our experiments is to measure
the computation and communication costs in wireless as well as wired networks
and to demonstrate the practicality of ID-based admission and revocation mech-
anisms. For ID-GAC experiments, the modulus size (|p|) was set to 512-bits and
1024-bit modulus was used for TS-DSA experiments11.

Remark: In all experiments below, we used a member/authorizer paradigm. A
member, in this context, is a group member who has no voting/admission rights
(i.e., no secret share), whereas an authorizer has them. Since their respective
costs sometimes vary substantially, they are graphed separately.

7.4 Node Admission

Figure 2 shows the admission cost with varying threshold (for both member and
authorizer) for ID-GAC and TS-DSA schemes in (a) MANET and (b) Gnutella

11 Computing discrete log in Fp2 is sufficient for computing discrete log in G1. There-
fore, for proper security of discrete log in Fp2 the prime p should be at least 512-bits
long (so that the group size is at least 1024-bits long). This will ensure that the
GDH problem remains sufficiently hard.
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Fig. 2. Node Admission Cost

Table 3. Bandwidth Comparison

TS-DSA ID-GAC

Admission (member) (2t − 1) ∗ |GMCj | t ∗ |Tj |
Admission (authorizer) (2t − 1) ∗ |GMCj | + t ∗ |pssj | t ∗ (|Tj | + |pssj |)

experiments. The admission costs also include the verification of the membership
token and/or the secret share.

As shown in Figure 2, ID-GAC exhibits appreciably better performance that
TS-DSA in MANET, as well as in P2P setting. The results imply that the
amount of communication in TS-DSA contributes significantly to the overall
cost of admission, although computation-wise it is still quite efficient (see Table
2). The communication overhead for TS-DSA is even higher in MANET, than
in Gnutella experiments. This is clearly due to the error-prone, low-bandwidth
wireless channel.

7.5 Bandwidth Consumption

Table 3 compares the respective bandwidth costs. (Refer to Table 1 for notation.)
While TS-DSA uses certificates, ID-GAC is identity-based which obviates any
need for explicit membership certificates. Certificate size is relatively large, e.g.,
5KB with 1024-bit DSA parameters. For example, if a prospective member wants
to join the group as a member, (2t−1)∗5K ∗8 bits must be transfered, whereas,
only t ∗ 512 bits are needed in ID-GAC.

Also, it is well known that, in many small devices (such as low-end MANET
nodes or sensors) sending a single bit is roughly equivalent to adding 1, 000 32-
bit numbers, in terms of battery power consumption [20]. For example, in case of
t = 3, the bandwidth cost with TS-DSA is about 133 times higher than ID-GAC.
In other words, TS-DSA consumes 133 times more energy than ID-GAC for the
communication. Hence, we expect ID-GAC to be more suitable for MANET
scenarios which often involves power-constrained devices.
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7.6 Traceability

Traceability costs are presented in Figure 3. Due to the costly computation of
Tate pairings, ID-GAC performs poorly, as compared to TS-DSA.

However, since the misbehavior in the admission protocol leads ultimately to
the eviction of the corresponding group member, we argue that traceability is a
rare exceptional measure; thus we consider its costs to be relatively unimportant.

7.7 Membership Proof

We now discuss measurement results for the membership proofs in ID-GAC, as
outlined in Section 5. The respective costs of IMP and EMP computations
(including both signing and verifying) are shown in Figure 4, with varying key
sizes. Recall that IMP is needed if two members want to authenticate each other
secretly and establish a shared secret key; in contrast, EMP can (also) be used
to prove membership to outsiders.

7.8 Revocation

The graph in Figure 5 represents the average cost needed to revoke a particu-
lar group member for the varying threshold using the mechanism described in
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Section 6. In this context, the threshold (tr) is the revocation threshold. Costs
include: generation of signed revocation requests, broadcast to the group and
validation of these requests. Delay between two consecutive revocation requests
is not taken into account.

8 Discussion and Further Improvement

In this section, we discuss some of the outstanding issues concerning ID-GAC,
focusing primarily on the performance.

The bilinear mapping operation is an elegant procedure that forms the basis
for the verification in the admission process and the membership proof. However,
it is an expensive computation which dominates the overall running time of
the protocol. Moreover, it is only because of the Tate pairing operation in our
protocol that the key size, i.e. the size of the prime p needs to be at least 512-
bits; although it is well-known that a 160-bits ECC system is as secure as a
1024-bits RSA based system. Barreto, et al. [34] suggest some modifications and
optimizations for the Tate pairing operation, most of which are implemented in
the MIRACL library [31] that we used. In order to further improve performance,
we need to parallelize these operations and pre-compute as much as possible. As
discussed in Section 4.5, the traceability of malicious sponsors is an optional
procedure that involves verification of individual sponsor’s signatures, which
costs two pairings per verification. This cost can be significantly lowered by
using pre-computations as described in [31].

The choice of the elliptic curve being used can certainly influence the overall
cost of the scheme. BLS short signature scheme [22] uses a supersingular curve
defined by the equation y2 = x3 +2x±1 over F3l where l is a positive exponent.
Barreto, et al. [34] specify the cost of generating a BLS signature on such a curve
(defined in F397) to be just 3.57 ms on a P3 1GHz machine, after some optimiza-
tions and preprocessing. This seems like a significant improvement over the costs
incurred in our measurements which were based on a different curve defined in
a prime field. Therefore, porting our protocol for these curves appears to be an
attractive way to reduce costs. Since the signature generation here is cheaper
though the verification is still costly, this in fact could be an ideal candidate
for an admission control mechanism, where one would prefer the computation
load to be high on the prospective member, much lesser so on the current group
members. In addition, these signatures are very short, only 154-bits in length,
which will give rise to short membership tokens in ID-GAC ; another seemingly
attractive prospect.

9 Conclusion

In this paper, we proposed ID-GAC, an identity-based scheme for secure admis-
sion control in dynamic ad hoc groups along with a distributed membership revo-
cation mechanism based on the membership revocation lists. ID-GAC borrows
ideas from threshold secret sharing and ID-based cryptography. As demonstrated
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by extensive experimentation in both P2P and MANET settings, the proposed
scheme is far more efficient than the previously proposed solution, TS-DSA[11],
[12]. The measurement results and performance analysis further indicate that
ID-GAC is even more applicable in MANET devices where bandwidth and bat-
tery power are of prime concern.
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1 Introduction

Contemporary cryptography provides techniques for encoding messages so that
an unauthorized party cannot read or modify (without detection) a protected
message. However, in many practical situations we would like to prevent an
adversary not only from being able to read/modify messages, but also from
learning that a message has been transferred from one party to another. This
information might be of fundamental value for instance for business negotiations.
Hiding communication could be also highly desirable in private sphere and for
consumer protection. The problem is particularly acute in public networks, where
physical means of privacy protection have their limitations.

Despite their practical significance, technologies of anonymous communica-
tion and privacy enhancing still require a lot of attention. Although many pro-
posals have been already made, they are often immune only against certain types
of attacks. Even worse, rigid security analysis is usually missing – it is replaced
by case-by-case arguments, why simple or widely known attacks do not work. On
the other hand, in this area privacy guarantees are of an extraordinary value.
Simple intuitions might be misleading, for instance if an adversary with huge
resources applies some very sophisticated stochastic tools which we are not even
aware of. However, for many nice-looking protocols relatively simple attacks have
been found (as it has occured for [10]).

There are many protocols aimed for anonymous communication. Most of
them are based on one of two basic paradigms: mixes and onions :

Mix Servers. A mix [5] works as follows: a number of encoded messages enters
a mix, they are recoded cryptographically by the mix and leave it. The recoding
process guarantees that an external observer cannot link the incoming and the
outgoing messages.

Usually, the messages are processed by many mixes forming a network of
mixes (see for instance [9]). This provides more security, since some of the mixes
might be corrupted. Another point is that in a large system capacity of a mix
might be too low to process all messages simultaneously. In this case, many mixes
applied in parallel overcome the processing bottleneck.

Onions. An idea of mix servers is used for anonymous communication with
messages encoded as onions [15, 14, 17]. The main idea is that each message is
sent along a random path; the route of each message is determined by the sender
(and not by the network!), the nodes on the route are chosen independently at
random. The messages are encapsulated cryptographically in a structure resem-
bling an onion. Each layer contains the name of the next server on the path,
the kernel of an onion contains a ciphertext of the message transmitted. When
a node receives an onion it recodes the onion by peeling off one layer using its
private key. Encoding guarantees that only the node determined by the sender
may peel off and read the contents, which is the next node on the route and the
sub-onion to be sent there.
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Message Encoding. Traditionally, onions are encoded in a structure with
many encapsulation layers. For instance, a message c that has to be sent through
servers J1, J2, J3 is encoded as EJ1(J2, EJ2(J3, EJ3(c))), where EJi

(−) denotes
(probabilistic) encryption with a public key of Ji. In order to process such a mes-
sage J1 decrypts the message, finds the next destination J2 and a “sub-onion”
EJ2(J3, EJ3(c))) which has to be sent to J2. Then upon receiving this sub-onion
J2 behaves in the same way.

Recently, universal re-encryption has been proposed [12]. Such an asymmetric
encryption scheme has a remarkable property that one can re-encrypt a cipher-
text so that a new ciphertext of the same message is obtained. The key point
is that without the private decryption key one cannot derive any relationship
between a ciphertext and its re-encrypted version – that is, one cannot detect
that both ciphertexts are of the same plaintext or that they are encoded with the
same public key. An important point is that for re-encryption we do not need
the public key which was used to obtain the ciphertext. Let us remark that one
can construct digital signatures that can be universally re-encrypted as well.

Adversary Model. We consider adversaries that cannot break encoding
scheme, but can monitor the whole traffic. (A weaker model is considered in
[3], where the adversary can see only a constant fraction of communication.
Thanks to this modification security proofs of the onion protocol have been
found.) Obviously, if a single message enters a server, no encoding scheme can
hide the connection between a message that enters the server and the message
that leaves the server immediately afterwards. Hiding effect occurs when at least
two encoded messages are processed by a server at the same time. The key issue
for the solutions such as networks of mixes and onions is to determine appropri-
ate number of intermediate servers through which a message is to be processed
in order to hide the link between the origin and destination of each message.

Mobile Mixing. We consider the following simple process (we describe it in
terms of hobbits in order to escape some wrong intuitions coming from random
walks on graphs). Given a regular graph G with n nodes. There are k hobbits
that walk at random through G traversing one edge of G during one step; the
edge to be followed is chosen by a hobbit uniformly at random from the set of
outgoing edges of the current node. Each hobbit holds one ring. Among the rings
there are m magic rings, each of them is different. When two or more hobbits
meet at the same node they exchange their rings at random in the way that
cannot be traced by an adversary. The adversary can see where the hobbits are,
but cannot see which rings are they holding.

The goal of an adversary, who observes the hobbits is to determine the posi-
tions of the magic rings given their initial positions.

Anonymity Conditions. From the point of view of the adversary the mixing
process is described by a probability distribution for the location of the magic
rings (this distribution might be quite tedious to compute).

A naive approach to guarantee anonymity would be to show that the proba-
bilities for different locations of a single ring are almost uniform. However, this
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does not suffice: in such a case it is still possible that there are strong dependen-
cies between locations of rings, so that for instance revealing the position of one
ring betrays much information about other rings. For this reason it is necessary
to consider the probability distribution of locations of all magic rings and show
that this distribution conditioned on the traffic information is almost uniform.

For measuring how far a given distribution μ is from the uniform distribution,
we consider variation distance between μ and the uniform distribution. Recall
that the variation distance between probability distributions μ1, μ2 defined over
space X equals

dTV (μ1, μ2) =
∑
x∈X

|μ1(x)− μ2(x)| .

Another distance measures are considered in [3], among others also one based
on mutual information. Somewhat surprisingly, all these measures turn to be
equivalent to some extent. There have been also several weaker proposals in the
literature (e.g. [8]), but they may provide only a limited degree of privacy.

Previous Results. As far as we know, mobile mixing was considered only for
the case of a complete graph. Even then, the problem turns out to be hard. In
papers [15, 7] it was proved that after a polylogarithmic number of steps proba-
bility distribution of magic rings is close to uniform. However, it was necessary
to assume that m = n and that the routes are confined in an artificial way. The
execution is divided into logn phases, during phase i graph G is divided into n/2i

complete subgraphs, each of cardinality 2i, each subgraph of phase i contains
nodes of exactly two subgraphs of phase i − 1. The number of steps necessary
to achieve probability distribution of magic rings close to uniform distribution
is O(log2 n) [7].

There are recent results concerning this process in papers devoted to security
of the onion protocol [3, 13]. Anonymity is already guaranteed with high proba-
bility after O(logm) steps provided that an adversary may trace only a constant
fraction of the communication lines [13]. It is not required that the number of
hobbits equals n.

No reasonable bound on the number of steps is known for the case when
each hobbit holds a magic ring, G is a complete graph and the adversary mon-
itors whole traffic. At least from a technical point of view, this is a challenging
problem, since present proof techniques cannot cope with this case.

There is yet another line of research [2] for a different model of communica-
tion – “messengers” travel through a network and carry encoded messages that
can be read by servers passed by the messenger. These solutions are not suitable
for large scale or frequently changing networks, because each message is encoded
in a data of size O(n2), where n is the number of nodes in the whole network.
Delivery time in this model is proportional to the n.

New Results. We prove the following result (which we state here in a less
formal way, see Theorem 3 for a precise statement):
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Theorem 1. Let G be a n-node regular graph with mixing time τG (for a
definition of mixing time see Section 2). Assume that mobile mixing is exe-
cuted by m = Θ(n) hobbits and k magic rings, where k ≤ 1

2m. Then after
λ = Ω(τ3

G · log6 n · log k) steps the probability distribution of magic rings is close
to the uniform distribution.

We use graph mixing time as a crucial parameter in our estimation. This is
useful, since mixing time of graphs has been intensively studied in the litera-
ture [1].

The point is that for d-regular graphs created in a random way mixing time
is O(log n) with probability 1− o(1) for d ≥ 3. Let us also remark that assump-
tion about regularity of the graph G can be removed under certain conditions.
However, we skip these considerations, since our proof is quite technical anyway.

Our proof consists of two phases: first we consider mobile mixing with one
magic ring (Section 2). Then we use path coupling arguments to generalize it to
the general case (Section 3).

Applications. We mention here just three applications where mobile mixing is
an essential component.

Anonymity in RFID-Systems. RFID tag is a powerless, small and low-cost
device that may be activated by an external reader and communicates through
a radio channel. There have been proposals to use these devices as identity tags,
for instance on purchase items in supermarkets, library books, currency notes,
and identity cards. Introducing RFID-tags as identification tags on a massive
scale may bring many economical advantages. However, it has a dark side of
losing privacy: anyone in the range of the tag can communicate with it. This
makes it easy to trace the routes of the tags.

There has been a lot of concern about this problem (see for instance the story
http://www.spychips.com/metro/scandal-payback.html).

In order to cope with this problem, universal re-encryption scheme can be
used [12]. So in order to preserve privacy one can deploy a network of re-
encryption points for the tags appearing in their proximity. Re-encryption guar-
antees that an unauthorized party (one without an appropriate private key)
cannot link the tags before and after re-coding. Re-coding servers can be placed
at hot spots such as street crossings. Then the tags perform a kind of a random
walk on a graph, where the nodes of the graph denote re-encryption points.

As in the case of the onion protocol, effectiveness of the solution described
depends not only on unbreakability of universal re-encryption, but also on resis-
tance to traffic analysis of the underlying mobile mixing process.

Mobile Agents. One of major proposals how to use complex Web systems is
to leave some tasks to mobile agents that migrate through the Web and try to
collect information for the party that launched the agent. Even if it is a very ap-
pealing proposal for instance for information retrieval automation, implementing
agents brings new security challenges. The first problem are dangers for the
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host machine from malicious agents. The second one are privacy problems for
the owner of the agent.

In order to cope with the privacy problem we could encode information car-
ried by the agent. However, the next privacy threat is to reveal the owner of
the agent (for instance inspecting some specific stock exchange information in
the Web). Even if re-coding of an agent is executed at each host before forward-
ing the agent, and re-coding is unbreakable cryptographically, the observer may
perform traffic analysis. So one of the main questions here would be how effec-
tive is mixing of the agents, or in our terms, how fast mobile mixing protocol is
approaching an almost uniform distribution.

Distributed Time Stamping. Implementing time stamping services on a sin-
gle server is hard: one has to trust the server completely or the server has to
use linking techniques. In the latter case, detecting forgery is possible, but it is
painful and might occur too late. As a remedy, it has been proposed to fetch
time-stamps from k pseudorandom witnesses: these time-stamping servers are
determined from a hash value of the document to be time-stamped. However,
this approach has a privacy weakness: at the same time many request are sent
and time-stamping activity can be detected. Of course, one can make traffic
analysis harder by sending each request encoded in an onion.

One can reduce the number of messages and make traffic analysis harder
by implementing time-stamping by a single onion with a random route going
through the network and back to the sender [11]. It is possible to design encoding
so that each server processing an onion attaches an encrypted time-stamp to it.
This has the advantage that most of the servers on the onion route do not
know for whom they are issuing time-stamps, which makes the system more
dependable and resistant against denial of service against certain users. The key
point is that each hop on the route should have a small communication delay
(otherwise long gaps in time stamping process would occur). This motivates
considering connections that are described by a neighborhood graph rather than
a complete graph.

A protocol of this type still faces some privacy risks: information that some-
body is time-stamping a document should be protected from a party performing
a traffic analysis. However, if time-stamping is hidden in ordinary onion traffic
we have to do with a mobile mixing process.

2 On Hobbits and One Magic Ring

Consider mobile mixing process on a regular graph G with n nodes, m = Θ(n)
hobbits and one magic ring. There are no restrictions about the initial placement
of the hobbits (including Bilbo holding initially the only magic ring). For sim-
plicity we assume that m = n, but as long as m = Ω(n) the proof below applies
provided that we tune the constants accordingly. Also, for the sake of readability,
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in the estimations below we use somewhat arbitrary constants instead of general
expressions.

2.1 Probability Distributions

Location of the Magic Ring. Unless otherwise specified P is a random vari-
able. Let ρ(P ; i, t) denote the probability that after step t the ith hobbit has the
magic ring, provided that the locations of the hobbits are given by pattern P .

Our goal is to consider the behavior of probability distribution ρ(P ; i, t). The
random walk of hobbits and exchanges of the rings has the purpose of hiding
who has the magic ring. For an overwhelming majority of all patterns P we shall
estimate the time necessary so that an adversary observing a random walk of
the hobbits cannot say much about the location of the magic ring. In order to
state our result we need some more notation. Let

dH(P ; t) = 1
2

∑m
i=1 |ρ(P ; i, t)− 1

m | = maxW⊆[m]

∑
i∈W (ρ(P ; i, t)− 1

m )

and τH(P ) = mint {dH(P ; t) ≤ 0.1} . That is, for given routes of hobbits de-
scribed by P , number τH(P ) denotes the first moment t such that the devia-
tions of probabilities ρ(P ; i, t) from 1

m sum up to a small value. (Essentially, our
ultimate goal is to find a moment such that the bound is very small.)

Location of Hobbits. By p(i, j; t) we denote the probability that a hobbit who
starts to walk from the vertex i will arrive to vertex j at time t (the probability
is counted over all possible routes of the hobbit). Let

dG(i, t) = 1
2

∑n
j=1 |p(i, j; t)− 1

n | = maxW⊆[n]

∑
i∈W (p(i, j; t)− 1

n ) .

Let us recall that the mixing time τG for graph G is defined as

τG = min
t

max
i
{dG(i; t) ≤ 0.1} .

2.2 Key Technical Result

The key issue is that the values dH and dG concern stochastic processes of
different nature, so similarity of notation is a little bit misleading. Estimating
τH(P ) is very much different from estimating τG. The main technical result in
this section is the following theorem:

Theorem 2. If τG = no(1), then τH(P ) = O(τ3
G · log5 n) with probability at least

1− 1
n over the choices of P .

For the proof of Theorem 2, we shall use the fact that typically we cannot
have too many hobbits in one vertex.

Lemma 1. Let τ1 = τG · log n and τ2 = τ3
G · log5 n. Then the probability that at

some moment t, where τ1 ≤ t ≤ τ2, at least log n hobbits meet at some vertex of
G is o(1).
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Proof. Let dG(t) = maxi dG(i, t). It is well known and easy to derive (see also
the appendix) that

dG(s + t) ≤ 2dG(s) · dG(t) . (1)

So for t ≥ τG log n we have dG(t) ≤ 1
4n . Hence

1
2n ≤ p(i, j; t) ≤ 2

n for every i, j ≤ n. (2)

Consequently, the probability that at some moment t, τ1 ≤ t ≤ τ2, at least log n
hobbits meet at some vertex of G is bounded from above by

τ2 · n ·
∑m

k=log n

(
m
k

) (
2
n

)k ≤ n3
(

e
log n

)log n

= o(1) . 
�

Potential Function g. Now we return to the proof of Theorem 2. We consider
behavior of the following potential function

g(P ; t) =
∑m

i=1 ρ
2(P ; i, t) .

By Schwarz inequality, g(P ; t) is a non-increasing function of t. Furthermore, if a
difference |ρ(P ; i, t+1)−ρ(P ; i, t)| is large, then g(P ; t)−g(P ; t+1) is significant
as well. Namely, we have the following fact which can be easily deduced from
the “defective” Schwarz inequality (see [16]):

Lemma 2. Let a1, . . . , ak > 0 and μ = 1
k

∑k
i=1 ai. If |a1 − μ| ≥ ε, then∑k

i=1 a
2
i − kμ2 ≥ ε2 .

The next lemma is the most tricky point in our considerations:

Lemma 3. Let dH(P ; t0) ≥ 0.1 for a pattern P and t0 ≥ τ1. Then the expected
change of potential g after time τ1 is quite significant, namely

E[g(P ; t0)− g(P ; t0 + τ1 + 1)] ≥ Ω
(
g(P ; t0)/(τ2

G log3 n)
)
.

Proof. We define the following sets of hobbits based on probability of holding
the magic ring:

– set B of Baggins, which consists of all hobbits i for which ρ(P ; i, t0) ≥
1.01/m ,

– set F of Proudfeet1, which consists of all hobbits j for which ρ(P ; j, t0) ≤
1/m ,

– set T of all other hobbits, i.e., those for which 1/m < ρ(P ; j, t0) < 1.01/m .

It is easy to see that |F | ≥ 0.1 ·m , namely:

0.1 ≤ dH(P ; t0) = sup
W⊆[m]

∑
j∈W

(ρ(P ; j, t0)− 1
m ) =

∑
j∈F

( 1
m − ρ(P ; j, t0)) ≤ |F |/m .

1 Proudfoots?
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On the other hand

0.1 ≤ dH(P ; t0) =
∑
i∈B

(ρ(P ; i, t0)− 1
m ) +

∑
i∈T

(ρ(P ; i, t0)− 1
m )

≤
∑
i∈B

(ρ(P ; i, t0)− 1/m) + 0.01 ≤
∑
i∈B

ρ(P ; i, t0)− |B|/m + 0.01 .

So
∑

i∈B ρ(P ; i, t0) ≥ 0.09 + |B|/m.
Hence by Lemma 2 we get

∑
i∈B ρ2(P ; i, t0) ≥ |B| ·

(
0.09
|B| + 1

m

)2

≥ 0.18
m .

Since ∑
i∈F∪T ρ2(P ; i, t0) ≤ m ·

(
1.01
m

)2 ≤ 1.01/m ,

we finally obtain ∑
i∈B ρ2(P ; i, t0) ≥ 1

7 · g(P ; t0). (3)

Now we consider the configuration of the hobbits after τ1 steps. By inequal-
ity (2), the probability (counted over the choice of P ) that hobbits F will occupy
less than m

200 vertices of G is bounded from above by(
n

m/200

)
(0.01)|F | = o( 1

n2 ) ,

hence with high probability in time t0 + τ1 Proudfeet are placed at vertices W
of G, where |W | ≥ m/200.

Now let us construct disjoint sets Bi ⊆ B, Fi ⊆ F , and Di ⊆ B∪F recursively
in the following way. Set B0 = B, F0 = F , D0 = ∅. Take the Baggins b1 for which
the probability ρ(P ; b1, t0) is maximal. We consider the following cases:

Case 1: If ρ(P ; b1, t0 + τ1 + 1) ≤ 1
m + 1

2 · (ρ(P ; b1, t0)− 1
m ),

then take the first t1, 0 ≤ t1 ≤ τ1, for which

ρ(P ; b1, t0 + t1)− ρ(P ; b1, t0 + t1 + 1) ≥ 1
2τ1

(ρ(P ; b1, t0)− 1
m ) ,

put D1 := D0 ∪ {b1}, delete from B0 and F0 all the hobbits met by b1 at time
t0 + t1, and denote the sets obtained in this way by B1, F1, respectively.

Case 2: Now suppose that ρ(P ; b1, t0 + τ1 + 1) > 1
m + 1

2 · (ρ(P ; b1, t0)− 1
m ),

but at time t0 + τ1, the Baggins b1 meets a Proudfoot f1. Then,

ρ(P ; f1, t0 + τ1 + 1) = ρ(P ; b1, t0 + τ1 + 1) ≥ 1
m + 1

2 · (ρ(P ; b1, t0)− 1
m ) .

Take the first time t1, 0 ≤ t1 ≤ τ1, for which

ρ(P ; f1, t0 + t1 + 1)− ρ(P ; f1, t0 + t1) ≥ 1
2τ1

(ρ(P ; b1, t0)− 1
m ) ,

put D1 := D0 ∪ {f1}, delete from B0 \ {b1} and F0 \ {f1} all the hobbits f1 met
at time t0 + t1 and denote the sets obtained in this way by B1, F1, respectively.
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Case 3: If neither of the above two cases occurs, then do nothing, i.e., set
B1 := B0 \ {b1}, F1 := F0, D1 := D0.

Then take the element of b2 ∈ B1 which maximizes ρ(P ; b2, t0) and repeat
the procedure until Bj becomes empty.

Note that, due to (2), a given Baggins visits a vertex from W with probability
at least δ ≥ 1

400 . Hence, in particular, the probability that |D1| = 1 is at least δ.
So, by Lemma 2, the expected change of g due to the exchange of rings of b1 or
f1 which took place at time t1 is at least

δ
4τ2

1
·
(
ρ(P ; b1, t0)− 1

m

)2 ≥ δ
4τ2

1
· ( 1

101 · ρ(P ; b1, t0))2 = Ω( 1
τ2
1
· ρ2(P ; b1, t0))

(for the first inequality recall that ρ(P ; b1, t0) > 1.01
m ). So for the total expected

change of g between t0 and t0 + τ1 + 1 we get for some constant ψ:

E[g(P ; t0)−g(P ; t0 +τ1+1)]≥ 1
log n

ψ
τ2
1

∑
i∈Bρ2(P ; i, t0)≥ ψ

7
1

τ2
G log3 n

g(P ; t0) (4)

(factor 1
log n is due to the fact that at each step of our considerations we may

remove up to logn Baggins from the set Bi). Inequality (4) has been derived
under assumption that not too many hobbits meet in one node. Since probability
of the opposite event is o(1) and the values of g do not increase, we have

E[g(P ; t0 + τ1 + 1)] ≤ (1− 1
w ) · g(P ; t0) (5)

for some w = Θ(τ2
G log3 n). This concludes the proof of Lemma 3. 
�

Armed with the result of Lemma 3 we return to the proof of Theorem 2. Let
ρ(t) = t0 + t(τ1 + 1). By Xt we denote random variable g(P ; ρ(t)). Let St be the
event that dH(P ) > 0.1 after step ρ(t). We say that transition from step ρ(t) to
step ρ(t + 1) has type A, if Pr[St+1|St] ≤ 1− 1

2w . Otherwise it has type B. Let
us notice that in the latter case

E[Xt+1|Si+1] ≤ (1− 1
2w−1 ) · E[Xi|Si] .

Indeed, it follows from the following inequality:

E[Xt+1|Si+1]·(1− 1
2w )≤E[Xt+1|Si+1]·Pr[St+1|St]≤E[Xt+1|St]≤(1− 1

w )E[Xi|Si].

Since value of g may never drop below 1/m (the minimum value is obtained when
ρ is constant and equals 1

m ), the number of transitions of type B leading to event
ST cannot exceed some TA = O(w logm). So there are at least TA transitions of
type A when reaching event S2TA

. Consequently, Pr[S2TA
] < (1− 1

2w )TA < 1
m .

�

After finishing the long and technical proof of Theorem 2 let us observe that
we can easily derive a strong corollary concerning the behavior of dH . Namely,
analogously to (1), one can show easily that

dH(P, s + t) ≤ 2dH(P, s) · dH(P,′ t) ,

where P ′ is the pattern P with the data for the first s steps removed. So, by
Theorem 2:
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Corollary 1. If τG = no(1), then

dH(P, t) ≤ 1
n2 for t ≥ tH , where tH = Θ(τ3

G · log6 n)

with probability at least 1− 1
n2 (counted over the choices of P ).

3 Many Magic Rings and Rapid Mixing

Process Definition. Let m ≤ n/2. Now we consider a process such as in
Section 2 but we assume that the number of magic rings is k instead of 1 and
the number of hobbits is m = Θ(n).

We consider the assignment of rings to hobbits conditioned upon the event
that the movements of hobbits are random but known. If P describes these
movements, then let LP stand for such a process. A configuration of LP can
be described by a mapping from the set of k magic rings into m hobbit po-
sitions predetermined for a given moment. Obviously, for each P the uniform
distribution is a stationary distribution.

Path Coupling. We are interested how fast LP approaches the uniform distri-
bution for a random pattern P describing λ steps. For this purpose we use path
coupling technique of Bubley and Dyer [4], and in fact a delayed version of path
coupling [6].

For path coupling proof we need a distance function between configurations.
Let Δ(L1, L2) be the minimum number of transpositions necessary to convert
configuration L1 to L2, where by transposition we mean exchanging positions of
a magic ring and an ordinary ring (the rings need not to be at the same node
of G for this exchange). Obviously, Δ is a metric (over all configurations where
the hobbits stay at the same nodes) with Δ(L1, L2) ≤ 2k. Let Γ denote the
set of pairs of configurations that are at distance 1 according to metric Δ. Path
coupling requires that for every pair (L,L�) of configurations with Δ(L,L�) = r,
there exist a “path” L = Λ0, Λ1, . . . , Λr = L� such that (Λi−1, Λi) ∈ Γ for
0 ≤ i < r. This condition obviously holds in our case.

In a path coupling proof we consider two configurations (L,L�) ∈ Γ and
define a pair of stochastic processes (L′P

t ,L�P
t )t∈N, where (L,L�) is the initial

state of the process, and processes L′P , L�P considered separately have the same
transition functions as LP . However, we shall define some dependencies between
L′P and L�P . According to delayed path coupling, the dependence may be built
when considering a block of steps as a whole.

Let μ(LP
t ) denote probability distribution of LP

t and μ(IP
t ) uniform distri-

bution on the same set of configurations.

Lemma 4 (Delayed Path Coupling Lemma). Assume that the process
(L′P

t ,L�P
t )t∈N can be defined such that for some β < 1 and every t
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E[Δ(L′P
t+τH

,L�P
t+τH

)] ≤ β (6)

for any pair of states of L′P
t and L�P

t from Γ . Then, after

τH ·
⌈
ln(k · ε−1)/ lnβ−1

⌉
steps of LP variation distance between the stationary (uniform) distribution and
distribution of LP is lower than ε.

Convergence Proof. Now we apply path coupling to LP . Let Y1, Y2 be two
configurations at step t · τH that belong to Γ .

Now we assume that the random walk of hobbits is described by some pattern
P . We may assume that P has the properties mentioned in Corollary 1, since
almost all patterns P have this property. Let R be the only magic ring with
different owner in configurations Y1, Y2. For the purpose of defining appropriate
coupling let us fix the movements of all magic rings except R – these movements
are the same for both processes. For a while we disregard all hobbits holding
magic rings other than R. So we are left with m− k + 1 ≥ m/2 hobbits. Let us
consider location of ring R when we start Y1. Let Z1, . . . , Zw, for w ≤ m−k+1,
be all possible configurations at step (t+1)·τH that agree with P and for that the
positions of all magic rings except R are as revealed. Let p(j)

i denote probability
of reaching Zi from configuration Yj . Let p̄i = min(p(1)

i , p
(2)
i ) and p̄ =

∑
i≤w p̄i.

Then by Corollary 1

1− p̄ =
∑

i≤w( 1
w − p̄i) ≤

∑
i≤w | 1w − p̄i|

≤
∑

i≤w | 1w − p
(1)
i |+

∑
i≤w | 1w − p

(2)
i | ≤ 2

m2

Now we establish dependencies between both processes by defining the move-
ments of R. We may consider the first process as a process which chooses the
position of R after τH steps in the following way:
step A: with probability p̄ it goes to step B, otherwise it goes to step C,
step B: for i ≤ w with probability p̄i/p̄ it changes its configuration to Zi,
step C: for i ≤ w with probability (p(1)

i − p̄i)/(1 − p̄) it goes to configuration
Zi.

Obviously, in this way configuration Zi is reached with probability p
(1)
i , as

required. Then we may define the transitions of the second process:

– if case B has occurred for the first process, then the second process reaches
the same configuration,

– if case C has occurred, then the second process changes its configuration to
Zi with probability (p(2)

i − p̄i)/(1− p̄).

Obviously, in this way the second process reaches configuration Zi with prob-
ability p

(2)
i for i ≤ w, as required. So it is defined correctly as a copy of LLP .

It follows directly from the construction that with probability at least p̄ both
processes reach the same configuration. We conclude that due to path coupling
lemma we have:



392 M. Gogolewski, M. Kuty�lowski, and T. �Luczak

Theorem 3. With high probability (over a random variable P )

d(μ(LP
t ), μ(IP

t )) ≤ 1
n2

for t = Ω(τ3
G · log6 n · log k).

4 Final Remarks and Conclusions

We have estimated how long the mobile mixing process must be so that traffic
analysis cannot provide much information. As often in this field, proving privacy
properties is technically quite involved. Our estimation is very rough; the main
goal was to show a polylogarithmic bound. There is a lot of room to optimize
the bound through a more involved and/or more detailed analysis.

We did some numerical experiments for certain simple graphs. These results
indicate that coefficient dH might converge much faster than it is stated in
Theorem 3.

For practical applications, analysis should be performed for special classes
of graphs – in the case of a proposed universal re-encryption of RFID tags
this would not only involve analysis of a given network of re-encryption points,
but also indications about necessary density of these points and their locations.
Certainly, this is a new and technically challenging question.
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Appendix

We prove here inequality (1). Let us use the following notation:

p(i, u; s) = 1
n + εi,u and p(u, j; t) = 1

n + δu,j .

Obviously,
p(i, j; s + t) =

∑
u≤n

p(i, u; s) · p(u, j; t) .

Hence,

2dG(i, s + t) =
∑

j≤n

∣∣∣∑u≤n( 1
n + εi,u) · ( 1

n + δu,j)− 1
n

∣∣∣
=

∑
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=

∑
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∣∣∣ ≤∑
j≤n

∑
u≤n |εi,u| · |δu,j |
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∑

u≤n

∑
j≤n |εi,u| · |δu,j | =

∑
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Abstract. Location-aware computing is widely discussed to be one at-
tractor of the future ubiquitous networks for intelligent home and telem-
atics services. Apart from technical difficulties in providing accurate po-
sition information there is also a lack of a clearly defined framework
how to create innovative and secure services using location information.
In this paper, we identify QoS, interworking and security problems in
location-aware computing. We propose a number of concepts and infras-
tructures for location-aware security services including micro and macro
mobility management in ubiquitous home networks and heterogeneous
wireless networks. We further explain how the proposed approach can be
applied to seamless secure interworking among wireless LANs and 3G,
4G cellular systems. Our approach might be helpful in the discussion for
the frameworks especially highlighting evolutionary steps for the next
ubiquitous networks.
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1 Introduction

The concept of context awareness, sensing and reacting to dynamic environments
and activities is in the heart of ubiquitous computing. Context information gath-
ered from various sensors, networks, devices, user profiles, and other sources can

� This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the Chung-Ang University HNRC(Home Network Research
Center)-ITRC support program supervised by the IITA(Institute of Information
Technology Assessment).

�� Corresponding author.

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 394–406, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Location-Aware Secure Interworking Architecture 395

enhance mobile applications’ usability by letting them adapt to conditions that
directly affect their operation [1].

Location information is a fundamental element of context. Determining the
location of people and objects has been the focus of much research in ubiquitous
computing for the future intelligent home and telematics services . Many loca-
tion sensing technologies have been devised, resulting in systems which perform
sensing using diverse physical media, such as ultrasonic, ultrawideband radio,
visible light, RFID, infrared, bluetooth, GPS, wireless LANs (WLAN), and mo-
bile phones. Much research in the past decade has focused on these location-
sensing technologies, location-aware application support, and location-based ap-
plications. With numerous factors driving deployment of sensing technologies,
location-aware computing may soon become a part of everyday life [2]. Exam-
ples of location-aware application include intelligent home services with person
tracking, military training, asset tracking, conference assistants, environmen-
tal resource discovery and control, support systems for the elderly, tour guides,
augmented reality, and mobile desktop control. Each demands different levels
of service, for example in terms of location accuracy and update rate, infras-
tructure cost, deployment difficulty, robustness, and capacity for security and
privacy guarantees.

Although studies have been made on location accuracy and robustness, lit-
tle attention has been given to location interoperability. The widest existing
deployments are based on GPS, which is particularly suited for outdoor ap-
plications. Although GPS offers near-worldwide coverage, its performance de-
grades in indoor environments, especially at home, in building and in high-
rise urban areas. GPS receivers have a relatively long start-up time and high
cost. As intentional interferences, GPS suffers from signal jamming attack and
spoofing attack. Therefore we need fine-grained as well as robust positioning
system.

Apart from technical difficulties in providing accurate position information
there is also a lack of a clearly defined framework how to create innovative and
security services by using location information. Location-based services (LBS)
are emerging as the next killer application in personal wireless devices, but there
are few safeguards on location privacy. In fact, the demand for improved public
safety is pushing regulation in the opposite direction [3].

For providing a foundation of the flexibility and the interoperability of LBS,
there has been a recent focus on location-aware platforms, which link data-
gathering systems and the data-consuming applications in a flexible manner.
Such work includes location representation, sensor fusion to combine location
data from many sources, and software frameworks supporting the distributed na-
ture of location-aware computing. Such abstractions are essential for the interop-
erability, usability and development of location-aware systems and
applications.

To meet these various demands of location-aware services in the future wire-
less networks, this paper focused mainly on how security can be substantially
improved through a new form of authentication based on location-aware archi-
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tecture. First, we identify these problems of location-aware computing related to
QoS, interworking and security. For the seamless QoS support of location-aware
services, we introduce fine-grained hybrid positioning method as a network based
approach, using cooperations of GPS, 3G systems and wireless LANs with the
enhanced location accuracy and robustness.

As an abstraction of location-aware model, we designed LBS Broker that
performs location-aware authentication for fast secure roaming. Carefully man-
aged location information could be used as authentication information, such as
who you are (biometrics), what you have (token, smart tag, certificate, smart
card) and what you know (ID, password). Location information can be com-
bined to enforce the authenticity of a mobile user by validating location history
of the user. In wireless LANs, previous security association with old AP could
enforces secure roaming with a new AP by proper validation of location infor-
mation. Moreover, LBS Broker plays key role in protecting user’s privacy from
unauthorized LBS service providers or malicious users.

Finally we propose the infrastructure for location-aware security services in
the heterogeneous wireless networks including micro and macro mobility man-
agement in ubiquitous home networks and heterogeneous wireless networks for
global personal connectivity aspects. We further explain how the proposed ap-
proach can be applied to seamless secure interworking of wireless LANs and 3G,
4G cellular systems with evaluation of our testbed.

The rest of this paper is organized as follow. Section 2 gives related works
about location-aware computing in wireless networks. Section 3 identifies the
problems and requirements of location-aware security computing. In section 4
we introduce the fine-grained hybrid positioning method. In section 5 we propose
the location-aware authentication for fast roaming with LBS Broker. Section 6
suggests our location-aware security architecture for 3G/WLAN interworking.
Section 7 shows some of location-aware service scenarios applying the proposed
architecture. In section 8, we discuss evaluation of our location-aware secure
roaming. Finally, we conclude in Section 9.

2 Related Works

Location is one of the key contexts that determine which types of devices are
available and how communication should be conducted to fit the user’s needs. In
the future of ubiquitous home networks and heterogeneous wireless networks,
location information will be available from various types of network includ-
ing sensor networks, WLAN, 3G including Universal Mobile Telecommunica-
tions System (UMTS) and code-division multiple access 2000 (CDMA2000),
Global System for Mobile Communications (GSM) evolutions such as General
Packet Radio Service (GPRS) and Enhanced Data for GSM Evolution (EDGE)
[4]. According to development of WLAN, 3G and 4G networks with the en-
hanced accuracy of the positioning technology [5], many location-based ser-
vices with efficiency and reliability will appear. Toward seamless security of
the heterogeneous networks, fundamental features are required, such as smooth
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roaming techniques, QoS guarantee, data security, user authentication and
authorization.

For smooth roaming, several studies have been made on a fast handover
management in IPv6 Networks [6] and an integrated management that com-
bines the strengths of Mobile IP Location Registers (MIP-LR) and Session Ini-
tiation Protocol (SIP) [7]. In the area of location security and privacy, there
ware frameworks of a cryptographic approach of an authorized-anonymous-ID-
based scheme [8] and algorithms for location discloser-control [9] and based on
frequently changing pseudonyms [10]. But there are challenging issues with re-
gard to location-aware seamless secure roaming as reconfigurable and adaptable
features are needed in the future wireless networks. This paper concentrates
mainly on location-aware schemes with agent technologies to enforcing security
for seamless interworking of ubiquitous networks.

3 Motivations and Requirements

Completely new concepts and features will emerge for location-aware computing
in ubiquitous environment where seamless interworking of self-organizing sensor
networks, WLAN, 3G and 4G networks are possible. Location-aware computing
includes many issues and requirements related to the user experience, privacy
preservation, QoS guarantee, and security in the determination and transfer of
personal data.

The following requirements should be considered to fulfill the promising ser-
vices of the future ubiquitous networks.

– Availability and Survivability: The positioning technology like GPS is a single
point of failure. If a single scheme with GPS is unavailable, location infor-
mation for continuous location tracking services will not be served correctly
to subscribers of the services.

– Global Secure Roaming : It will be a very common situation that the mobile
node (MN) is served from foreign domain without any pre-established user
authentication or authorization.

– System Overhead : Complexity of secure roaming and reauthentication pro-
cess requires more computational power of the mobile device that usually
has limited power and system resources.

– Network Overhead : There is also signaling overhead from secure roaming
and reauthentication requests and replies.

– Service delay or Handoff latency : In addition to the latency related to handoff
at the physical and link layers, secure roaming or reauthentication could add
significant latency.

– Privacy and Security : It may cause an invasion of privacy by unwanted
disclosure and commercial use of location information. Security is also a
concern for wireless networks because connections passing over the air can
be easily monitored.

– Granularity : The effectiveness of location-aware applications depends not
only on the user population but also on the location sensing system’s update
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rate and spatial resolution. Several applications would not work at all if they
got updates only on a scale of hours and kilometers, as opposed to seconds
and meters.

The first major requirement for our secure mobility management scheme is that
it handles mobility without reauthentication overhead. A second requirement is
that continuous location tracking with real-time traffic must be handled with
special care. For example, handoff latency is especially disruptive to continu-
ous location tracking, even if most of the reauthentication during the handoff
or roaming in different networks are not lost but delayed and eventually deliv-
ered to a user. A third requirement is that it must be survivable and robust in
dynamically auto-configured ubiquitous networks.

4 Fine-Grained Location Positioning Systems

Local positioning will be one of the most exciting features of the next generation
of wireless systems. Positioning systems fall into one of three categories. In the
network-based approach, infrastructure receivers such as cell towers track cellular
handsets or other mobile transmitting units. In the networked-assisted approach,
location determination occurs in the network with the mobile device’s active.
In the client-based approach, mobile devices autonomously compute their own
position, as is the case with a GPS unit. The widest existing deployments are
based on GPS, which is particularly suited for outdoor applications. However,
GPS suffers from signal jamming attack and spoofing attack as well as indoor
usage. Therefore we need fine-grained as well as robust positioning system.

For ensuring consistent QoS support in location-aware services, we intro-
duce fine-grained hybrid positioning method as a network based approach, using
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GPS, 3G cellular system and wireless LAN for enhancing location accuracy and
robustness. Our positioning method also manages three-dimensional position in-
formation in the particular environments such as at home, in the office and the
downtown area surrounded by high rise buildings. The positioning method could
extend its coverage with sensor networks. If GPS is unavailable, the mobile device
can interrogate a physically fixed reference sensor tag at its location to initialize
the mobile device’s position. Fig. 1 shows the hybrid-positioning method us-
ing GPS and wireless LAN for providing fine-grained three dimensional location
information. Fig. 2 shows the module for getting 3D location information.

Due to the varying types of measurements from different sensors and the
varying requirements of different applications, no dominant representation for
location has emerged. But XML based representation will be the most interop-
erable method. We propose the scheme that Location Server converts 3D infor-
mation to interoperable XML format for LBS Web services. The converted XML
data is stored in the location DB of the Location Server for use of other LBS
services. The Hybrid method mixing various networks helps mobile users gain
more accurate location information and efficient LBS services. LBS with Web
services will also become more effective by converting location data to XML
under certain rules.

5 Location-Aware Secure Handoff

Location information can be combined to enforce the authenticity of a user by
validating location history of the user. As an example in wireless LANs, previous
security association with old AP enforces secure roaming with a new AP. In this
section, we focus on how security can be substantially improved through a new
form of authentication based on location-aware architecture. We also propose a
LBS Broker using location information for secure interworking.
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5.1 Location-Aware Handoff

One of the difficulties in providing secure, seamless roaming service is how to
promptly and securely exchange authentication information or security creden-
tials during handoff. The exchange of authentication information in advance by
tracking and predicting user’s direction, so called pre-warming may helpful to
simplify the authentication procedure during handoff and to support seamless
roaming service [11]. For example, if the MN A in Fig. 3 is on the subway, it will
obviously handoff from AP1 to AP3, even if AP2 is better reachable for a short
period of time. Therefore, the authentication information of the MN needs to
be delivered from AP1 to AP3 correctly in advance for seamless roaming before
the handoff procedure.

5.2 Determining Paging Area

Handoff procedure using location information can be effectively completed if the
user movements can be predicted accurately in a ubiquitous network environ-
ment. If the MN A in Fig. 3 is on a subway, its route may be constrained to areas
along the one way track. In this case, location information for the area outside
of the track is not necessary. In the case of the MN B, its paging area will have
to include areas around the subway station with areas along the track. In the
case of a pedestrian, its path may be effectively predicted by the history based
location algorithms that has a record of the previous user movements and take
into account the respective probability of movements together with factors such
as the direction and the speed [12]. The concept of paging area can enhance the
efficiency of the system from gathering location information only in the paging
areas.
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6 Location-Aware Security Architecture for 3GPP and
WLAN Interworking

In this section, we propose our location-aware security architecture for ubiquitous
networks. The architecture is designed to meet the location-aware computing re-
quirements in section 3. First we describe the basic functionalities are described
and we will show some practical scenarios in which location-aware fast roaming
are provided while preserving user’s location security and privacy. Fig. 4 shows
proposed location-aware privacy and security enhanced interworking architec-
ture.
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6.1 System Assumptions and Key Figures

– In the LBS platform of our architecture location information are managed
by XML based protocol. Mobile Location Protocol (MLP) [13] is used to
initiate, request and response of location information. This is a reasonable
assumption to make, given the momentum XML based protocols have gained
in recent years.

– Location server and mobile device support our fine-grained positioning meth-
ods using heterogeneous access networks in ubiquitous environments.



402 M. Lee et al.

– Interdomain authentication, authorization, and accounting (AAA) are han-
dled together with LBS Broker and AAA server.

– When a user moves into a foreign (different) network, it needs to obtain a
reauthentication process in that network and LBS Broker and AAA take
charge of reauthentication process.

– LBS Broker includes location-aware authenticator for fast secure roaming
using the concepts of direction of user and pre-warming zone for reauthen-
tication.

– LBS Broker enforce fast reauthentication as well as provide vertical handoff
for ubiquitous network where loosely coupled and highly resource-constrained
environments.

6.2 LBS Broker with Location-Aware Authentication

Sensed locations are useless without a location authority that gives a space of
possible locations and can respond to queries on distances, routes, and proximity.
To securely provide the functionalities of location authority we present LBS
Broker. LBS broker plays key roles in location-aware authentication for fast
roaming and also in protecting user’s privacy from unauthorized LBS service
provider or malicious users.

LBS Broker provides an abstraction for location-aware or location based ser-
vices application. LBS Broker model could separate the security system from
the location-based application (i.e., the security functionality should be hidden
from the application layer). Supporting abstraction has a number of advantages.
Firstly, it allows “security unaware” applications to be secured. This means that
applications do not need to know much about the security features, because all
policies are enforced below the applications by LBS Broker. In particular, legacy
location-based applications can be automatically secured after they have been
developed without modifications, and application development can be segregated
from the security policy, enforcement, and administration. As an abstraction for
location-aware computing, LBS Broker supports Web Services for interoperabil-
ity of LBS. And it also provides Web Services Security Specification like XML
Signature, XML Encryption and Security Assertion Markup Language (SAML).
LBS Broker act as a Policy Enforcement Point (PEP) that checks permission
with the LBS policy authority, the Policy Decision Point (PDP) by requesting
SAML assertion before making decision and releasing the secured location data
to the LBS service providers.

7 Location-Aware Access Control Model

In the location-aware secure roaming procedure, the privacy and security poli-
cies should be associated with an access control mechanism which refers to the
characteristics of implementation and enforcement. Four different types of ac-
cess control policies have been designed in literature. They include Mandatory
Access Control (MAC), Discretionary Access Control (DAC), Double Discre-
tionary Access Control (DDAC) and Role Based Access Control (RBAC). Among
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these, RBAC [14] is the most extensible type of access control policy for var-
ious location-aware services. Fig. 5 shows the proposed RBAC model on our
architecture.

8 Evaluation of Location-Aware Secure Roaming

8.1 The Testbed

We evaluate our location-aware secure roaming procedure over wireless LAN for
micro-mobility. We also consider macro-mobility in our scheme with some of
measurement parameters of interaction with CDMA, GPRS and Wireless LAN.
We consider a single local correspondent communicating with our MNs. We focus
on IEEE 802.11b and IEEE 802.11i [15] in order to have an overview of the real
MN possibilities over wireless LANs. Table 1 summarizes the base parameter
settings underlying the performance experiments. LBS Broker and LBS Policy
Authority are running on server machines of Pentium III 933 MHz CPUs with
Solaris 8 operating system (O/S). AAA Server is running on a server of Pentium
III 800 MHz with Linux O/S and the modified FreeRADIUS library for RADIUS
functionality. APs are working on a Pentium III 500 MHz machines with Linux
O/S and MNs are running Pentium III 500 MHz machines with WindowsXP O/S
and Lucent Orinoco 802.11b wireless LANs cards. The cryptographic library is
OpenSSL 0.9.7a, and SAML Library is OpenSAML 0.9.1. Data size is 1KB in
digital signature.
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Table 1. Base parameters of the Testbed

Node Simulation parameter Remark Value

MN Token Request RSA SHA-1 signature
sign(512bits)

5.5 ms

LBS Broker Signature verification RSA SHA-1 signature
verify(512bits)

0.1 ms

LBS Broker SCVP(OCSP) Request RSA SHA-1 signature
sign(1024bits)

7.4 ms

XKMS
with PKI

X.509 Certificate validation Validate user certificate 30.3 ms

LBS Broker OCSP Response validation RSA SHA-1 signature
verify(1024bits)

0.4 ms

LBS Broker SAML Authorization Request XML Parsing and RSA signature
sign(1024bits)

27.4 ms

LBS Policy
Authority

SAML Authorization Response XML Parsing and RSA SHA-1
signature verify(1024bits)

20.4 ms

LBS Policy
Authority

SAML Authentication
Token generation

3DES Symmetric key
encryption

7.702 MB/s

LBS Broker Token Response with
Location information

RSA encryption(512bits) 31.201 KB/s

LBS SP Decrypt Token Response with
Location Update Response

RSA decryption(512bits) 8.517 KB/s

MN-AAA 802.1X full authentication
(EAP-TLS)

Average delay 1600ms

AP 802.11 scan (active) Average latency 40∼ 300ms
AP 802.11 reassociation(IAPP) Average latency 40ms
MN-AP Fast Handoff

(4-way handshake only)
Average latency 60ms

LBS Broker Location history request
to Location Server

Request location history 20∼100ms

LBS Broker Location-aware authentication Validation of Location history 80∼100ms
802.11/CDMA TCP parameter adjustment Average delay 5000ms
802.11/GPRS TCP parameter adjustment Average delay 20000ms
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8.2 Analysis

For micro-mobility, the averages of our measurements in roaming between wireless
LANs are shown in Fig. 6. For macro-mobility, the averages measurements in the
roaming between wireless LANs and CDMA, wireless LANs and GPRS are shown
in Fig. 7. The solid curves represent the measurements without our location-aware
scheme and the dotted curves represent our location-aware case. We notice an im-
portant point between the existing roaming case and the location-aware roaming
case. When the moving MNs are increasing, our location-aware scheme does not
create much burden on the roaming as to selection of 802.1X authentication meth-
ods. In Fig. 6, our location-aware scheme with EAP-TTLS CHAP shows almost
the same latency of the roaming without location-aware scheme with EAP-TLS.
There are trade-off issues in selection of authentication methods. We should also
consider trade-off among QoS of location-aware services with location update pe-
riod and location precision, security and privacy policy, protection of location in-
formation. When more security features are introduced into the network, there are
the ever-increasing computation, communication, and management overhead. In
fact, both dimensions of security strength and network performance are equally
important, and achieving a good trade-off between two extremes is the one of the
fundamental challenges in security design for location-aware computing. In this
context, our simulation results could be useful to provide guidelines as to how the
security level is set to meet the user’ needs.

9 Conclusions

In this paper, we analyze QoS, interworking and security issues in location-aware
computing and give our view on the future prospects of ubiquitous networks. We
introduce the different concepts of location-aware security and propose the solu-
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tions with several new and existing systems and applications. Our architecture
integrates the location-aware authentication scheme for macro and micro mobil-
ity with the fine-grained positioning and LBS Broker with AAA. This integrated
scheme could provide the desired security features and fulfill the requirements
for survivable wireless networks. In the future work, we are going to evaluate our
testbed in real world prototypes that collect outdoor movement traces through
GPS and 3G cellular systems and indoor movement trace at home through
WLANs and sensor networks with the pre-warming authentication mechanism.
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Abstract. Anomaly detection, detection of deviations from what is con-
sidered normal, is an important complement to misuse detection based
on attack signatures. Anomaly detection in real-time places hard re-
quirements on the algorithms used, making many proposed data mining
techniques less suitable. ADWICE (Anomaly Detection With fast Incre-
mental Clustering) uses the first phase of the existing BIRCH clustering
framework to implement fast, scalable and adaptive anomaly detection.
We extend the original clustering algorithm and apply the resulting de-
tection mechanism for analysis of data from IP networks. The perfor-
mance is demonstrated on the KDD data set as well as on data from a
test network at a telecom company. Our experiments show a good de-
tection quality (95 %) and acceptable false positives rate (2.8 %) consid-
ering the online, real-time characteristics of the algorithm. The number
of alarms is then further reduced by application of the aggregation tech-
niques implemented in the Safeguard architecture.

Keywords: Intrusion Detection, Anomaly Detection, Adaptability, Real-
time, Clustering.

1 Introduction

The threats to computer-based systems on which we are all dependent are ever
increasing, thereby increasing the need for technology to handle those threats.
One study[1] estimates that the number of intrusion attempts over the entire
Internet is in the order of 25 billion each day and increasing. McHugh[2] claims
that the attacks are getting more and more sophisticated while they get more
automated and thus the skills needed to launch them are reduced. Intrusion De-
tection Systems (IDS) attempt to respond to this trend by applying knowledge-
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based techniques (typically realised as signature-based misuse detection), or
behaviour-based techniques (e.g. by applying machine learning for detection of
anomalies).

Due to increasing complexity of the intrusion detection task, use of many
IDS sensors to increase coverage and the need for improved usability of intrusion
detection, a recent trend is alert or event correlation[3]. Correlation combines
information from multiple sources to improve information quality. By correla-
tion the strength of different types of detection schemes may be combined, and
weaknesses compensated for.

The main detection scheme of most commercial intrusion detection systems is
misuse detection, where known bad behaviour (attacks) are encoded into signa-
tures. Misuse detection can only detect attacks that are well known and for which
signatures have been written. In anomaly detection normal (good) behaviour of
users or the protected system is modelled, often using machine learning or data
mining techniques. During detection new data is matched against the normality
model, and deviations are marked as anomalies. Since no knowledge of attacks is
needed to train the normality model, anomaly detection may detect previously
unknown attacks.

Anomaly detection still faces many challenges, where one of the most impor-
tant is the relatively high rate of false alarms (false positives). We argue that
the usefulness of anomaly detection is increased if combined with further aggre-
gation, correlation and analysis of alarms[4], thereby minimizing the number of
false alarms propagated to the administrator and helping to further diagnose the
anomaly. In this paper we explain the role of anomaly detection in a distributed
architecture for agents that has been developed within the European Safeguard
project[5].

We apply clustering as the technique for training of the normality model,
where similar data points are grouped together into clusters using a distance
function. Clustering is suitable for anomaly detection, since no knowledge of
the attack classes is needed whilst training. Contrast this to other learning
approaches, e.g. classification, where the classification algorithm needs to be
presented with both normal and known attack data to be able to separate
those classes during detection. Our approach to anomaly detection, ADWICE
(Anomaly Detection With fast Incremental Clustering), is an adaptive scheme
based on the BIRCH clustering algorithm[6]. BIRCH has previously been used
in applications such as web mining of user sessions on web-pages[7] but to
our knowledge there has previously been no extensions of the algorithm for
intrusion detection. We proceed by comparing our work with related research
and point out the advantages of ADWICE. In section 3 we present the Safe-
guard agent architecture where the clustering based anomaly detection fits in.
In section 4 we describe the anomaly detection algorithm. Evaluation of the
algorithms is presented in section 5 followed by a concluding discussion in
section 6.
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2 Motivation

2.1 IDS Data Problems and Dependencies

One fundamental problem of intrusion detection research is the limited avail-
ability of good data to be used for evaluation. Producing intrusion detection
data is a labour intensive and complex task involving generation of normal sys-
tem data as well as attacks, and labelling the data to make evaluation pos-
sible. If a real network is used, the problem of producing good normal data
is reduced, but then the data may be too sensitive to be released in
public.

For learning based methods, good data is not only necessary for evaluation
and testing, but also for training. Thus applying a learning based method in the
real world, puts even harder requirements on the data. The data used for train-
ing need to be representative to the network where the learning based method
will be applied, possibly requiring generation of new data for each deployment.
Classification based methods[8, 9], or supervised learning, require training data
that contains normal data as well as good representatives of those attacks that
should be detected to be able to separate attacks from normality. Complete cov-
erage of even known and recent attacks would be a daunting task indeed due to
the abundance of attacks encountered globally. Even worse, the attacks in the
training data set need to be labelled with the attack class or classes.

Clustering, or unsupervised learning, has attracted some interest[10, 11, 12,
13] in the context of intrusion detection. The interesting feature of clustering
is the possibility to learn without knowledge of attack classes, thereby reducing
training data requirement, and possibly making clustering based techniques more
viable than classification-based techniques in a real world setting. There exist at
least two approaches.

When doing unsupervised anomaly detection a model based on clusters of
data is trained using unlabeled data, normal as well as attacks. The assumption
is that the relative amount of attacks in the training data is very small com-
pared to normal data, a reasonable assumption that may or may not hold in the
real world context for which it is applied. If this assumption holds, anomalies
and attacks may be detected based on cluster sizes. Large clusters correspond
to normal data, and small clusters possibly correspond to attacks. A number
of unsupervised detection schemes have been evaluated on the KDD network
data set[10, 12] and command line sequences[11] with varying success. The ac-
curacy is however relatively low which reduces the direct applicability in a real
network.

In the second approach, which we denote simply (pure) anomaly detection
in this paper, training data is assumed to consist only of normal data. Mun-
son and Wimer[13] used a cluster based model (Watcher) to protect a real
web server, proving anomaly detection based on clustering to be useful in real
life.

Acceptable accuracy of the unsupervised anomaly detection scheme may be
very hard to obtain, even though the idea is very attractive. Pure anomaly
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detection, with more knowledge of data used for training, may be able provide
better accuracy than the unsupervised approach. Pure anomaly detection also
avoids the coverage problem of classification techniques, and requires no labelling
of training data similar to unsupervised anomaly detection. Generating training
data in a highly controlled network now simply consists of generating normal
data. This is the approach adopted in this paper, and the normality of the
training data in our case is ensured by access to a large test network build
specifically for experimental purposes in the Safeguard project.

In a real live network with connection to Internet, data can never be assumed
to be free of attacks. Pure anomaly detection also works when some attacks
are included in the training data, but those attacks will during detection be
considered normal and therefore not detected. To increase detection coverage,
attacks should be removed to as large an extent as possible, making coverage
a trade-off with data cleaning effort. An efficient approach should be to use
existing misuse detectors with updated rule-bases in the preparatory phase, to
reduce costly human effort. Updated signature based systems should with high
probability detect many of the currently known attacks, simplifying removal of
most attacks in training data. A possibly complementary approach is to train
temporary models on different data sets and let them vote on normality to decide
what data to use for the final normality model.

Certain attacks, such as Denial of Service and scanning can produce large
amounts of attack data. On the other hand, some normal types of system activi-
ties might produce limited amounts of data, but still be desirable to incorporate
into the detection model. Those two cases falsify the assumption of unsupervised
anomaly detection and need to be handled separately. Pure anomaly detection
such as ADWICE does not have those problems since detection is not based on
cluster sizes.

2.2 IDS Management Effort

One of the inherent problems of anomaly detection is the false positives rate. In
most settings normality is not easy to capture. Normality changes constantly,
due to changing user behaviour as well as hardware or software changes. An
algorithm that can perfectly capture normality of static test data, will there-
fore not necessarily work well in a real life setting with changing normality. The
anomaly detection model needs to be adaptable. When possible, and if security
policy allows, it should be autonomously adaptive to minimize the human effort.
In other cases an administrator needs to be able to update the anomaly model
with simple means, without destroying what is already learnt. And the effort
spent updating the model should be minimal compared to the effort of train-
ing the initial model. ADWICE is incremental, supporting easy adaptation and
extension of the normality model.

2.3 Scalability and Performance Issues

For critical infrastructures or valuable company computer based assets it is im-
portant that intrusions are detected in real-time with minimal time-to-detection
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to minimize the consequences of the intrusion. An intrusion detection system in
a real-time environment needs to be fast enough to cope with the information
flow, have explicit limits on resource usage and also needs to adapt to changes
in the protected network in real-time.

Many proposed clustering techniques require quadratic time for training[14],
making real-time adaptation of a cluster-based model hard. This implies that
most clustering-based approaches would require time consuming off-line training
to update the model. They may also not be scalable, requiring all training data
to be kept in main memory during training, limiting the size of the trained
model.

– ADWICE is scalable, since only compact summeries of clusters are kept im
memory rather then the complete data set.

– ADWICE has good performance due to local clustering and an integrated
tree index for searching the model.

3 The Safeguard Context

Safeguard is a European research project aiming to enhance survivability of
critical infrastructures by using agent technology. The Safeguard agent archi-
tecture is presented in Fig. 1. This architecture is evaluated in the context of
telecommunication and energy distribution networks. The agents should improve
survivability of those large complex critical infrastructures (LCCI:s), by detect-
ing and handling intrusions as well as faults in the protected systems. The key
to a generic solution applicable in many infrastructures is in the definition of
roles for various agents. There may be several instances of each agent in each
LCCI. The agents run on a platform (middleware) that provides generic services
such as discovery and messaging services. These are believed to be common for
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Fig. 1. The Safeguard agent architecture
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the defence of many infrastructures, but should be instantiated to more specific
roles in each domain. The generic roles can be described as follows:

– Wrapper agents wrap standard INFOSEC devices and existing LCCI diag-
nosis mechanisms, and provide their outputs after some filtering and nor-
malisation for use by other agents.

– Topology agents gather dynamic network topology information, e.g. host
types, operating system types, services provided, known vulnerabilities.

– Hybrid detector agents utilise domain knowledge for a given infrastructure,
but combine it with behavioural detection mechanisms (e.g. anomaly detec-
tion with white lists).

– Correlation agents identify problems that are difficult to diagnose with one
source of information in the network, by using several sources of information
from wrapper, topology, or hybrid detector agents. They use the data sources
to order, filter and focus on certain alarms, or predict reduced availability
of network critical services. One type of correlation agent performs adaptive
filtering and aggregation to further reduce the alarm rates.

– Action agents enable automatic and semi automatic responses when evalua-
tion of a problem is finished.

– Negotiation agents communicate with agents in other LCCI:s to request ser-
vices and pass on information about major security alarms.

– HMI (Human-Machine Interface) agents provide an appropriate interface,
including overview, for one or many system operators.

– Actuator agents are wrappers for interacting with lower layer software and
hardware (e.g. changing firewall rules).

In the context of a management network for telecom service providers we
have identified the following needs:

– Reducing information overload ([4] and section 5.5 on aggregation)
– Increasing coverage by providing new sources of information (this paper)
– Increasing information quality by reducing false positives[4]
– Collating information, such as correlating alarms[4] and combining with

topology information
– Presenting a global view of a network (in Safeguard Demonstrator)

In this paper we describe the anomaly detection engine for an instance of
the Hybrid detection agent. The agent combines a clustering based anomaly
detection engine (ADWICE) with a white-list engine. The white-list engine im-
plements simple specification based intrusion detection where data known to be
normal are described by manually constructed signatures. In our case hosts and
services known to produce abnormal behaviour (e.g. DNS server port 53) are fil-
tered away, but rules for arbitrary features can be used. Data considered normal
by the white-list engine are not fed into ADWICE. This reduces the size of the
normality model without decreasing detection coverage.
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4 The Anomaly Detection Algorithm

This section describes how ADWICE handles training and detection. The basis
of ADWICE, the BIRCH clustering algorithm, requires data to be numeric.
Non-numeric data is therefore assumed to be transformed into numeric format
by pre-processing.

4.1 Basic Concepts

The basic concepts are presented in the original BIRCH paper[6] and the relevant
parts are summarized here.

Given n d-dimensional data vectors vi in a cluster CFj = {vi|i = 1 . . . n}
the centroid v0 and radius R(CFj) are defined as:

v0 =
∑n

i=1 vi

n
R (CFj) =

√∑n
i=1 (vi − v0)2

n
(1)

R is the average distance from member points in the cluster to the centroid
and is a measure of the tightness of the cluster around the centroid.

A fundamental idea of BIRCH is to store only condensed information, denoted
cluster feature, instead of all data points of a cluster. A cluster feature is a triple
CF = (n,S, SS) where n is the number of data points in the cluster, S is the
linear sum of the n data points and SS is the square sum of all data points.
Given the CF for one cluster, centroid v0 and radius R may be computed. The
distance between a data point vi and a cluster CFj is the Euclidian distance
between vi and the centroid, denoted D(vi, CFj) while the distance between two
clusters CFi and CFj is the Euclidian distance between their centroids, denoted
D(CFi, CFj). If two clusters CFi = (ni,Si, SSi) and CFj = (nj ,Sj , SSj) are
merged, the CF of the resulting cluster may be computed as (ni + nj ,Si +
Sj , SSi +SSj). This also holds if one of the CF:s is only one data point making
incremental update of CF:s possible.

A CF tree is a height balanced tree with three parameters, branching factor
(B), threshold (T ), and maximum number of clusters (M). A leaf node contains
at most B entries, each of the form (CFi) where i ∈ {1, . . . , B}. Each CFi of
the leaf node must satisfy a threshold requirement (TR) with respect to the
threshold value T . Two different threshold requirements have been evaluated
with ADWICE. The first threshold requirement where R(CFi) ≤ T corresponds
to a threshold requirement suggested in the original paper and is therefore used
as base line in this work (ADWICE–TRR). A large cluster may absorb a small
group of data points located relatively far from the cluster centre. This small
group of data points may be better represented by their own cluster since de-
tection is based on distances. A second threshold requirement was therefore
evaluated where D(vi, CFi) ≤ T was used as decision criteria (vi is the new
data point to be incorporated into the cluster). This version of the algorithm
will be referred to as ADWICE–TRD.

Each non-leaf node contains at most B entries of the form (CFi, childi),
where i ∈ {1, . . . , B} and childi is a pointer to the node’s i-th child. Each CF at
non-leaf level summarises all child CF:s in the level below.
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4.2 Training

The CF tree is the normality model of the anomaly detection algorithm. During
training, each data vector v is inserted into the CF-tree incrementally following
the steps described below:

1. Search for closest leaf: Recursively descend from the root to the closest leaf,
by in each step choosing child i such that D(v, CFi) < D(v, CFj) for every
other child j.

2. Update the leaf: Find closest CFi by computing D(v, CFj) for all CFj in
the leaf. If CFi may absorb v without violating the threshold requirement
(TR) update CFi to include v. If TR is violated, create a new CFk entry
in the leaf out of v. If the number of CF:s including CFk is below B we are
done. Otherwise the leaf needs to be split in two. During splitting, the two
farthest CF:s of the leaf are selected as seeds and all other CFk from the old
leaf are distributed between the two new leafs. Each CFk is merged with the
leaf with the closest seed.

3. Modify the path to the leaf: After an insert, the tree needs to be updated. In
the absence of split, the CF:s along the paths to the updated leaf need to
be recomputed to include v by incrementally updating the CF:s. If a split
occurred, we need to insert a new non-leaf entry in the parent node of the
two new leafs and re-compute the CF summary for the new leafs. If there
is free space in the parent node (i.e. the number of children is below B) the
new non-leaf CF is inserted. Otherwise the parent is split in turn. Splitting
may proceed all the way up to the root in which case the depth of the tree
increases when a new root is inserted.

If the size of the tree increases so that the number of nodes is larger than M ,
the tree needs to be rebuilt. The threshold T is increased, all CF:s at leaf level
are collected and inserted anew into the tree. Now it is not single data points
that are inserted but rather CF:s. Since T has been increased, old clusters may
be merged thereby reducing the size of the tree. If the increase of T is too small,
a new rebuild of the tree may be needed to reduce the size below M again.
A heuristic described in the original BIRCH paper may be used for increasing
the threshold to minimize the number of rebuilds, but in this work we use a
simple constant to increase T conservatively (to avoid influencing the result by
the heuristic).

Of the three parameters T , B and M the threshold T is the simplest to set, as
it may be initialised to zero. The branching factor B influences the training and
detection time but may also influence detection accuracy. The original paper
suggests using a branching factor of 15, but of course they do not consider
anomaly detection accuracy since the original algorithm is not used for this
purpose.

The M parameter needs to be decided using experiments. Since it is only an
upper bound of the number of clusters produced by the algorithm it is easier to
set than an exact number of clusters as required by other clustering algorithms.
As M limits the size of the CF-tree it is an upper bound on the memory usage of
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ADWICE. Note that in general M needs to be set much lower than the number
of data represented by the normality model to avoid over-fitting (i.e. training
a model which is very good when tested with the training data but fails to
produce good results when tested with data that differs from the training data).
M also needs to be set high enough so that the number of clusters is enough for
representing normality.

4.3 Detection

When a normality model is trained, it may be used to detect anomalies in un-
known data. When a new data point v arrives detection starts with a top down
search from the root to find the closest cluster feature CFi. This search is per-
formed in the same way as during training. When the search is done, the distance
D(v, CFi) from the centroid of the cluster to the new data point v is computed.
Informally, if D is small, i.e. lower than a limit, v is similar to data included in
the normality model and v should therefore be considered normal. If D is large,
v is an anomaly.

Let the threshold T be the limit (L) used for detection. Using two parameters
E1 and E2, MaxL = E1 ∗ L and MinL = E2 ∗ L may be computed. Then we
compute the belief that v is anomalous using the formula below:

belief =

⎧⎨⎩
0 if D ≤MinL
1 if D ≥MaxL

D−MinL
MaxL−MinL if MinL < D < MaxL

(2)

A belief threshold (BT) is then used to make the final decision. If we con-
sider v anomalous we raise an alarm. The belief threshold may be used by the
administrator to change the sensitivity of the anomaly detection. For the rest of
the paper to simplify the evaluation we set E1 = E2 = E so that v is anomalous
if and only if D > MaxL. Note that clusters are spherical but the area used
for detection of multiple clusters may overlap, implying that the clusters may
be used to represent also non-spherical regions of normality. Time complexity
of testing as well as of training is in ordo N logC where N is the number of
processed data and C is the number if clusters in the model.

4.4 Adaptation of the Normality Model

As described earlier, agents need to be adaptable in order to cope with varying
LCCI conditions including changing normality. Here we describe two scenarios
in which it is very useful to have an incremental algorithm in order to adapt to
changing normality.

In some settings, it may be useful to let the normality model relearn au-
tonomously. If normality drifts slowly, an incremental clustering algorithm may
handle this in real-time during detection by incorporating every test data clas-
sified as normal with a certain confidence into the normality model. If slower
drift of normality is required, a random subset of encountered data based on
sampling could be incorporated into the normality model.
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Even if autonomous relearning is not allowed in a specific network setting
there is need for model adaptation. Imagine that the ADWICE normality model
has been trained, and is producing good results for a specific network during
detection. At this point in time the administrator recognizes that normality has
changed and a new class of data needs to be included as normal. Otherwise this
new normality class produces false positives. Due to the incremental property,
the administrator can incorporate this new class without the need to relearn the
existing working normality model. Note that there is no need for retraining the
complete model or to take the model off-line. The administrator may interleave
incremental training of data from the new normality class with detection.

5 Evaluation

In all following experiments ADWICE-TRD is used unless otherwise stated.

5.1 Data Set

Performing attacks in real networks to evaluate on-line anomaly detection is not
realistic and our work therefore shares the weaknesses of evaluation in some-
what “unrealistic” settings with other published research work in the area. Our
approach for dealing this somewhat synthetic situation is as follows. We use KD-
DCUP99 data set[15] to test the real-time properties of the algorithm. Having
a large number of attack types and a large number of features to consider can
thus work as a proof of concept for the distinguishing attributes of the algo-
rithm (unknown attacks, fast on-line, incremental model building). We then go
on to evaluate the algorithm in a test network that has been specifically built
with the aim of emulating a realistic telecom management network. While large
number of future tests with different criteria are still possible on this test net-
work, this initial set of tests illustrates the sort of problems that are detected by
ADWICE and not covered by current commercial INFOSEC devices deployed
on the emulated network.

Despite the shortcomings of the DARPA related datasets[15] (see also section
6) they have been used in at least twenty research papers and are unfortunately
currently the only openly available data set commonly used data for comparison
purposes. The original KDD training data set consists of almost five millions
session records, where each session record consists of 41 fields (e.g. IP flags set,
service, content based features, traffic statistics) summarizing a TCP session or
UDP connection. Since ADWICE assumes all training data is normal, attack
data are removed from the KDD training data set and only the resulting normal
data (972 781 records) are used for training. All 41 fields of the normal data are
considered by ADWICE to build the model.

The testing data set consists of 311 029 session records of which 60 593 is
normal and the other 250 436 records belong to 37 different attack types ranging
from IP sweeps to buffer overflow attacks. The use of the almost one million data
records for training and more than 300 000 data for testing in the evaluation
presented below illustrates the scalability of ADWICE.
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Some features of KDD data are not numeric (e.g. service). Non-numeric fea-
tures ranging over n values are made numeric by distributing the distinct values
over the interval [0, 1]. However, two distinct values of the service feature (e.g.
http, ftp) for example, should be considered equally close, regardless of where
in the [0, 1] interval they are placed. This intuition cannot be captured with-
out extending the present ADWICE algorithm. Instead the non-numeric values
with n > 2 distinct values are scaled with a weight w. In the KDD dataset
nprotocol = 3, nflag = 11 and nservice = 70. If w/n > 1 this forces the algorithm
to place two sessions that differ in such non-numeric multi-valued attributes in
different clusters. That is, assuming the threshold condition requiring distance
to be less than 1 to insert data into a cluster (M  distinct number of combi-
nations of multi-valued non-numeric attributes). This should be enforced since
numerical values are scaled to [0, 1]. Otherwise a large difference in numerical
attributes will anyway cause data to end up in the same cluster, making the
model too general. If multi-valued attributes are equal, naturally the difference
in the numerical attributes decides wether two data items end up in the same
cluster.

5.2 Determining Parameters

If the maximum number of clusters M is set too low, the normality model will be
too general leading to lower detection rate and lower accuracy of the algorithm.
This was confirmed in experiments where M was increased from 2 000 to 25 000
in steps of 1 000. When setting M above 10 000 clusters the accuracy reaches
a stable level meaning that setting M at least in this range should be large
enough to represent the one million normal data points in the training set. In
the forthcoming experiment M is therefore set to 12 000.

Experiments where the branching factor was increased from 2 to 2 048 in
small steps showed that the chance of finding the correct cluster increases with
the branching factor (i.e. decreasing false positives rate). However, increasing
the branching factor also increases the training and testing time. The extreme
setting B = M would flatten out the tree completely, making the algorithm
linear as opposed to logarithmic in time. The experiments showed that the false
positives rate stabilized when the branching factor is increased above 16. In the
forthcoming experiments the branching factor is therefore set to 20. Experiments
where the branching factor was changed from 20 to 10 improved testing time by
roughly 16 % illustrating the time-quality trade-off.

5.3 Detection Rate Versus False Positives Rate

Figure 2 shows the trade-off between detection rate and false positive rate on
an ROC diagram[16]. To highlight the result we also compare our algorithm
ADWICE–TRD with ADWICE–TRR which is closer to the original BIRCH al-
gorithm. The trade-off in this experiment is realized by changing the E-parameter
from 5 (left-most part of the diagram) to 1 (right-most part of the diagram)
increasing the detection space of the clusters, and therefore obtaining better
detection rate while false positives rate also increases.
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Fig. 2. Detection rate versus false positives when changing E from 5 to 1

The result confirms that ADWICE is useful for anomaly detection. With
a false positives rate of 2.8 % the detection rate is 95 % when E = 2. While
not conclusive evidence, due to short-comings of KDD data, this false posi-
tives rate is comparable to alternative approaches using unsupervised anomaly
detection[10, 12]. On some subsets of KDD data Portnoy et al[10] produces 1–2 %
false positives rate at 50–55 % detection rate, but unfortunately other subsets
produces considerable inferior results. The significantly better detection rate of
ADWICE is expected due to the fact that unsupervised anomaly detection is a
harder problem then pure anomaly detection.

Since the KDDCUP data initially was created to compare classification sche-
mes, many different classification schemes have been applied to the KDDCUP
data set. Classification implies that the algorithms were trained using both nor-
mal and attack data contrasted to ADWICE which is only trained on the normal
training data. The attack knowledge makes differentiating of attack and normal
classes an easier problem, and it was expected that the results[9] of the win-
ning entry (C5 decision trees) should be superior to ADWICE. This was also
the case1 regarding false positives (0,54 %), however detection rate was slightly
lower, 91,8 %. Due to the importance of low false positives rate we indeed con-
sider this result superior to that of ADWICE. We think the other advantages
of ADWICE (section 2) make up for this. Also, we recall that ADWICE is one
element in a larger scheme of other Safeguard agents for enhancing survivability.

The result shows that for values of E above 4.0 and values of E below 1.75
the false positives rate and detection rate respectively improve very slowly for
ADWICE-TRD. The comparison with the base-line shows that using R in the
threshold requirement (ADWICE–TRR) implies higher false positives rate. Sec-
tion 5.5 describes further reduction of false positives in ADWICE–TRD by ag-
gregation.

1 In the original KDDCUP performance was measured using a confusion matrix where
the result for each class is visible. Since ADWICE does not discern different attack
classes, we could not compute our own matrix. Therefore overall false positives rates
and detection rates of the classification scheme was computed out of the result for
the individual classes.
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Fig. 3. The accuracy of ADWICE for individual attack classes and the normal class

5.4 Attack Class Results

The attacks in the test data can be divided into four categories:

– Probe - distinct attack types (e.g. IP sweep, vulnerability scanning) with
4 166 number of session records in total.

– Denial of Service (DOS) - 10 distinct attack types (e.g. mail bomb, UDP
storm) with 229 853 number of session records in total.

– User-to-root (U2R) - 8 distinct attack types (e.g. buffer overflow attacks,
root kits) with 228 number of session records in total.

– Remote-to-local (R2L) - 14 distinct attack types (e.g. password guessing,
worm attack) with 16 189 number of session records in total.

Since the number of data in the probe and DOS classes is much larger than
U2R and R2L, a detection strategy may produce very good overall detection
quality without handling the U2R and R2L classes that well. Therefore it is
interesting to study the attack classes separately. Note that since ADWICE is
an anomaly detector and has no knowledge of attack types, it will give the same
classification for every attack type unlike a classification scheme.

Figure 3 shows the four attack classes Probe, DOS, U2R and R2L as well as
the normal class (leftmost column) for completeness.

The results for Probe, DOS and U2R are very good, with accuracy from
88 % (U2R) to 99 % (DOS). However, the fourth attack class R2L produces in
comparison a very bad result with an accuracy of only 31 %. It should be noted
that the U2R and R2L classes are in general less visible in data and a lower
accuracy should therefore be expected. The best entries of the original KDD-
cup competition had a low detection rate for U2R and R2L attacks, therefore
also a low accuracy for those classes.

5.5 Aggregation for Decreasing Alarm Rate

While 2–3 percent false positives rate produced by ADWICE may appear to be a
low false positive rate in other applications, in practice this is not acceptable for
network security[16]. Most realistic network data is normal, and if a detection
scheme with a small percent of false positives is applied to millions of data records
a day, the number of false alarms will be overwhelming. In this section we show
how the total number of alarms can be further reduced through aggregation.

An anomaly detector often produces many similar alarms. This is true for new
normal data that is not yet part of the normality model as well as for attacks
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types like DOS and network scans. Many similar alarms may be aggregated
to one alarm, where the number of alarms is represented by a counter. In the
Safeguard agent architecture aggregation is one important task of the Alert
reduction correlation agent[4]. By aggregating similar alarms the information
passed on to higher-level agents or human administrators becomes more compact
and manageable. Here we evaluate how aggregation would affect the alarm rate
produced from the KDD data set.

The KDD test data does not contain any notion of time. To illustrate the
effect of aggregation we make the simplifying assumptions that one test data is
presented to the anomaly detector each time unit. All alarms in which service,
flag and protocol features are equal are aggregated during a time window of size
0 to 100. Of course aggregation of a subset of features also implies information
loss. However, an aggregated alarm, referring to a certain service at a certain
time facilitates the decision for narrowing down to individual alarms for further
details (IP-address should have been included if present among KDD features).
The result is shown in Fig. 4.

When a new alarm arrives, it is sent at once, to avoid increasing time to
detection. When new alarms with the same signature arrive within the same
time window, the first alarm is updated with a counter to represent the number
of aggregated alarms. Without aggregation ADWICE produces 239 104 alarms
during the 311 029 time units. Using a short time window of 10 time units, the
number of aggregated alarms becomes 28 950. Increasing the time window to
100 will reduce the original number of alarms to 5 561, an impressive reduction
of 97,7 %. The explanation is that many attacks (probes, DOS) lead to a large
amount of similar alarms. Note that aggregation also reduces false positives,
since normal sessions belonging to a certain subclass of normality may be very
similar. While it might seem that aggregation only makes the alarms less visible
(does not remove them) it is in fact a pragmatic solution that was appreciated
by our industrial partners, since it significantly reduces the time/effort at higher
(human-intensive) levels of investigation. The simple time slot based aggregation
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provides a flexible system in which time slots can be adaptively chosen as flexible
‘knobs’ in response to different requirements.

5.6 Usefulness of Incremental Training

To evaluate the incremental training of ADWICE we treat an arbitrary abnormal
class as normal and pretend that the normality model for the KDD data should
be updated with this class. Without loss of generality we choose the IP sweep
attack type and call it ‘normal-new’; thus, considering it a new normal class
detected by the administrator. The model only trained on the original normal
data will detect the normal-new class as attack, since it is not included in the
model. This produces ‘false positives’. The old incomplete normality model is
then incrementally trained with the normal-new training data producing a new
normality model that incorporates the normal-new class. Our evaluation showed
that (without aggregation) the old model produced 300 false positives, whereas
the new retrained model only three.

5.7 Evaluation in the Safeguard Test Network

One of the main efforts of the Safeguard project is the construction of the Safe-
guard telecom management test network, used for data generation for off-line
use as well as full-scale on-line tests with the Safeguard agent architecture. At
the time of evaluation of this work the network consisted of 50 machines (at
present time about 100 machines) in multiple sub networks. Normal data can be
generated by isolating the network from Internet and not running any internally
generated attacks on the network.

Evaluation using data from the Safeguard test network is ongoing work. Here
we present only some initial results from tests performed over a total time period
of 36 hours. The ADWICE model was trained using data from a period known
to contain only normal data. To keep parsing and feature computation time
low to make real-time detection possible, features were only based on IP-packet
headers, not on packet content (e.g. source and destination IP and ports, time,
session length). This means of course that we at this stage can not detect events
that are only visible by analyzing packet content. The purpose of this instance
of the hybrid detection agent is to detect anomalies, outputting alarms that can
be analysed by high level agents to identify time and place of attacks as well as
failures or misconfigurations.

In Scenario 1 an attacker with physical access to the test network plugged
in a new computer at time 15:33 and uploaded new scripts. In Scenario 2 those
scripts are activated a few minutes later by the malicious user. The scripts are
in this case harmless. They use HTTP on port 80 to browse Internet, but could
just as well have been used for a distributed attack (e.g. Denial of Service)
on an arbitrary port. The scripts are then active until midnight the first day,
producing traffic considered anomalous for their respective hosts. During the
night they stay passive. The following morning the scripts becomes active and
execute until the test ends at 12:00 the second day.
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Fig. 5. Anomalous behaviour detected by ADWICE in the telecom management net-

work. The figure shows the number of alarms for a certain time period and IP/port

Figure 5 illustrates the usefulness of the output of the hybrid detection agent.
The 36 hours of testing was divided in periods of one minute and the number of
alarms for each time period is counted.

For Scenario 1, all alarms relating to the new host (IP x.x.202.234) is shown.
For Scenario 2 all alarms with source or destination port 80 are shown. The figure
shows clearly how the malicious user connects at interval nr 902 (corresponding
to 15:34), when the scripts executes, waits during the night, and then executes
again. Some false alarms can also be noted, by the port 80 alarms occurring
before the connection by the malicious user. This is possible since HTTP traffic
was already present in the network before the malicious user connected.

6 Discussion and Future Work

The DARPA related data sets have been widely used but also criticized[15]. The
normal traffic regularity as well as distribution of attacks compared to distribu-
tion of normality does not exactly correspond to network data in a real network.
Generation of a new public reference data set for IDS evaluation without the
identified weaknesses of the DARPA data remains therefore as an important
task of the research community. With this in mind, our DARPA/KDD based
evaluation still shows feasibility of ADWICE given the assumptions that rele-
vant features are used and that those features separate normal data from attacks.
Local clustering was, according to our knowledge, used for the first time in the
intrusion detection setting, whereby an optimal global clustering of data is not
necessary. The incremental property of ADWICE is important to provide flex-
ible adaptation of the model. Future work includes further evaluation of the
algorithm in the context of the Safeguard test network. If made available also
other public data sets will be considered. Unfortunately the GCP data provided
by DARPA’s Cyber Panel program[3] is not currently released to researchers
outside USA.

Current work includes using the incremental feature of ADWICE for au-
tonomous normality adapation. Evaluation of such adapation, may require long
periods of data to study the effect of adaptation over time.
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Our experience with ADWICE indicates, as hinted in the original BIRCH
paper, that the index is not perfect. Our on-going work includes full evaluation
of an alternative grid-based index with initial indications of improvement of the
false positive rate by 0,5–1 % at a similar detection rate.
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Abstract. Steganography embeds a secret message in an innocuous
cover-object. This paper identifies three cover-specific redundancies of
executable programs and presents steganographic techniques to exploit
these redundancies. A general framework to evaluate the stealth of the
proposed techniques is introduced and applied on an implementation
for the IA-32 architecture. This evaluation proves that, whereas existing
tools such as Hydan [1] are insecure, significant encoding rates can in
fact be achieved at a high security level.

Keywords: code transformation signature, steganography, executables.

1 Introduction

Steganography embeds a secret message in a seemingly innocuous cover-object.
Digital cover-objects most often are media, such as image and music files, that
involve noise and are perceived by imperfect human senses. As a result, they
contain many redundant bits, which can be modified to embed secret messages.

This paper explores the largely unexplored field of steganography for exe-
cutable programs. This differs significantly from steganography for media be-
cause changing as little as a single bit of a program can cause it to fail entirely.
Hence different techniques are required for embedding messages in executables.

With the exception of Hydan [1], little information on this subject is pub-
licly available. While the related subjects of software watermarking and finger-
printing, which also involve information hiding, have received considerably more
attention [2, 3], the results of that research are not applicable in the context of
steganography. This follows from the fact that watermarking and fingerprinting
typically deal with very short embedded messages (shorter than 1 Kb), and that
those messages first of all need to be irremovable, rather than hidden. Moreover,
some watermarking approaches also require knowledge of the embedded message
in the detection phase, which is obviously not possible in steganography.

Rather than implementing ad-hoc techniques, as in Hydan [1], we present a
thorough study of the available redundancy in compiled programs. Furthermore,
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we present a general framework for evaluating the stealthiness of the different
program transformations that exploit the redundancies. Based on this frame-
work, a number of countermeasures to prevent possible attacks are presented.

This paper is structured as follows: Section 2 presents the used model. The
fitness of executables for steganography is explored in Section 3. A framework
for the evaluation of statistical signatures of code transformations is discussed in
Section 4. The concepts are then evaluated for the IA-32 architecture in Section 5.
Related work is the topic of Section 7 and conclusions are drawn in Section 8.

2 The Prisoners’ Problem

We will follow Simmons’ [4] classic model, a.k.a. the prisoners’ problem for invis-
ible communication. Alice and Bob are two prisoners in different cells. Wendy,
the warden, arbitrates all communication between them, and will not let them
communicate through encryption or suspicious communication. Both prisoners
therefore need to communicate invisibly about their escape plan.

Furthermore, we will assume that the mechanism in use is known to the war-
den (Kerkhoffs’ principle [5]). Hence its security must depend solely on a secret
key that Alice and Bob managed to share, possibly before their imprisonment.

The general principle of steganography is as follows. To share a secret message
with Bob, Alice randomly chooses a harmless message, called a cover-object c,
which can be transmitted to Bob without raising suspicion. The secret message
m is then embedded in the cover-object using the secret key k, resulting in a
stego-object s. This is to be done in such a way that Wendy, knowing only the
apparently harmless message s, cannot detect the presence of the secret. Alice
then transmits s to Bob via Wendy. Bob can reconstruct m since he knows the
embedding method and has access to the key k. It should not be necessary for
Bob to know the original cover c. The security of invisible communication lies
mainly in the inability to distinguish cover-objects from stego-objects. The task
of Wendy can be formalized as a statistical hypothesis-testing problem, for which
she defines a test function on objects (of the set O) f : O → {0, 1} :

f(o) =
{

1 if o contains a secret message
0 otherwise

This function can make two types of errors: detect a hidden message when
there is none (false positive) and not detect the existence of a hidden message
when there is one (false negative). In this paper we will further assume that the
warden is passive, i.e. she will not modify the object, but only classify it. This
is generally accepted in steganography [6].

3 Fitness of Executables as Cover-Objects

While changing a single bit in a program can cause it to fail, this does not
imply a lack of redundancy for the purpose of steganography. Instead the specific
characteristics of software indeed result in many forms of redundancy.
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In theory, we can consider two programs extensionally equivalent if they pro-
duce identical output, given identical input. In practice, more stringent require-
ments for time, space and power consumption need to be taken into account.
But even then a large number of equivalent executables exists. This has been
exploited for several purposes including program optimization, program obfusca-
tion, software watermarking and fingerprinting, and software diversity. It is thus
generally accepted that the number of equivalent executables for any real-life
application is large and that there is indeed a lot of redundancy in a program
which, in this context, we would like to exploit to encode a secret message.

Besides being equivalent to the original program, any program with an em-
bedded message also needs to pass the warden’s test function described in the
previous section. Since we believe useless (suboptimal) code added to a program
will be easily detected, we will only allow embedding transformations that do not
deoptimize a program. In other words, the message should be embedded in the
code a (optimizing) compiler back-end has produced from its intermediate code
representation of the program. Typically a compiler’s back-end goes through 4
phases (in varying orders), each of which inserts a number of redundancies.

During instruction selection, the intermediate code operations are translated
into assembly instructions. Often multiple instruction sequences can be chosen
to implement an intermediate code operation. During the register allocation, ar-
chitectural registers are chosen to store values temporarily. Usually there are
multiple valid allocations. In the instruction scheduling phase, the selected in-
structions are put in their final order. Again, multiple orderings are often valid.
Finally, multiple compiled files are combined into a program. During this code
layout, multiple orderings can be chosen. These types of choices/redundancies
and their exploitation are the topic of this section. As the target architecture,
we have chosen the IA-32 architecture [7], because it is most commonly used.

3.1 Encoding Bits in a Choice

For each of the choices between equivalents, a number of bits can be encoded in
the program. If there are n equivalent programs because of some type of choice,
the number of bits that can be encoded can be computed as follows.

As n ≥ 2�log2(n), it is clear that at least �log2(n)� bits can be encoded: it
suffices to number each equivalent, and to take that equivalent who’s (binary)
number corresponds to the bit-string to be encoded. This simple approach may
result in a significant decrease in encoding capabilities however: if log2(n) /∈ N
for large n, many equivalents may not correspond to an encodable bit-string.

A more efficient scheme is as follows: If log2(n) /∈ N, then �log2(n)� =
�log2(n) − 1�. We can thus always embed �log2(n) − 1� bits. If we associate
each of the remaining n − 2�log2(n)−1� equivalents with one of the 2�log2(n)−1�

already used ones, we can embed an additional bit by allowing the embedder to
choose between one of the two associated equivalents, as illustrated for n = 7
in Figure 1. Therefore, we can embed an extra bit in n − 2�log2(n)−1� of the
2�log2(n)−1� possibilities for the next �log2(n)− 1� bits.
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Fig. 1. Encoding bits in the choice of 7 equivalents

If the embedded message is encrypted with the secret key k, all bit-strings to
be embedded have equal probability, and hence the average number of bits that
can be encoded in the choice out of n valid equivalents is given by

b(n) = �log2(n)− 1�+
n− 2�log2(n)−1�

2�log2(n)−1� . (1)

One can easily verify that equation (1) also holds if log2(n) ∈ N.

3.2 Instruction Selection

To explore the steganographic potential of executables, we have developed a tool
that is capable of exhaustively generating all possible instruction sequences for
the IA-32 architecture. This tool operates in a similar manner as the so-called
superoptimizer [8].

Its input consists of a code sequence, a set of output registers and a set
of (scratch) registers whose value is no longer used after the sequence has been
executed in a program. For all generated sequences, the tool checks whether they
perform the same function as the original code sequence, by testing the output
values for all possible input values. If the test succeeds an equivalent sequence
is found.

Because of the halting problem, it is in general undecidable if a generated se-
quence will terminate. Hence the equivalence test can run forever. By restricting
the set of instructions to the integer instructions, that do not include any con-
trol flow, we can assure that each tested sequence terminates. But even then the
number of potential equivalent sequences is still too large. To make the problem
tractable, and to terminate the exhaustive generations within reasonable time,
we further limit the immediate operands (constants encoded in an instruction)
that can be used to {−1, 0, 1, 31}. Finally, we restrict the length of the generated
sequences.

Even with these restrictions we can still find many equivalent sequences that
perform realistic computations. For the operation ECX= max(EAX,EDX), e.g., our
tool was able to find 433 different encodings of three instructions. Similarly,
for the computation EAX= (EAX/2), 3708 equivalent sequences of 4 instructions
were generated. Note that the tool did not find shorter sequences because of the
limited list of immediates that does not contain 2.

It should be noted that these examples are no exception. Moreover, the num-
ber of equivalents is exponential in the number of instructions: if we have n
instructions which we can divide in groups of i instructions, of which each group
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has at least a equivalents then combined we have at least a
n
i equivalents. Fur-

thermore, many additional equivalents arise when considering the larger piece
as a whole, in which instructions can be moved from one group to another.

While our tool thus shows great potential for encoding bits, it is too slow
for a practical tool. Hence we had the tool generate a database of equivalence
classes for the instructions that occur most often in our suite of training pro-
grams. During this process, we imposed the additional restriction that equivalent
instructions can only read/write locations that are read/written in the original
instruction. However, if liveness analysis [9] determines that certain status flags
are dead, we allow them to be overwritten. Finally, the set of immediates is
expanded with the immediates used in the original instruction and the negate
thereof.

3.3 Register Allocation

On the IA-32, the number of registers is very limited, and most registers have
fixed designations. Moreover, the calling conventions specify precisely how reg-
isters should be used. Hence the little choice that a compiler in theory has to
choose a register allocation, is in practice unexploitable: any deviation from the
calling conventions would be spotted by the ward. As a result, changing the
allocated registers is not an option to embed secret messages in IA-32 programs.

3.4 Instruction Scheduling

Typically, instruction scheduling is performed per basic block. As two or more
instructions that perform independent operations can be permuted within a basic
block, we can encode bits in the instruction order within basic blocks.

To do so, we first determine all valid orderings by constructing a dependency
graph of a block’s instructions, in which dependent instructions are connected by
directed edges. By iteratively removing instructions from this graph that do not
depend on other instructions in it, a valid schedule can be determined. At each
iteration, multiple instructions may be ready to be removed from the graph. They
are, in other words, in the ready-set [9] of instructions. Using a branch and bound
algorithm to select instructions from the ready-set, we can easily generate all the
possible permutations. Supposing there are n possible schedules, the number of
bits that can be encoded on average is given by equation (1).

Since finding valid instruction orderings using a dependency graph is time-
consuming, and since the marginal gain of additional orderings decreases steadily
when the number of orderings increases, it is useful to put an upper bound on
the number of valid permutations that are considered. In our implementation
this upper bound is 1024 orderings. As basic blocks are usually not longer than
4-5 instructions, this upper limit rarely is reached. Hence it has little influence
on the amount of bits that can be encoded. For the rare, long basic blocks that
offer billions of valid orders, setting an upper limit is absolutely necessary for
obtaining practical execution times.
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3.5 Code Layout

If there exists no fall-through path between two consecutive basic blocks, these
blocks can be moved apart. Hence the order of the basic blocks in a program, i.e.
the code layout, is to some degree free. More precisely, all basic block chains, i.e.
lists of consecutive basic blocks with fall-through paths between them, can be
positioned in any order. When there are c different chains, we have c! possible
orderings to choose from, and hence we can encode b(c!) bits.

While the order of unique elements to encode a bit-string can be exploited
with existing methods [10], all chains in a program are not necessarily unique.
This follows from the fact that most compilers only compile one source code
module at a time, and hence never have an overview over all the code that
constitutes a final program. As a result, duplicated code ends up in programs [11].

This problem is aggravated for our purpose, since we need to number and
qualify all chains independently of their position in the program. Hence we can-
not base our differentiation between two chains on any contents of them that de-
pends on their location. In concreto, this means that all relocatable addresses [12]
encoded in the instructions in the chains need to be neglected when comparing
chains. For the programs in our benchmark suite the thus computed number of
sets of identical chains is only between 47 to 59% of the total number of chains.

With m chains divided in n sets of identical chains s1 . . . sn, the theoretical
average number of bits that can be encoded in their ordering is given by

b(
m!∏n

i=1(|si|!)
). (2)

We can approximate this number by iteratively selecting a chain for placement
out of the n remaining sets of chains. The average number of bits that can be
encoded in this selection is once again given by equation (1). Depending on
whether the selected chain was the last of a set of identical chains or not, the
number of sets will be n− 1, respectively n in the next iteration. The process is
repeated until all chains have been placed.

3.6 Interactions Between the Techniques

The discussed techniques are not completely orthogonal. In order to combine
them successfully, a couple of issues need to be addressed.

First, it is worth noting that the number of bits that can be encoded in
instruction selection is dependent on the chosen ordering of instructions in the
basic block, and vice versa. When orders change, liveness ranges change, and
hence the condition flags and scratch registers that may be changed by equivalent
instructions also change.

For the same reason, instruction selection influences the order in which an
embedder or extractor will generate equivalent orderings, and hence how specific
bit sequences are encoded in the ordering. Vice versa, if scheduling is applied
first, it influences the order in which equivalent instructions are generated.

Moreover, if the embedder first encodes bits in the instruction selection of
the instructions in their original order in the program, and subsequently reorders
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55 push EBP 55 push EBP
89 e5 mov ESP,EBP 89 e5 mov ESP,EBP
83 ec 08 sub 0x8,ESP 83 c4 f8 add 0xfffffff8,ESP

Fig. 2. Two equivalent code sequences

the instructions, the extractor does not know the order in which the information
embedded in the instruction selection needs to be extracted. Clearly, the extrac-
tor and the embedder need to depart from the same dependency graph in order
for the extractor to obtain the correct embedded information.

Before the embedding and the extraction, all basic blocks in a program should
therefore be transformed into a canonical form, in which both the instruction
selection and their ordering are predetermined.

3.7 Practical Considerations for Extracting an Embedded Message

In order to extract embedded information from a program, an extractor needs
to identify the basic blocks, and he needs to pinpoint relocated operands, since
these should be neglected for the ordering of chains.

The necessary relocation information is available at the embedding phase, as
the embedding is done at link-time, when the whole program is first available.
This information is lost in the resulting executable however.

Fortunately most of the necessary information can be derived from a static
analysis of the executable program itself. As a consequence, we only need to
communicate the discrepancy between the derived information and the actual
information to the decoder. To do so, we can store this information in the first
instructions of the resulting binary, without taking liveness information into
account. This is the only option since the decoder cannot identify basic blocks
or chains and it cannot compute liveness information at this point.

4 Code Transformation Signatures

While Section 5 shows that the encoding rate achieved by the discussed tech-
niques is fairly high, its security is obviously too low. The reason is that the
techniques introduce very unusual code that will arise suspicion of the warden.
Consider, e.g., the equivalent code sequences in Figure 2. Anyone somewhat fa-
miliar with assembly code will agree that the likelihood of a compiler generating
the code on the right is extremely low. But this code is present in executables
that have been put through Hydan or our tool (without countermeasures). In
short, the application of our tool has left an obvious signature.

We define a code transformation signature (CTS) as a code property that
results from that transformation. The security of the discussed embedding tech-
niques depends by and large on the absence of such signatures. While this is ob-
vious for steganography, it is also of importance for other embedding techniques
such as watermarking and fingerprinting, as the distortion of a watermark or
fingerprint is facilitated if an attacker can accurately locate it.
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Despite the importance of the stealthiness of applied code transformations,
almost all research efforts have targeted the development of new techniques.
Little work has been done on the security evaluation of the techniques. So far,
most claims for security have been ad hoc and often based on author’s belief.

4.1 A Framework for Detecting Code Transformation Signatures

Because quantitative methods have proved so powerful in many other domains,
we will first quantify unusual properties using quantitative software metrics.
On these metrics, we build models of the expected behavior, after which we
can compare the observed value of a metric to the expected behavior, and thus
classify software into clean and suspect software.

Software Metric. A software metric summarizes and quantifies properties of
a given piece of software, called a unit, in order to detect signatures. Hence the
property to measure depends on the applied code transformations. Metrics can
in general be classified along two axes: that of aspects and that of granularities.

The aspect identifies what type of software unit is inspected. This could, e.g.,
be the static code or the dynamically executed code. It could be the heap or the
stack as well, as they result from the executed code. We should note that even
a dynamic data watermark [2] may introduce a signature in the static code.

The granularity of a metric identifies the size of the unit that is the subject
of measurement. Possible granularities are the instruction, the basic block, the
procedure, the memory location, the graph structure, etc. Granularity is impor-
tant for an attacker, because, the smaller the granularity, the more accurately
the attacker can pinpoint the location of the suspicious software.

Statistical Code Model. In order to evaluate executables for the presence of
suspicious units with respect to some metric, we need a model of what consti-
tutes a “clean” unit. We will do so by means of statistical distributions that are
constructed by evaluating a population of units for some metric. On such a dis-
tribution, a statistical test can then be postulated that decides on the behavior
of a unit under investigation.

For each model, the population’s locality identifies how closely related the
units that make up the population are to the unit under investigation. If the
granularity of the metric is, e.g., a basic block, then we could test each block by
comparing it to the blocks in its own procedure or we could compare it to all
the blocks in a training set of programs. In the former case, the locality of the
model would be that of procedures, in the latter that of the software universe.

Based upon the postulated model of the clean behavior of a metric, we can
then compute how unusual it is to observe a particular value for a metric. If we
then define a threshold to differentiate suspect units from clean ones, we obtain
a statistical test. In some cases, a single CTS will suffice to classify units, but in
other cases several CTSs will need to be combined to increase the reliability.

Stealthy Code Transformations. Knowing that a warden uses such statisti-
cal models to detect CTSs of suspicious code, we need to defend against them.
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This can either be done by elevating the false negative rate of a test, i.e. thwarting
the recognition of the CTSs, or by elevating the false positive rate, i.e. trans-
forming original code to contain the same CTSs.

Consider, e.g., a tamper-proofing mechanism that reads a piece of the pro-
gram code, computes a checksum over it and compares it to some predefined
value. Since programs rarely read their own code, an attacker trying to locate
the detection mechanism may search for the CTS consisting of a (static) instruc-
tion that reads the code section. A countermeasure against this attack consists
of hiding the fact that the instruction reads from the code section by obfus-
cating the involved address computation (increasing the false negative rate) or
by transforming the original code to read constant values from the code section
throughout (increasing the false positive rate).

4.2 Application of the Framework to the Steganographic
Techniques

Presence of Unusual Instructions. When multiple instructions are avail-
able to perform a given operation, a compiler will deterministically select the
(assumed) optimal equivalent during the instruction selection phase. A CTS can
therefore be found in an unusual instruction in the static code.

To detect such CTSs, the aspect of the metric is static code, and the granular-
ity is that of instructions. The locality of the model is that of a large, predefined
set of clean programs. The test considers a program suspicious if it contains an
instruction that never occurred in the clean programs.

As a countermeasure against this test, an embedder should only use alter-
native, possibly suboptimal, instructions when they could be the remnant of
a choice based on information that is no longer available to the warden. This
information could, e.g., be the source code or relocation information.

Unusual Relative Frequencies of Instructions. Replacing instructions by
equivalent ones changes the frequencies with which the equivalents occur in a
program. Therefore a suitable metric is the relative frequency of equivalents in
the static code of the program. When an encrypted secret message is embedded
in an executable using equivalent instructions (and without taking countermea-
sures), the equivalents for a certain instruction can be expected to have uniform
frequencies. In clean programs, by contrast, they likely have skew distributions.

Suppose that there are n equivalents for some instruction, whose relative
frequencies in a programs x are presented by f(x) = [f1(x) ... fn(x)]. To measure
how clean a particular program p is, the metric then consists of the euclidean
distance from f(x) to f(P ), in which P is large set of clean programs. The model
of programs can be obtained by postulating that this distance follows a normal
distribution, of which the parameters μ and σ2 can be estimated by computing
the average and variance of the distance in P .

To classify an executable e we compute the probability that a distance occurs
that is larger than the observed distance between f(e) and f(P ). A low likelihood
indicates a high probability that a secret message is present. The reliability of
this test can be increased by averaging the likelihoods of a number of sets of
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equivalent instructions. The classification could then classify programs with a
score below, e.g., 0.5 as suspect.

To avoid the detection of the presence of an embedded message through
the discussed CTS, we need to approximate the relative frequency of equivalents
through a biased embedding. To do so the equivalents for a particular instruction
are partitioned in two groups with relative frequency r1 and r2 = 1− r1 as close
to 0.5 as possible. Without loss of generality we can assume that r1 ≥ 0.5.
Using a random number generator seeded with a value derived from the secret
key k (to assure that both the embedder and extractor follow the same scheme),
numbers are then generated, on which a test is defined that succeeds with chance
p = (r1 − 0.5) ∗ 2. Whenever the test succeeds for a generated number, we are
forced to take an equivalent from group 1, and no bit is encoded. Otherwise, we
encode a bit by choosing between group 1 and group 2. As a result of Bernoulli’s
theorem, the relative frequencies r1 and r2 will converge to the chance p(g1),
that group 1 is chosen, resp. p(g2), that group 2 to is chosen, with increasing n.
As it is equally likely that the next bit will be a 0 as a 1, p(g1) = (r1− 0.5) ∗ 2+
1
2 ∗ (1− (r1− 0.5) ∗ 2) = r1 and p(g2) = 1

2 × (1− (r1− 0.5) ∗ 2) = r2. Note that if
a group is not a singleton, we iteratively partition it in subgroups on which the
the same process is applied.

Unusual Jump Behavior of Program. Clean programs exhibit spatial local-
ity as the basic block chains of procedures will usually be placed consecutively.
This locality is further increased when cache-optimizing code layout techniques
are applied [13]. When the code in a program is reordered randomly, the spatial
locality of the code is hence likely to decrease. A poor locality may therefore in-
dicate the presence of a secret message, and a suitable metric to test this consists
of the average offset of executed jumps that cross chain boundaries.

In the execution of our population of training programs, the largest average
jump offset during a program’s execution was 3, 725. Respecting a considerable
margin we therefore postulate the model that this average will be no higher than
10, 000 for clean programs. For our evaluation benchmark programs the largest
average observed before embedding was 2, 575, while the smallest average ob-
served after embedding (without countermeasures) was 59, 815. The classification
thus has a perfect false positive and false negative rate for our benchmarks.

To avoid the presence of this CTS, we must retain the spatial locality present
in the original code. To achieve this, it suffices to not reorder all of the different
chains at once, but to take a three step approach. First, chains are reordered
within their procedures. Secondly, all procedures are partitioned into equivalence
classes, where two procedures are considered equivalent if they are (transitively)
connected through inter-procedural jumps (that most often result from tail-call
optimization by compilers), and procedures are reordered within their class.
Finally, all classes are reordered.

Diversity in Scheduling. When instruction schedulers pick instructions from
the ready-set (see Section 3.4), they try to optimize the generated schedules by
taking instruction latencies, available processor resources, and other properties
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into account. As a result, any badly scheduled basic block will raise suspicion.
Moreover, schedulers typically are deterministic, and hence two identical depen-
dency graphs of instructions will most often be scheduled identically within a
program. An important exception is where libraries and the main application
are compiled independently of each other. Furthermore, there may be consider-
able differences between schedules in different programs. Different compilers may
have been used, or different optimization levels, or different processor targets.
Obviously, the warden does not know which combination has been used.

One attack on this type of CTS consists of comparing the basic blocks in a
program, and to consider identical dependency graphs that are scheduled dif-
ferently suspicious. For this type of model, the metric’s aspect would be static
code, and the granularity the basic block, while the locality is the equivalence
class of the block’s procedure within the program.

Since the warden does not know which properties the original scheduler has
taken into account, he cannot know which graphs were identical according to
the original scheduler. So while the warden may consider two graphs identical,
the compiler may have seen them as different. Hence the warden needs to build
a statistical model of clean code with a large set of programs.

The approach resembles the one to detect suspect instruction frequencies.
Now f(x) indicates how often a compiler has generated i different schedules for
(assumingly) identical graphs. Again, we can compute the euclidean distance
and obtain a model by postulating that this distance follows a normal distri-
bution. In practice, we observed that 95% of the graphs occurring more than
once occurred with a single schedule, while approximately 5% occurred with two
different schedules. More schedules are rare.

As a countermeasure to these attacks, we suggest the following approach:
instead of choosing any instruction from the ready-set, limit this choice to the
set of, within reasonable boundaries, good instructions to schedule. Furthermore,
identical dependency graphs should result in i schedules with chance fi. To
implement this, it suffices to maintain a database of already scheduled blocks
and enforce i different schedules with chance fi.

Please note that making compilers non-deterministic, to increase the false
positive rate, is not an option: besides the simple fact that one cannot con-
trol all compilers, making them non-deterministic would make debugging the
compilers themselves and the compiled programs even more difficult than it is
today.

5 Experimental Evaluation

To evaluate the presented concepts we have implemented Stilo, our stegano-
graphic tool for the IA-32 architecture, using the link-time rewriting framework
Diablo [14], and applied it on 9 SPECint2000 benchmark programs to embed and
extract “King Lear” by W. Shakespeare. The programs were compiled with GCC
3.2.2 and linked to glibc 2.3.2 for Linux. For each benchmark, the embedding
and extraction took less than a minute on a 2.8GHz Pentium IV.
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Fig. 3. Encoding rate before (left) and after (right) countermeasures for steganalysis

Fig. 4. Code transformation signature: unusual relative frequencies of instructions

The obtained encoding rates are presented in Figure 3. The distribution over
the different techniques is also indicated. We achieve an encoding rate between
1/29.6 and 1/25.49 and a total encoding rate of 1/26.96 before countermeasures,
four times the encoding rate of the previous prototype tool Hydan (1/110).

Without countermeasures, neither our tool nor Hydan, as noted by its au-
thors, is stealthy. Most importantly, their encoding rate achieved through in-
struction selection is achieved by and large by choosing very unusual instruc-
tions. However, as the clean instruction distribution is uniform across executa-
bles [1], little information can be stealthily embedded this way. When we take
countermeasures to address this problem, only 9% of the encoding rate due to
instruction selection remains, as can be seen in Figure 3. This clearly illustrates
the usual trade-off between data rate and stealth.

The need for countermeasures is acknowledged by the results of our attack
on the unusual instruction frequency CTS as discussed in Section 4.2. These
results are presented in Figure 4, and confirm that unlimited instruction selection
freedom indeed results in big, easily detectable discrepancies from clean code.

Fortunately, there is a much greater variation in schedules across executables
and 47% of the encoding rate due to instruction scheduling can be safely retained.
Furthermore, as code layout is largely determined by the source code, a piece of
information that is no longer available to the warden, 59% of the encoding rate
due to code layout can be safely retained.



Steganography for Executables and Code Transformation Signatures 437

Combined, we thus achieve a stealthy encoding rate ranging from 1/108.59 to
1/80.1 and averaging 1/88.76. This is still higher than the unsafe rate of Hydan.

6 Future Work

The techniques discussed in this paper are portable to other architectures, as
they exploit compiler choices common to all architectures. It would be interesting
to see how the characteristics of an architecture influence the obtained data
encoding rate. For example, a RISC architecture is unlikely to have the same
redundancy in its instruction set as the IA-32 architecture. Therefore, the data
rate due to instruction selection can be expected to be much lower on a RISC.
On the other hand, RISC architectures typically have a larger set of registers, as
a result of which register allocation might be a safe place to hide information.

While we have taken measures to prevent the detection of the presence of
secret information in an executable in general, all executables generated by a
single programmer are likely to be generated by the same compiler, with the same
compiler flags, libraries, etc. If an embedder wants to use this tool repeatedly to
defeat the same warden, his freedom of choice may need to be further reduced
to assure that the attacker is not alarmed when different executables from the
same programmer are unlikely to have been compiled with the same tool chain.
This requires future research.

7 Related Work

Several types of cover-objects have been used to embed a secret message. The
first reported occurrence is due to Herodotus. He tells of Histiæus, who shaved
the head of his most trusted slave and tattooed it with a message that disap-
peared after his hair had regrown. Many other physical objects have since been
used as cover-objects, e.g, earrings, written documents, and music scores.

Digital steganography has mainly been applied to media, such as images,
sound and video. A large number of systems has been proposed [15, 16].

Steganography in the context of executables has, to the best of our knowledge,
only been addressed by Hydan [1], a steganographic tool for IA-32 compatible
executables.

Significantly more research has been conducted in the related field of soft-
ware watermarking. The first one, proposed by Davidson and Myhrvold [17],
encodes the watermark in the sequence of basic blocks. Pieprzyk [18] suggests
assigning a unique identity to every copy in the choice of equivalent instructions.
Another approach encodes the watermark in the frequency of groups of instruc-
tions [3]. All of these approaches change properties of the existing executable.
Other techniques add a piece of data [19] or code [20] to the original program.

Whereas the mentioned work has mainly focused on the development of new
techniques, more attention has recently gone into the evaluation of their secu-
rity [21, 22, 23]. No general framework has been presented however.
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8 Conclusion

This paper identified the redundancy present in executable programs and pre-
sented instruction selection, instruction scheduling and code layout as three tech-
niques to exploit this redundancy for steganography. Combined, they resulted in
encoding rates of approximately 1

27 , four times the rate of the previous approach
by Hydan [1].

A framework for the evaluation of code transformation stealth was intro-
duced and applied to the presented techniques, showing that our techniques can
be made secure by the appropriate countermeasures, while still obtaining an
encoding rate of 1

89 .
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Abstract. There have been some achievements in steganalysis recently.
Many people have been making strides in steganalysis. They have ap-
proached steganalysis from different angles; from information theory to
complexity theory. Anderson gave a possibility that there is a provable
secure steganographic system, but there had not been complexity the-
oretical approaches for years. In 2002, Katzenbeisser and Petitcolas de-
fined the conditional security of steganography and gave a possibility for
a practical, provable secure steganography for the first time, and Hopper
et al. introduced a provable secure steganographic algorithm in the sense
of complexity theory. Chang et al. also tried to define the complexity
theoretical security and showed a practical, provable secure algorithm.
Chang et al. presented chose-input attack model in a view of pseudopro-
cessingness for a steganographic system. In this paper, we try to improve
this notion in detail. So we define chosen-cover attack model and chosen-
message attack model. Moreover, we present the relation between them.

Keywords: steganography, steganalysis, pseudoprocessingness.

1 Introduction

Simmons proposed the prisoners’ problem in [9] before many research papers
related to information hiding techniques have been published. In this problem,
Alice and Bob are accomplices in a crime and have been arrested, and then they
are put in two different cells. After that time, they try to conspire to escape but
their all communications are listened to by a guardian named Warden. Since
Warden suspect that Alice and Bob want to collude an escape plan, he will only
permit the exchanges through not an encrypted message but a plain text. Under
this restriction, on the other hand, Alice and Bob attempt to deceive Warden
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by finding a way of establishing an invisible communication channel between
them in full view of the warden, even though the messages themselves contain
no secret information.

A couple of solutions has been proposed for the prisoners’ problem; sublimi-
nal channel, covert channel, etc.. There also have been introduced different ap-
proaches: steganography and digital watermarking. Especially, steganography is
related to how Alice and Bob can construct a secret channel over a public channel
without arousing Warden’s suspicion. In other words, the goal of steganography
is to conceal the existence of secret communication between Alice and Bob with-
out being suspected by Warden. So the security of steganography depends on
that Warden can not distinguish between a cover-object and a stego-object, and
also the embedding algorithm has not to leave any special feature on a stego-
object.

Although many researchers have studied the steganography in theoretic per-
spective and in practical, relatively little researchers have approached the se-
curity of steganography theoretically. First work was produced by Anderson[1].
He introduced some explanation of information hiding and present a couple of
approaches to the theoretical security of steganography. And he also mentioned
the computational security using polynomial-time turing machine. After pub-
lishing his paper, Cachin[2] and Zöllner et al.[11] proposed information theoretic
security models separately. Cachin defined the security of steganography using
relative entropy, while Zöllner et al. gave a different definition using mutual in-
formation. During that time, many theoretical and practical steganographic al-
gorithms had been proposed and published, but almost all of them are identified
as insecure[7, 6]. Katzenbeisser and Petitcolas defined the conditional security of
steganography and gave a possibility for a provable secure steganography for the
first time[8]. Hopper et al. introduced a provable secure steganographic algorithm
in the sense of complexity theory[5]. However, the security of their algorithm just
depends on not the algorithm itself but the security of the encryption algorithm
used in their algorithm. In addition, it is different from a practical one because it
is not efficient. Chang et al. defined some novel notions, pseudoprocessing func-
tion(PPF), chosen-input-attack, chosen-stego-attack [3]. They also constructed a
more practical, provable steganographic system using them.

In this paper, we will develop their chose-input-attack model in detail, chosen-
cover-attack and chosen-message-attack in the sense of complexity theory. And
we will also construct a practical, provable secure steganographic algorithm that
is secure under the adversary models.

2 Security Notions

2.1 Security Requirement

We can regard the steganographic algorithm as a postcard on which the message
is written openly. The postcard should be such that only legal senders can write
down a just plain text on it and hide a secret message in the text, but anyone
including an adversary can read only the plain text itself. So the adversary can
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also examine it in polynomial time. Even worse, we assume that the adversary
can query a polynomial number of stego-objects to extract messages hidden in
them for himself. This is called a passive adversary. On the other hand, there
may be a more powerful adversary who can intercept stego-objects being trans-
mitted and either bar the channel or modify them in some way. This is called
an active adversary. In designing process, adversaries must have been considered
at first stage and steganographic algorithms which are secure against them have
been designed. Defining the security against powerful adversaries is more com-
plicated than for passive adversaries. So in this paper, we consider only a passive
adversary who knows the probability distribution over the message space.

When can we say that steganography is secure or broken? It’s difficult to
answer the question, but it is really clear that a minimal requirement of security
would be that any adversary who is capable of watching the stego-object and
knows which steganographic algorithm is being used, can not identify whether a
given object is a stego-object or not. However, we need more desirable properties.
We propose the principle of designing steganographic algorithm.

Condition 1. It should be hard to distinguish a stego-object from a given-
object when a message and a cover-object are drawn from arbitrary probability
distributions defined on a message space and a cover-object space. But we must
assume that these spaces are known to the adversary. (Definition 9)

Condition 2. It should be hard to say whether a given-object has a message
or not even though the adversary obtain the embedding algorithm and use it.
In other words, it should be difficult to say whether a given-object has a mes-
sage or a random string. Even more it should be also difficult find some useful
information that can be used for detecting. (Definition 12)

Condition 3. It should be hard to extract information about the embedded
message from the given-object where the adversary knows that it is a stego-
object. Even more it should be also difficult to compute partial information about
the message or to find some useful information that can be used for detecting.
(Definition 13)

Condition 4. It should be hard to obtain the key information from the stego-
object.

Condition 5. The above properties should be hold with high probability.

In above requirements, the most important thing is the first requirement.
Condition 1 incorporates the essence of the traditional security of steganogra-
phy. The other requirements are needed after Condition 1. is broken. To identify
whether a give-object is a stego-object, an adversary should be able to make out
objects. So we can consider the first requirement as the notion of indistinguisha-
bility between a cover-object and a stego-object.

Let us now consider the computing resources needed when an adversary tried
to break system. As cryptography, it is widely accepted that it is impractical as-
sumption that the adversary has infinite computing resources[2, 11]. Instead, we
suppose that the computing resources who the adversary can use are bounded in



On Security Notions for Steganalysis 443

some reasonable way. Especially, in this paper we will assume that the adversary
is a probabilistic algorithm who runs in polynomial time. So the steganographic
algorithms also should be probabilistic and run in polynomial time.

On the other hand, let us look at the problem of measuring the running time
of algorithms including adversary. It should be calculated as a function of a
security parameter which is fixed at the time the steganography is setup. Thus,
the adversary algorithm runs in polynomial time means that time is bounded
by some polynomial function of a security parameter[4]. Steganography should
be designed based on a gap between the efficiency of embedding algorithms
for the senders and the computational infeasibility of detecting task for the
adversary so that it requires that one has available primitives with certain special
kinds of computational hardness properties. As the most basic function is an
one-way function to build secure encryption scheme in cryptography, Chang et
al. showed that pseudoprocessing function can be used as a building block in
steganography[3]. We will describe their definitions briefly and then, introduce
the security of steganography in the sense of indistinguishability.

2.2 Basic Notions

In this section, we introduce some basic notions used for analyzing a stegano-
graphic system. We begin with the definition of Channel. Hopper et al. assumed
that there exists an oracle that can draws objects from the channel.

Definition 1 (Channel; Hopper et al.(2002)). A channel N is a distri-
bution on bit sequences where each bit is also time-stamped with monotoni-
cally increasing time value. Formally, a channel is a distribution with support
({0, 1}, t1), ({0, 1}, t2), . . . , where for all i > 0 and ti+1 > ti.

An easy computation is one which can be carried out by a probabilistic
polynomial time algorithm and a function is negligible if it vanishes faster than
the inverse of any polynomial[4].

Definition 2 (Negligible Function). A function ν : N → R is a negligible if
for every constant c � 0, there exits an integer kc such that ν(k) < k−c for all
k � kc.

A symmetric-key steganographic system is defined as follows;

Definition 3 (Symmetric-Key Steganographic System). A symmetric-
key (or secret-key) steganographic system SKS = (Keys,Enc,Ext) consists of
three polynomial-time algorithms.

Key Generation. On input 1k (the security parameter), the key generation
algorithm Keys(·) outputs produces a string k, we write K

R←− Keys(1k).

Embedding. The embedding algorithm Emb(·, ·, ·) takes the key K ∈ Keys(1k),
an object c ∈ N , and a message m ∈M to return a stego-object s ∈ S, we write
s ←− Emb(K, c,m). We can consider an embedding algorithm is a function,
Emb : Keys×N ×M −→ S.
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Extracting. The extracting algorithm Ext(·, ·) takes the key K ∈ Keys(1k) and
a stego-object s to return a message m ∈ M(∪{⊥}), we write m←− Ext(K, s).
We require that for any key K ∈ Keys(1k), any object c ∈ N , and any message
m ∈ M, if Emb(K, c,m) returns a stego-object s, that is s ←− Emb(K, c,m),
then Pr[s ←− Emb(K, c,m)] = 1 and Pr[Ext(K, s) �= m] is negligible. We can
consider an embedding algorithm is a function, Ext : Keys× S −→M.

To provide the security for the steganographic system, Chang et al. presented
the Steganographic Decision Problem(SDP)[3].

Definition 4 (Steganographic Decision Problem(SDP)). Given an object
s ∈ C to Warden, he must determine whether s has a message m ∈ {0, 1}∗ or
not.

However, this definition is not enough to apply itself to steganalysis directly
because the definition is quite vague. Thus Chang et al. defined a processing
function and a pseudoprocessing function additionally to provide a solution in
the sense of complexity theory[3]. Nevertheless, their idea is not sufficient, but
imperfect to develop theory. So we need more additional definitions to adopt
complexity theory on steganalysis. To do this, we define a processing function
and a criterion as follows.

Definition 5 (Processing and Criterion Function). A processing function
is a map from a channel N to a cover-object set C. That is, Proc : N −→ C.
And a criterion function is a map from an object set U to {0, 1}. That is,
Crit : U −→ {0, 1}.

A processing function, for example, is a compression algorithm or an enhance-
ment. And a criterion function plays a role to classify into two object sets. If a
domain is a union of a cover-object set and a stego-object set, we can separate
stego-objects from cover-objects using steganalytic methods, such as χ2-test, as
a criterion function.

Definition 6 (Distinguishability and Indistinguishability). Let U be a
union of S and C. If there is a criterion function f such that f(S) and f(C), be
a partition of f(U), i.e., f(S) ∩ f(C) = ∅, then S is said to be distinguishable
from C, denoted by S � C. If all criterion functions on U are biased, that is
f(S) = f(C), then S is said to be indistinguishable from C, denoted by S ∼= C.

The ideal steganalytic method must separate stego-objects from cover-objects
completely. But all analyses introduced until now can distinguish stego-objects
from cover-objects only partially. So we need a definition for partial distinguisha-
bility.

Definition 7 (Computational Distinguishability and Indistinguishabil-
ity). Let U be a union of S and C. When the intersection of f(S) and f(C) is
negligible, S is said to be computationally distinguishable from C, denoted by
S �c C. In the case that the difference of f(S) and f(C) is negligible, S is said
to be computationally indistinguishable from C, denoted by S ∼=c C.
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For example, let the embedding be EzStego algorithm and a processing func-
tion be GIF compression algorithm. Since EzStego embeds a encrypted mes-
sage into the sorted palette sequentially, visual test or χ2-test can discrimi-
nate between stego-images produced by EzStego and cover-images with high
probability[10]. So the stego-image set and the cover-image set are computation-
ally distinguishable. From Definition 7, we get the following equivalent directly.

Proposition 1. The following statements are equivalent;

(1) S and C are computationally indistinguishable, S ∼=c C.
(2) There exists no criterion function such that f(S) ∩ f(C) is negligible.

Proof. (1)⇒(2) Assume that there exist a criterion function f such that |f(S)∩
f(C)| be negligible. Then S �c C. This is contradiction.

(2)⇒(1) Suppose that S �c C. Then there exists a criterion function f such that
|f(S) ∩ f(C)| be negligible. This is contradiction. 
�

If stego-objects produced by an embedding function could be separated from
cover-objects computationally, we can consider the embedding function to be
like a processing function. In other words, if a stego-object set is computation-
ally indistinguishable from a cover-object set, it is difficult for Warden who uses
a function like a black box to decide whether a given function is an embedding
function or a processing function. We define the such function as a pseudopro-
cessing function.

Definition 8 (Pseudoprocessing Function). Let e : Keys ×M×N −→ S
be an embedding function, and p : N −→ C be a processing function. If S ∼=c C,
then e is said to be a pseudoprocessing function, denoted by e ∼=c p. If S �c C,
then e is said to be computationally distinguishable from p, denoted by e �c p.
That is,

S ∼=c C =⇒ e ∼=c p,

S �c C =⇒ e �c p.

And the pseudoprocessingness as the degree of the similarity between an embed-
ding function and a processing function.

Now we get an important theorem for the provable security from Definition 8.

Theorem 1. Let e : Keys × M × N −→ S be an embedding function and
p : N −→ C be a processing function. If e be a pseudoprocessing function, then
S be computationally indistinguishable. That is,

e ∼=c p =⇒ S ∼=c C.

Theorem 1 says that the security of steganography relies on the pseudopro-
cessingness of an embedding function. We also get a corollary from the above
theorem.

Corollary 1.
S ∼=c C ⇐⇒ Enc ∼=c Proc
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2.3 Pseudoprocessing Function Experiment

Now we have a question for the pseudoprocessingness. How can we measure the
pseudoprocessingness? Actually assessing the amount of pseudoprocessingness is
not so easy work. To estimate the pseudoprocessingness, Chang et al. formulated
the pseudoprocessing function experiment mathematically[3]. In this experiment,
a test function is given to Warden and what can he only see is input-output
behavior of the function. After experiment, Warden should tell whether a test
function is an embedding function or a processing. The action of Warden is
could be considered as the notion of a distinguisher. The measure is computed
as the probability that the distinguisher or adversary say a given-object is a
stego-object. The experiment is defined as follows.

Definition 9 (Pseudoprocessing Function Experiment). Let Emb : Keys×
N ×M→ S be an embedding functions, and let W be an algorithm that takes
an oracle for a function p : N → C, and returns a bit d. We consider following
two experiments:

Experiment ExpPPF-1
Emb,W Experiment ExpPPF-0

Emb,W
K

r←− Keys p←− ProcC×M→S

d←−WEmb(K,·,·) d←−Wp

Return d Return d

The advantage for a pseudoprocessing function of a distinguisher W, PPF-
advantage, is defined as

AdvPPF
Emb,W =

∣∣∣∣ Pr
[

ExpPPF-1
Emb,W = 1

]
−Pr

[
ExpPPF-0

Emb,W = 1
] ∣∣∣∣. (1)

For any t, q, μ, we define the PPF-insecurity of an embedding function Emb,

InSecPPF
Emb (t, q, μ) = max

W

{
AdvPPF

Emb,W
}

where the maximum is over all distinguishers W having time-complexity t and
making at most q oracle queries, the sum of the lengths of these queries being at
most μ bits. An embedding function Emb is (t, q, μ, ε)-pseudoprocessing function
or (t, q, μ, ε)-pseudoprocessing when InSecPPF

Emb (t, q, μ) � ε, where ε is negligible.

To solve the SDP, adversaries can use some resources: a cover-object, a
message and a stego-object. Depending on the available resources, there are
several kinds of adversary models for the steganographic systems[7], and Hop-
per et al. introduced several adversary models close to cryptographic adversary
model[5]. Chang et al. also presented independently two kinds of adversary mod-
els, Chosen-Input-Attack(CIA) and Chosen-Stego-Attack(CSA)[3]. Their classi-
fication is based on the algorithms which an adversary can use as an oracle. In
CIA model, the adversary is accessible to an embedding oracle, so he can inquire
of an embedding oracle with different cover-objects for distinct messages. So, in
the sense of PPF-CIA, the security is defined as follows;
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Definition 10 (PPF-CIA Security). Let Emb : Keys × N ×M → S be an
embedding functions, and let W be an algorithm that takes an oracle for a
function p : N → C, and returns a bit d. We consider following two experiments:

Experiment ExpPPF-CIA-1
Emb,W Experiment ExpPPF-CIA-0

Emb,W
K

r←− Keys p←− ProcN→C

d←−WEmb(K,·,·) d←−Wp

Return d Return d

The advantage for a pseudoprocessing function of a distinguisher W, PPF-CIA-
advantage, is defined as

AdvPPF-CIA
Emb,W =

∣∣∣∣ Pr
[

ExpPPF-CIA-1
Emb,W = 1

]
−Pr

[
ExpPPF-CIA-0

Emb,W = 1
] ∣∣∣∣.

For any t, q, μ, we define the PPF-insecurity of an embedding function Emb

InSecPPF-CIA
Emb (t, q, μ) = max

W

{
AdvPPF-CIA

Emb,W
}

where the maximum is over all distinguishers W having time-complexity t and
making at most q oracle queries, the sum of the lengths of these queries being
at most μ bits. An embedding function Emb is (t, q, μ, ε)-pseudoprocessing func-
tion under Chosen-Input-Attack(CIA) or (t, q, μ, ε)-pseudoprocessing under CIA
when InSecPPF-CIA

Emb (t, q, μ) � ε, where ε is negligible.

In CIA setting, an adversary can use two resources, a message and a cover-
object for a query. He is capable of fixing a cover-object and then varying a
message, or the other way. On the other hand, an adversary can access a stego-
object besides the inputs. So PPF-CSA is defined as follows.

Definition 11 (PPF-CSA Experiment). Let Emb : Keys×N ×M→ S be
an embedding functions, and let W be an algorithm that takes an oracle for a
function p : N → C, and returns a bit d. We consider following two experiments:

Experiment ExpPPF-CSA-1
Emb,W Experiment ExpPPF-CSA-0

Emb,W
K

r←− Keys p←− ProcN→C

d←−WEmb(K,·,·),Ext(K,·) d←−Wp,p−1

Return d Return d

The advantage for a pseudoprocessing function of a distinguisherW, PPF-CSA-
advantage, is defined as

AdvPPF-CSA
Emb,W =

∣∣∣ Pr
[

ExpPPF-CSA-1
Emb,W = 1

]
−Pr

[
ExpPPF-CSA-0

Emb,W = 1
]∣∣∣ .

For any t, qc, μc, qs, μs, we define the PPF-insecurity of an embedding function
Emb

InSecPPF-CSA
Emb (t, qc, μc, qs, μs) = max

W

{
AdvPPF-CSA

Emb,W
}
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where the maximum is over all distinguishers W having time-complexity t and
making at most qc oracle queries to the p oracle, the sum of the lengths of
these queries being at most μc bits, and also making at most qs queries to the
p−1 oracle, the sum of the lengths of these queries being at most μs bits. An
embedding function Emb is (t, qc, μc, qs, μs, ε)-pseudoprocessing function under
Chosen-Stego-Attack(CSA) or (t, qc, μc, qs, μs, ε)-pseudoprocessing under CSA,
when InSecPPF-CSA

Emb (t, qc, μc, qs, μs) � ε, where ε is negligible.

Definition 10 is too loose, so we will define the security for each adversary
models corresponding to the accessible embedding oracle in the experiment in
the next section.

3 Indistinguishability Under Chosen-Object Attacks

In this section, we discuss chosen-input attack in detail. An embedding function
takes three inputs; a key, a cover-object, and a message. It is reasonable for
us to consider two inputs, a cover-object and a message, as variables. So we
will introduce chosen-cover attack and chosen-message attack in the sense of
indistinguishability. We want to show that if an embedding algorithm is not
secure against each attack, then the algorithm is not a pseudoprocessing function.
We formulate this idea in the next section.

3.1 Chosen-Cover Attack Model

First, assume that the adversary who knows a message and a cover-object;
in fact he is allowed to select cover-objects and a message on his own.
There is a sequence of couples of a pair of cover-objects and a message;
{(c1,0, c1,1),m1}, . . . , {(cq,0, cq,1),mq}. This sequence is known to the adversary.
Now, a challenge bit b is chosen randomly, and a sequence of a pair of objects
(s1,0, s1,1), . . . , (sq,0, sq,1) is produced for a message mi and a random string mr

i ,
|mr

i | = |mi|, where

si,b ←−
{

EmbK(ci,0,mi), for b = 0,
EmbK(ci,1,mi), for b = 1.

si,1−b ←−
{

EmbK(ci,1,m
r
i ), for b = 0,

EmbK(ci,0,m
r
i ), for b = 1.

In each stage, the embedding algorithm uses fresh internal coins each time. The
adversary gets the sequence of challenge-objects (s1,0, s1,1), . . . , (sq,0, sq,1) and
must guess which side object has a message mi. This means that the adver-
sary should determine whether the sender sent s1,0, . . . , sq,0 or s1,1, . . . , sq,1. In
this environment, we say that the embedding function is secure under chosen-
cover attack if it is hard for the adversary to tell whether si,0 or si,1 has a
message mi. We will formalize this idea. Let us fix a steganographic system
SKS = (Keys,Emb,Ext) and assume that a warden is W, which is a program
accessible to an oracle to which it can inquire as input any pair {(c0, c1),m}.
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Then the oracle returns an object (s0, s1) for the query. There are two possible
ways in which these ‘challenge’ stego-objects are computed by the oracles cor-
responding to two sets. To do this, we define the Two-Sides embedding oracle
TS(EmbK(·, ·),EmbK(·, ·), b) as follows:

Oracle TS(EmbK(cb,m),EmbK(c1−b,m
r), b), where b ∈ {0, 1}

(s0, s1) ←−
{

(EmbK(c0,m),EmbK(c1,mr)) , for b = 0,
(EmbK(c0,mr),EmbK(c1,m)) , for b = 1.

Retrun (s0, s1)

The oracle embeds the message m and a random string mr into the given cover-
objects each according to the bit b. Now two sets are defined as follows:

Set 0: The oracle TS(EmbK(c0,m),EmbK(c1,mr), 0) is given to the adversary.
So, whenever the adversary makes a query {(c0, c1),m} to its oracle, the former
embeds the message m into c0, s0 ← EmbK(c0,m), and the later does a random
string mr into c1, s1 ← EmbK(c1,mr) and returns (s0, s1) as the answer.

Set 1: The oracle TS(EmbK(c0,mr),EmbK(c1,m), 1) is given to the adversary.
So, whenever the adversary makes a query {(c0, c1),m} to its oracle, the former
embeds a random string mr into c0, s0 ← EmbK(c0,mr), and the later does the
message m into c1, s1 ← EmbK(c1,m) and returns (s0, s1) as the answer.

We call the first set or oracle, the ‘left-side’ set or oracle, and the second
the ‘right-side’ set or oracle. Now the adversary should tell which side oracle
hides the message after making queries to its oracle for some time. We define an
embedding function is secure against chosen-cover attack if an adversary can not
get significant advantage in distinguishing the cases b = 0 and b = 1 given access
to the oracle, where the adversary can use reasonable resources. This security
notion is also called indistinguishability under chose-cover attack, denoted IND-
CCA as following definition.

There is a thing to discuss about the above experiment. There are certain
queries that an adversary can make to it TS-embedding oracle which will give
information about the bit b, but we assume that those queries are illegitimate. For
example, an adversary may make query {(c0, c1),m} such that EmbK(cb,m) = ⊥
and EmbK(cb,m

r) �= ⊥, or vice versa for b ∈ {0, 1}. So we simply suppose that
an adversary is prohibited from making such queries. In this paper, we will have
only legitimate adversary. Now we define the IND-CCA security as follows.

Definition 12 (IND-CCA Security). Let Emb : Keys ×N ×M → S be an
embedding functions, let b ∈ {0, 1}, and let W be an algorithm that takes an
oracle for a function Emb, and returns a bit d. We consider following experiment:

Experiment ExpIND-CCA-b
Emb,W

K
R←− Keys

d←−WTS(EmbK(cb,m),EmbK(c1−b,mr),b)

Return d
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The IND-CCA-advantage of W is defined as

AdvIND-CCA
Emb,W =

∣∣∣∣ Pr
[

ExpIND-CCA-1
Emb,W = 1

]
−Pr

[
ExpIND-CCA-0

Emb,W = 1
] ∣∣∣∣.

For any t, q, μ, we define the IND-CCA advantage of Emb via

InSecIND-CCA
Emb (t, q, μ) = max

W

{
AdvIND-CCA

Emb,W
}
,

where the maximum is over all legitimate W having time-complexity t and mak-
ing at most q oracle queries, the sum of the lengths of these queries being at
most μ bits. An embedding function Emb is (t, q, μ, ε)-indistinguishable under
Chosen-Cover-Attack(CCA) or (t, q, μ, ε)-indistinguishable under CCA when
InSecIND-CCA

Emb (t, q, μ) � ε, where ε is negligible.

Definition 12 says that W is returning 1 just about as often in set 0 as in set
1 if AdvIND-CCA

Emb,W is small, namely the adversary W does not tell which set is
selected. But if if AdvIND-CCA

Emb,W is large, then the adversary does well meaning
the embedding algorithm Emb is insecure.

3.2 Chosen-Message Attack Model

Next, we discuss the other input, message. Let us assume that the adversary who
knows a pair of a cover-object and a message; in fact he is allowed to select a
cover-object and a pair of messages on his own. There is a sequence of couples of
a cover-object and a pair of messages; {c1, (m1,0,m1,1)}, . . . , {cq, (mq,0,mq,1)}.
This sequence is known to the adversary. Now, a challenge bit b is chosen ran-
domly, and a sequence of stego-objects s1, . . . , sq is produced for a cover-object
ci and a pair of messages mi,0 and mi,1, |mi,0| = |mi,1|, where

sb
i ←−

{
EmbK(ci,0,m

r
i ), for b = 0,

EmbK(ci,1,mi), for b = 1.

In each stage, the embedding function uses fresh internal coins each time. The
adversary gets the sequence of challenge-objects s1, . . . , sq and must guess which
message is embedded into the cover-object c. This means that the adversary
should determine whether the sender sent m1,0, . . . ,mq,0 or m1,1, . . . ,mq,1. In
this environment, we say that the embedding function is secure under chosen-
message attack if it is hard for the adversary to tell whether si has a message mi,0

or mi,1. We will formalize this idea. Let us fix a steganographic system SKS =
(Keys,Emb,Ext) and assume that a warden is W, which is a program accessible
to an oracle to which it can inquire as input any pair {c, (m0,m1)}. Then the
oracle returns an object s for the query. There are two possible ways in which the
‘challenge’ stego-object is computed by the oracles corresponding to two sets.
To do this, we define the Left-or-Right embedding oracle EmbK(·,LR(·, ·, b)) as
follows:

Oracle EmbK(c,LR(m0,m1, b)), where b ∈ {0, 1}
s←− EmbK(c,mb)
Retrun s
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The oracle embeds the message m0 or m1 into the given cover-object c according
to the bit b. Now two sets are defined as follows:

Set 0: The oracle EmbK(·,LR(·, ·, 0)) is given to the adversary. So, whenever the
adversary makes a query {c, (m0,m1)} to its oracle, it embeds the message
m0 into c, s← EmbK(c,m0), and returns s as the answer.

Set 1: The oracle EmbK(·,LR(·, ·, 1)) is given to the adversary. So, whenever the
adversary makes a query {c, (m0,m1)} to its oracle, it embeds the message
m1 into c, s← EmbK(c,m1), and returns s as the answer.

We call the first set or oracle, the ‘left’ set or oracle, and the second the ‘right’
set or oracle. Now the adversary should tell which oracle hides the message after
making queries to its oracle for some time. We define an embedding function
is secure against chosen-message attack if an adversary can not get significant
advantage in distinguishing the cases b = 0 and b = 1 given access to the oracle,
where the adversary can use reasonable resources. This security notion is also
called indistinguishability under chose-message attack, denoted IND-CMA as
following definition.

There is a thing to discuss about the above experiment. There are certain
queries that an adversary can make to it LR-embedding oracle which will give
information about the bit b, but we assume that those queries are illegitimate. For
example, an adversary may make query {c, (m0,m1)} such that EmbK(c,m0) =
⊥ and EmbK(c,m1) �= ⊥, or vice versa. So we simply suppose that an adversary
is prohibited from making such queries. In this paper, we will have only legitimate
adversary. Now we define the IND-CMA security.

Definition 13 (IND-CMA Security). Let Emb : Keys × N ×M → S be
an embedding functions, let b ∈ {0, 1}, and let W be an algorithm that takes
an oracle for a function Emb : C ×M → S, and returns a bit d. We consider
following experiment:

Experiment ExpIND-CMA-b
Emb,W

K
R←− Keys

d←−WEmbK(·,LR(·,·,b))

Return d

The IND-CMA-advantage of W is defined as

AdvIND-CMA
Emb,W =

∣∣∣∣ Pr
[

ExpIND-CMA-1
Emb,W = 1

]
−Pr

[
ExpIND-CMA-0

Emb,W = 1
] ∣∣∣∣.

For any t, q, μ, we define the IND-CMA advantage of Emb via

InSecIND-CMA
Emb (t, q, μ) = max

W

{
AdvIND-CMA

Emb,W
}
,

where the maximum is over all legitimate W having time-complexity t and mak-
ing at most q oracle queries, the sum of the lengths of these queries being at
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most μ bits. An embedding function Emb is (t, q, μ, ε)-indistinguishable under
Chosen-Message-Attack(CMA) or (t, q, μ, ε)-indistinguishable under CMA when
InSecIND-CMA

Emb (t, q, μ) � ε, where ε is negligible.

Definition 13 says that W is returning 1 just about as often in set 0 as in set
1 if AdvIND-CMA

Emb,W is small, namely the adversary W does not tell which set is
selected. But if if AdvIND-CMA

Emb,W is large, then the adversary does well meaning
the embedding function Emb is insecure.

Statistical analysis[10] is a good example of this definition. Westfeld and
Pfitzmann noticed that the message length affects the randomness of the least
significant bits of the cover-image. So LSB-based steganographic algorithms such
as EzStego, Jsteg, Steganos, S-Tools are insecure under chosen-message attack.
To analysis these algorithms, they had chosen messages that have different length
for a fixed image and tested them. They found the fact that stego-images of those
algorithms are detected with a probability near 1 if the length of embedded
messages is around the half size of the capacity of cover-images.

3.3 Chosen-Stego Attack Model

In previous sections, we described concealment of algorithm under chosen-cover
attack and chosen-message attack. In addition, we can assume that adversary is
capable of attacking with more stronger way, chosen-stego attack. In this setting,
an adversary has access to a extracting oracle. The adversary gives a stego-object
for a query to the extracting oracle and gets back the corresponding message.

4 Security Against Chosen-Input Attacks

Let Emb: Keys×N ×M −→ S be a family of embedding functions. Then we can
guarantee the security of Emb under chosen-cover and chosen-message attack
when it is a pseudoprocessing function family. In other words, if an adversary
can tell that Emb is computationally distinguishable from Proc, then he could
distinguish the oracles used in the experiment. We will show these in the following
theorems. For the chosen-cover adversary we have:

Theorem 2. Let Emb : Keys×N ×M→ S be a family of embedding function,
where Keys = {0, 1}k, C = {0, 1}�, M = {0, 1}l, and S = {0, 1}L. Then for any
t, q we have

InSecIND-CCA
Emb

(
t, q, q(2� + l)

)
� 2 · InSecPPF

Emb

(
t, 2q, 2q(� + l)

)
.

And for the chosen-message adversary:

Theorem 3. Let Emb : Keys×N ×M→ S be a family of embedding function,
where Keys = {0, 1}k, C = {0, 1}�, M = {0, 1}l, and S = {0, 1}L. Then for any
t, q we have

InSecIND-CMA
Emb

(
t, q, q(2� + l)

)
� 2 · InSecPPF

Emb

(
t, 2q, 2q(� + l)

)
.
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These theorem say that we can give provable assurances of security of a stegano-
graphic system based on the assumption that an embedding function is a pseu-
doprocessing function. Before proving the theorems, we consider the random
processing function Proc : N −→ C. Then, we stress the probability that an
adversary breaks Proc is zero. For the chose-cover adversary we have:

Lemma 1. Let Proc : N −→ S be a processing function. Then, for any IND-
CCA-adversary attacking

InSecIND-CCA
Proc

(
t, q, μ

)
= 0.

And for the chosen-message adversary:

Lemma 2. Let Proc : N −→ S be a processing function. Then, for any IND-
CMA-adversary attacking

InSecIND-CMA
Proc

(
t, q, μ

)
= 0.

We will prove the lemmas in the full version of this paper. Instead we first see how
to use them to prove the theorems. These lemmas say that the steganographic
scheme is perfect secure when the embedding function is a processing function.
But Emb may be not secure even though Proc is secure. Namely, there may be
an adversary having large IND-CMA or IND-CCA advantage in attacking Emb,
even though the advantage in attacking Proc is zero. But we will show that this is
impossible when Emb is PPF. To prove this, assume thatWCCA be a IND-CCA-
adversary and WCMA be a IND-CMA-adversary attacking Emb. We associate
them with WPPF that is given oracle access to a function p ∈ ProcN→C and
is trying to determine which set is chosen. WPPF’s strategy is as follows. First,
it runs WCCA or WCMA, and replies to their oracle queries in such a way that
WCCA andWCMA are attacking Proc inWPPF’s set 0, and they are attacking Proc
in WPPF’s set 1. If WCCA or WCMA can distinguish the oracles, WPPF certainly
ensure that p is an instance of Emb, and otherwise WPPF declare that p is an
instance of Proc. This is the key point of the proof. We give the full proofs of
the following theorems in the full version of this paper.

Theorem 4. Let Emb : Keys × N × M → S be a family of an embedding
function, where Keys = {0, 1}k, N = {0, 1}�, M = {0, 1}l, and S = {0, 1}L.
Then for any t, q we have

InSecIND-CCA
Emb

(
t, q, q(2� + l)

)
� InSecIND-CMA

Emb

(
t, 2q, 2q(� + 2l)

)
.

5 Conclusion

Many practical steganographic algorithms have been introduced to construct a
secret communication channel as a part of solutions for the prisoners’ problem,
however almost all of them are revealed as insecure. Recently, Hopper et al.
and Chang et al. introduced a provable secure steganographic algorithm in the
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sense of complexity theory. But Chang’s works looked more reasonable, but they
only defined some broadly. Therefore, we have introduced more detail security
notions in Chang’s works and the relation between them. With these notions, we
may construct an efficient algorithm which has a post-processing algorithm as a
subroutine, and proved that it is secure against CCA and CIA. We also showed
that some steganographic algorithms are insecure under our adversary models.
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Abstract. The need for protecting rights over relational data is of ever
increasing concern. There have recently been some pioneering works in
this area. In this paper, we propose an effective fingerprinting scheme
based on the idea of block method in the area of multimedia fingerprint-
ing. The scheme ensures that certain bit positions of the data contain
specific values. The bit positions are determined by the keys known only
to the owner of the data and different buyers of the database have differ-
ent bit positions and different specific values for those bit positions. The
detection of the fingerprint can be completed even with a small subset of
a marked relation in case that the sample contains the fingerprint. Our
extensive analysis shows that the proposed scheme is robust against var-
ious forms of attacks, including adding, deleting, shuffling or modifying
tuples or attributes and colluding with other recipients of a relation, and
ensures the integrity of relation at the same time.

Keywords: Fingerprinting, Scheme, Block, Security.

1 Introduction

1.1 Background

Due to the rapid development and widespread use of digital assets, such as soft-
ware, images, video, audio and text, protection of ownership of digital content
is increasingly being a matter of great concern. There are many methods to pre-
vent piracy of digital content and fingerprinting, a special type of information
hiding technique, is a very promising one. Consider a scenario where merchants
sell digital data to buyers. Some dishonest buyers may redistribute the data to
others without permission from the merchants. A merchant may use a fingerprint
scheme to embed a buyer-specific mark into a data copy and subsequently detect
the mark in pirated data and use the mark to identify the traitor who distributed
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the data. Fingerprinting is often discussed in comparison or extension to water-
marking. Watermarking is another type of information hiding technique whose
purpose is to identify the sources of data. A merchant may use a watermarking
scheme to embed a merchant-specific mark into her data and assert ownership
of the data by detecting the watermark. Thus, watermarking is used to embed
marks that identify the merchant while fingerprinting is used to embed marks
that identify legitimate buyers.

Till now, the study of fingerprinting and watermarking has focused mainly on
multimedia content which includes digital images, audio and video. There has re-
cently been some pioneering research presented in [1,2,3] and more recent work of
[7,8] in the area of protecting relational database. In [1], the authors present the
first known database watermarking technique that marks the numeric attributes
of relational data. The algorithm uses a hash function depending on a private
key known only to the owner. The hash function decides the tuples, attributes
within a tuple, and bit positions within an attribute to be marked. Only when
the attackers have access to the private key, can they detect the watermark with
a high probability. The technique survives several attacks and preserves mean
and variance of all numerical attributes. In [2], the authors generalized the wa-
termarking technique in [1] to enable the fingerprinting of relational data. The
fingerprinting technique enables a buyer-specific bit string to be embedded and
extracted from a relational database, as compared to the watermarking tech-
nique which enables a single watermark bit to be embedded and extracted from
a relational database. In [3], the authors extend the technique in [1,2] which
is dependent on primary keys and construct a virtual primary key scheme for
relational databases which do not have primary keys. The schemes in [1,2,3] are
robust against various attacks including flipping bits, adding or deleting tuples
and guessing secret keys.

1.2 Related Work

In [4], the authors propose a block oriented fingerprinting scheme in spatial
domain, which inspires us very much. The scheme first produces one fingerprint
for every buyer and then divides the image to be fingerprinted into a number of
blocks of size β × β and the number of blocks m is equal to ht(I)×wd(I)

β×β (ht(I)
and wd(I) are the height and width of the image in pixels, respectively). Then
the scheme permutes the blocks in an order which is specific for every buyer.
The permutation and the information of the buyer are both stored in a database
known to the merchant only. Then for every block the scheme calculates the
minimum and maximum intensities of the pixels in the block, and according to
the corresponding bit of the fingerprint, increases intensities of the pixels in the
block if the bit is 1 or decreases the intensities if the bit is 0. So every buyer will
get one marked image which is different for everyone.

1.3 Our Contribution

In this paper, we propose a novel and flexible scheme to fingerprint a relational
database based on the block method for fingerprinting an image as described
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above. Compared to the previous works, our scheme has three novel features.
First, it is based on the block method so that the owner can change the size of
the blocks and change the degree of distortion to the database. Secondly, our
scheme has low distortion introduced to the data values without compromising
the integrity (mean and variance) of the data. As will be seen later, our analysis
show that our scheme is resistant to many attacks including collusion attacks.
Third, our scheme can be applied to databases with primary keys and with a
little extension to databases without primary keys.

The scheme we propose is inspired by the method described above, but is
very different from it. Because there exist some fundamental differences between
the characteristics of multimedia data and relational data so that we can not
carry the multimedia techniques over to the realm of relational database. The
differences include:

– It generally does not cause perceptual changes in the object to drop or
replace portions of a multimedia object. However, the pirate of a relation
can frequently delete, insert or replace the database tuples.

– Multimedia objects consist of a large number of bits, with considerable re-
dundancy, thus providing a larger cover to hide information. A database
relation consists of tuples, each of which represents a separate object. The
fingerprint needs to be spread over these separate objects.

– The relative spatial/temporal positions of various pieces of a multimedia
object is often fixed, but it is not the case for the tuples of a relation database.

– There are many psycho-physical phenomena based on the human visual sys-
tem and human auditory system which can be exploited for mark embedding.
However, one can not exploit such phenomena in relational databases.

Due to the differences, our fingerprinting scheme for relational database is only
inspired by the block fingerprinting method for images, and is very different
from it.

The paper is structured as follows. Section 2 describes an effective finger-
printing scheme based on the block method. Section 3 analyzes the security of
the proposed scheme. The conclusion is given in Section 4.

2 An Effective Fingerprinting Scheme

Let’s consider the following scenario. Alice is the owner of a relational database
which is sold to many buyers. Later Alice found that someone owned the database
but she never sold it to him. She needs certain methods to detect who distributed
the database illegally. In this section, we will describe an effective fingerprinting
scheme which can be used to embed a fingerprint into the database and detect it
when necessary. We assume that the relational database has a primary key. The
scheme can be extended for relational databases without primary keys based on
the technique in [3].
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2.1 Requirements

A fingerprinting scheme should satisfy the following properties.

– Detectability: Alice should be able to detect the fingerprint by examining
limited tuples from a suspicious database. The suspicious database may be
only a small part of the fingerprinted database or a modified version of the
fingerprinted database.

– Imperceptibility: Modifications caused by fingerprinting should not reduce
the usefulness of the database. In addition, commonly used statistical mea-
sures such as mean and variance of the numerical attributes should not be
significantly affected.

– Robustness: A fingerprint scheme should be robust against benign database
operations and malicious attacks that may destroy or modify embedded fin-
gerprints. Benign operations include adding tuples, deleting tuples, and up-
dating tuples in database relations. Malicious attacks include selective modi-
fications of fingerprinted relations, taking subsets of relations, and modifying
or erasing the embedded fingerprint. These common attacks have been iden-
tified in [1,2] and described in the following.

1. Randomization attacks: Certain bits of a fingerprinted database are as-
signed random values so that some fingerprint bits may not be detected.

2. Zero out attacks: Values of some bits of fingerprinted database are
changed to zero which results in that the fingerprint can not be detected
correctly.

3. Bit flipping attacks: Values of some bits of fingerprinted database are
inverted thus the fingerprint can not be detected correctly.

4. Rounding attacks: Some bits of fingerprinted database are deleted due
to the rounding of numerical values so that the fingerprint may not be
detected correctly.

5. Subset attacks: A subset of tuples or attributes of a fingerprinted relation
appear in a pirated database so that the fingerprint can not be detected
correctly.

6. Superset attacks: Some new tuples or attributes are added to a finger-
printed database, which can affect the correct detection of the finger-
print.

7. Additive attacks: Adding an additional fingerprint to a pirated copy thus
to confuse a third party.

8. Invertibility attacks: Discovering a fictitious fingerprint in a relation thus
confusing the owner.

9. Majority attacks: Creating a new relation with the same schema as the
copies but with each bit value computed as the majority function of the
corresponding bit values in all copies so that the owner can not detect
the fingerprint.

10. Mix and match attacks: Creating a pirated copy by combining subsets
of tuples and attributes from each fingerprinted copy so that the owner
can not detect the fingerprint.
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The first four types of attacks reduce the accuracy of data. The following
two classes of attacks modify relations but didn’t reduce accuracy. The sev-
enth and eighth types of attacks seek to provide a traitor or pirate with
evidence that raises doubts about a merchant’s claims. The last two types of
attacks are collusion attacks which require attackers to have access to mul-
tiple fingerprinted copies of the same relation but with different embedded
fingerprints.

2.2 Notation and Parameters

Consider a database relation R that has a single primary key attribute P and v
numerical attributes A0, . . . , Av−1. Without loss of generality, let the schema of R
be R(P,A0, . . . , Av−1) and let the database has η tuples. For each attribute value
r.Ai of tuple r ∈ R, one of its ξ(r.Ai) least significant bits could be used to embed
a mark bit. ξ(r.Ai) could depend on the number of bits in a standard binary
representation of r.Ai, or it could be a constant number that is independent on
the value r.Ai. To be simple, we use ξ for ξ(r.Ai) unless otherwise stated.

Let n be the number of users (or buyers) to whom the data is being dis-
tributed. A fingerprint Γ = (f0, . . . , fL−1) is a binary string with length L �
logn. Each user is assigned a unique fingerprint of the same length L. A fin-
gerprint is embedded into each copy of R and the fingerprinted data is then
distributed to the corresponding user.

User i’s fingerprint is computed by a cryptographic hash function H0 whose
input is the concatenation of a secret key K(known by the merchant only) and
user identifier IDi. The output of H0 is a binary string of length L. We shall
assume that this results in a unique fingerprint for each user i = 0, . . . , n − 1.
This is usually the case when L > logn because of the collision-free property of
the hash function. If collisions do exist, we may use a larger L, reserve the user
identifiers that cause collision. We use one pseudo-random producer, which can
be the BBS producer, to produce a series of random numbers, and every user
have one different threshold for the pseudo-random producer. We also use one
cryptographic hash function H1:

H1(K, IDi) = H(K‖H(K‖IDi)) (1)

where H is a standard hash function(e.g., MD5 or SHA), and ‖ denotes concate-
nation. Table 1 gives the notations we use.

2.3 Insertion Stage

At the stage of fingerprint insertion, we first regard the bits of the attributes
that can be used to embed the fingerprint bits as a two-dimension image. For
example, Table 2 gives a small part of a relational database. P is the primary
key, the last three bits of A1 and A2 can be used to embed fingerprint bits.
We first extract the three least significant bits of A1 and A2 and combine them
together as shown in Table 3. Then we divide Table 3 into 6 parts each of size
β × β (here β = 2), as given in Table 4.
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Table 1. The notions

Notations Meaning

ν The number of attributes in the relational database that can be marked

η The number of tuples in the relational database

ξ The number of the least significant bits that can be used for
marking in an attribute

β The size of every block

n The number of users

Table 2. Part of a relational database

P A1 A2

1 01100011 00001001

2 10000010 00100111

3 01001111 10010001

4 00000000 00000101

Table 3. The bits available for fingerprinting

011001
010111
111001
000101

Table 4. The 6 2 × 2 blocks

01 10 01
01 01 11

11 10 01
00 01 01

Table 5. The insertion algorithm

1. for one buyer
2. produce the fingerprint Γ for the buyer
3. choose one threshold r0 for the pseudo random number generator
4. divide the database attributes bits into blocks of size β × β
5. i=0,j=0
6. for each block Bi

7. r1 =random(r0)
8. x = H1(r1, ID) mod β
9. r2 =random(r1)
10. y = H1(r2, ID) mod β
11. Bi(x, y) = Bi(x, y) ⊕ fj

12. r0 = r2

13. i++,j++ if j==L then j=0
14. end for
15. end for

Now we use the pseudo random generator to produce a random number r,
and according to the result of H1(r, ID) mod β to decide where the fingerprint
bit should be embedded. Table 5 gives the insertion algorithm.
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Table 6. The detection algorithm

1. sort S to S′ according to the primary key
2. divide bits in S’ into blocks of size β × β
3. for each buyer, retrieve the corresponding r0:
4. for each block Bi

5. r1 =random(r0)
6. x = H1(r1, ID) mod β
7. r2 =random(r1)
8. y = H(r2, ID) mod β
9. Fi = S′(Bi(x, y)) ⊕ R(Bi(x, y)) if S′(Bi(x, y)) is in S
10. r0 =random(r2)
11. i++
12. end for
13. end for
14. for each buyer, retrieve his fingerprint Γ = (f0, . . . , fL−1)

15. define f ′
i = 1, 0 ≤ i ≤ L − 1, if

#{k| Fi+kL=1,0≤i+kL≤m−1}
ω

� τ , otherwise define f ′
i = 0.

16. if Γ = Γ ′ = (f ′
0, . . . , f

′
L−1), the data is said to had distributed by this buyer.

Line 7 and line 9 use a pseudo random number generator to produce a random
number, respectively. Line 8 and line 10 determine the position in a block the
fingerprint bit should be embedded. Line 13 means that the next fingerprint bit
is ready to be embedded and the next block is ready to be marked. When all the
fingerprint bits have been embedded and the blocks are not over the fingerprint
bits will be embedded again until all the blocks have been used.

2.4 Detection Stage

In the fingerprint detection stage, the merchant first sorts the suspicious database
S according to the primary key. If there are some tuples deleted, they are added
as in the unfingerprinted original data according to the primary key. Then divide
the bits that can be used to embed fingerprint bits into blocks of size β × β
and mark the blocks which are included in R but not in S. Comparison to the
original blocks which don’t contain fingerprint, the merchant decides whether
the suspected relational database is pirated or not. Table 6 gives the fingerprint
detection algorithm.

Line 9 means that for this buyer, the i-th block is detected being marked
with Fi. S(Bi) is the i-th block in the suspicious database and R(Bi) is the
i-th block in the original database. In line 15, m is the number of blocks, ω
times is the number of times a fingerprint has been embedded in the database.
If �τω(τ ∈ [0.5, 1])� detected bits are 1, the detected fingerprint bit is said to be
1, otherwise is said to be 0.

2.5 Fingerprinting Relational Databases Without Primary Keys

The fingerprinting scheme described above is predicated on the assumption that
the relational database have a primary key. And our scheme can be easily ex-
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tended to be used for relations that are without primary keys based on the
techniques proposed in [3].

3 Robustness

In this section, we analyze the robustness of our fingerprint algorithm against
representative attacks under the assumption that the attackers don’t change
the values of primary keys. In addition, we also investigate false hit rate, the
probability of failing to detect an embedded codeword correctly. Let R be a
fingerprinted relation with the embedded fingerprint Γ = (f0, . . . , fL−1).

3.1 Some Discussion

An important parameter in our scheme is β, which determines the size of the
block. If β is large, the number of blocks reduces and the number of times a
fingerprint being embedded also reduces. But if β is too small, and the number
of buyers is more than the size of the block, the situation will happen that
different buyers’ fingerprint is embedded into the same bit position in the same
block. To avoid the situation, the size of the block should be more than the
number of buyers, meaning that β should be at least more than

√
n. On the

other hand, if β is too big, the fingerprint can be embedded for only a small
number of times, the correctness of the detection may be impaired. The times
that the fingerprint can be embedded can be computed as ω = � ξην

β×β×L�. It is
to say that every fingerprint bit fl is embedded ω times

3.2 Cumulative Binomial Probability

We use Bernoulli trials in our robustness analyze. Repeated independent trails
are called Bernoulli trials if there are only two possible outcomes for each trial
and their probabilities remain the same throughout the trials. Let b(k;n, p) be
the probability and n Bernoulli trials with probabilities p for success and 1 = 1−p
for failure result in k successes and n− k failures. Then

b(k;n, p) =
(
n

k

)
pkqn−k (2)

(
n

k

)
=

n!
k!(n− k)!

(3)

Denote the number of successes in n trials as Sn. The probability of having at
least k successes in n trials, the cumulative binomial probability, can be written
as

P{Sn � k} =
n∑

i=k

b(i;n, p) (4)

For brevity, define

B(k;n, p) =
n∑

i=k

b(i;n, p) (5)



A Block Oriented Fingerprinting Scheme in Relational Database 463

3.3 Bit-Flipping Attacks

In a bit-flipping attack, an attacker selects some bits and toggles their values. In
our scheme, the bit positions used for fingerprinting are computed by a pseudo-
random generator which has a threshold known only to the merchant and a
cryptographic hash function. We assume that the attacker does not know the
threshold so that he has no information about the values or positions of embed-
ded bits. We also assume that the attacker possesses a single fingerprinted copy
of the data. Now, let the attacker examine each bit available for fingerprinting in-
dependently and select it for flipping with probability p. Let q = 1−p. We model
bit flipping as Bernoulli trials with probability p of success and q of failure. Let
the attacker apply the attack to a fingerprinted relation. Consider the probability
pl that one particular fingerprint codeword bit fl is destroyed. Each fingerprint
bit fl is actually embedded ω times as discussed above. For the detection algo-
rithm to fail to recover the correct fingerprint bit, at least (1 − τ)ω embedded
bits that correspond to the fingerprint bit must be changed. It also can be said
that more than ω−�τω�+1 bits must be changed. So pl = B(ω−�τω�+1;ω, p).
The probability that the codeword bit is recovered is ql = 1−pl. Then the prob-
ability that the entire codeword is recovered correctly is

∏
l ql = (1− pl)L. And

the false hit rate is 1− (1−pl)L. Table 7 describes the probability of a successful
attack for different parameter values. Here we set η = 100000, ξ = 3, ν = 3,
τ = 0.5 and L = 100. We can see that when β is increasing and p is less than
40% the probability for a successful bit-flipping attack is also increasing for the
same p. And when p is more than 40%, the probability is decreasing while β is
increasing. So we can choose the appropriate β. For example, β = 30 is adapt
to the situation when the length of fingerprint is 100 bits. Comparison to the
scheme in [2], there is some development in our scheme on robustness against
bit-flipping attacks.

Table 7. The probability for a successful bit-flipping attack for different block sizes

p = 10% p = 20% p = 30% p = 40% p = 50%

β = 5 0 0 0 0 0
ω = 360 0 0 0 0 0

β = 10 0 5.0610 × 10−9 2.2564 × 10−3 0.8837 1.0000
ω = 90 0 8.3235 × 10−8 1.2954 × 10−2 0.9962 1.0000

β = 15 1.9597 × 10−9 5.0260 × 10−4 0.2151 0.9996 1.0000
ω = 40 1.6237 × 10−7 8.4818 × 10−3 0.7743 0.9999 1.0000

β = 20 2.4620 × 10−5 3.4324 × 10−2 0.7567 0.9999 1.0000
ω = 22 2.0701 × 10−3 0.4599 0.9999 1.0000 1.0000

Table 7 also gives the comparison result on the probability for a successful
bit-flipping attack for different ω based on the scheme in [2]. For every cell, the
first line is the probability for our scheme and the second line is the probability
for the scheme in [2].
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3.4 Subset Attacks

Consider a subset attack where the pirated data is a subset of tuples of a finger-
printed relation. Note that a relation has η tuples and that an attacker examines
each tuple independently and selects it with probability q′ for inclusion in the
pirated relation. The pirated relation will thus have ζ = q′η tuples on average.
The probability that a tuple is deleted is p′ = 1 − q′. Suppose that a subset
attack is applied to a fingerprinted relation and that there is no other attack or
benign update on the data. Then, for the attack to be successful, it must delete
at least �ω − τω� embedded bits for some codeword bit. Now, each codeword
bit fl is embedded ω times in the original relation, so the probability μl that a
codeword bit fl is erased completely is μl = B(�ω−τω�;ω, p′). Then, vl = 1−μl

is the probability that a codeword bit fl is detected,
∏

l vl is the probability that
the entire codeword is detected correctly, and 1−

∏
l vl is the false miss rate.

Table 8 shows the probability of a successful attack for different parameter
values. Here we set η = 100000, ξ = 3, ν = 3, τ = 0.5 and L = 100. We can see
that when β is increasing the probability for a successful subset attack is also
increasing for the same p′. So we can change β to adapt to different needs.

Table 8. The probability for a successful subset attack for different block sizes

p′ = 10% p′ = 20% p′ = 30% p′ = 40% p′ = 50%

β = 5 0 0 0 0 0

β = 10 0 2.09722 × 10−8 5.5264 × 10−3 0.9706 1.0000

β = 15 1.8719 × 10−8 2.1669 × 10−3 0.4660 0.9999 1.0000

β = 20 2.4596 × 10−4 0.1471 0.9808 0.9999 1.0000

3.5 Attribute Attacks

If an attacker adds one new attribute into a fingerprinted relation. Because our
detection algorithm first reassorts the suspected relation, the new attribute can
be omitted.

If an attacker delete some attributes from a fingerprinted relation, tuples
in which the deleted attributes were marked can be regarded as deleted. The
situation can be analyzed as tuple deletion described in section 3.4.

If an attacker modifies some attributes from a fingerprinted relation, the
situation can be analyzed as the bit-flipping attacks.

3.6 Collusion Attacks

Fingerprinting schemes are susceptible to collusion attacks by coalitions with ac-
cess to multiple fingerprinted copies of the relation but with different embedded
fingerprints. The attackers can create a useful data copy that does not implicate
anyone of the attackers. During fingerprint detection, the copy may yield the
fingerprint of an innocent buyer, or it may not yield a valid fingerprint at all.
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There are many solutions to the collusion problem, a well-known of which was
proposed by Boneh and Shaw [5], and many others have been proposed such as
[6]. These solutions focus on the choice of codewords used by a fingerprinting
scheme. They show that by a proper choice of codewords, fingerprinting schemes
can be made collusion secure. Most of the solutions need the fingerprinting sat-
isfy two properties, one is that an attacker can only detect that a bit position
was used during fingerprint insertion if the attacker has data copies that differ in
value at that position and the other is that although an attacker may determine
that a particular data bit was used to embed some codeword bit, the attacker
cannot determine which codeword bit it represents. The fingerprinting schemes
described in the paper satisfy these properties because the positions the code-
word is embedded are hidden using a pseudo random function. And because β
is known to the owner, the attacker do not know the relationship between the
embedded bits and the codeword bits. On the other hand, different buyers’ code-
words are embedded in different locations, which also increase the difficulties an
attacker can destroy the fingerprint. Thus, we can use any of those collusion-
secure codeword schemes by replacing the hash function H0 in the fingerprinting
algorithms. This has been demonstrated in [2] using an adapted version of Boneh
and Shaw’s algorithm. It’s the same for our schemes.

3.7 Additive Attacks

In an additive attack, an attacker may insert another mark before distributing
a pirated database. A traitor may insert a watermark to claim ownership of the
database and he may insert a fingerprint to claim that the database was provided
to a user legitimately. This type of attack is discussed in [1] in the context
of watermarking, the solution they propose is applicable to our fingerprinting
schemes as well.

3.8 Distortion to Integrity and Consistency

In our scheme, the bits ready for embedding fingerprint bits are the least signif-
icant bits of the candidate attributes. The bits are randomly chosen for embed-
ding fingerprint bits, which means that it is impossible for the bits are mostly
embedded in only one or few attributes. So the changes of the mean and variance
of the candidate attributes are almost imperceptive, which ensure the integrity
and consistency of the relation.

4 Conclusion

In this paper, we have presented the scheme for embedding and detecting fin-
gerprints in relational databases based on a block method. In addition, we have
presented security analysis to show the robustness of our technique against var-
ious attacks.

For future work, we would like to optimize the detection process and inves-
tigate the possibility of extending our embedding scheme for both non-numeric
and numeric attributes.
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Abstract. Biometrics-based methods for personal authentication as-
sume that the biometric characteristics used for the verification of an
individual’s identity are unique from person to person. The purpose of
this study is to verify the uniqueness of fingerprints, by analyzing the sim-
ilarity of live-scanned fingerprints for all ten fingers of twins and family
members. In order to maintain the consistency and to guarantee the re-
peatability of the analysis, we established an evaluation framework, and
studied the uniqueness of fingerprints from two points of view, namely the
similarity between fingerprint types and the distribution of the similarity
scores produced by a minutia-based matching algorithm. Preliminary ex-
periments were carried out using the live-scanned ten-finger fingerprints
of sixty-six twins and fifty-two families consisting of the parents and two
children. The results demonstrate that fingerprints are sufficiently unique
to distinguish one person from another, with an insignificant decrease in
the recognition accuracy for identical twins.

Keywords: Uniqueness, Contingency Table, Personal authentication,
Twin, Family, Fingerprint.

1 Introduction

Traditional methods of personal identification, such as passwords and access
cards, are prone to be deceived, because tokens may be stolen and passwords
lost or forgotten. On the other hand, the biological characteristics of human
beings cannot be forgotten, easily shared or misplaced. Moreover, biometrics-
based authentication requires that the person to be authenticated be present at
the point of authentication to provide his biometric measurements [1]. Biometrics
consists of a series of processes including the extraction of the unique physical
or behavioral properties from a human body and their authentication against a
set of previously enrolled properties, so called, the enrolled template. It assumes
that the biometric traits of an individual are sufficiently unique to distinguish
one person from another.

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 467–477, 2005.
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Fingerprints are part of an individual’s phenotype, which arise from the in-
teraction of the individual’s genes and the developmental environment in the
uterus [2], and are fully formed when the fetus has developed for about seven
months. Furthermore, it is known that the finger ridge configurations remain
unchanged throughout a person’s lifetime, except in the case of accidents, such
as bruises and cuts on the finger tips. The flow of amniotic fluids and the po-
sition of the fetus in the uterus change the growth patterns of the cells on the
fingertip and determine the structure of the fingerprints. While the differences
in the microenvironment between the fingers are small and subtle, their effect
is amplified by the differentiation of the cells, and this produces macroscopic
differences that enable the fingerprints of twins to be differentiated [3].

The purpose of this study is to verify the uniqueness of fingerprints, by an-
alyzing the similarity between the live-scanned fingerprints for all ten fingers of
twins and family members. Jain, et al.[1] quantitatively determined the similar-
ity between the fingerprints of identical twins collected from the National Heart,
Lung and Blood Institute (NHLBI), and assessed the impact of this similarity on
the performance of automatic fingerprint-based verification systems. However,
they used only ink-rolled-scanned thumb fingerprints for their similarity analy-
sis of the twin fingerprints and, in their study, the similarity of family members’
fingerprints was not considered.

To the best of our knowledge, there have been no studies in which a statisti-
cal analysis was performed for the purpose of verifying the uniqueness of finger-
prints. In this paper, we propose a framework for evaluating the uniqueness of
fingerprints and provide empirical methods by which family or identical twin’s
fingerprints can be distinguished from each other with slightly lower accuracy
than those of non-twins or the members of different families, from the standpoint
of the score distribution. Furthermore, in this paper, we analyze the correlation
between different fingerprint types, using the mirror effect and a contingency
table. For the purpose of this study, we constructed a ten-finger live-scan fin-
gerprint database from the fingerprints of 66 pairs of twins (51 identical and 15
fraternal twins) and 52 families.

The remainder of this paper is organized as follows: Section 2 explains the
framework used for evaluating the uniqueness of fingerprints. Section 3 briefly
describes the algorithm used for automatic fingerprint verification. Section 4
presents the experimental procedures and results. Finally, Section 5 ends this
paper by drawing various conclusions.

2 Evaluation Framework

As in the case of other technologies, the uniqueness evaluation for fingerprint
recognition technology requires generality, expertise, fairness, and reliability [4-
8], that is to say:

i) Generality: the method employed must be applicable to various types of
technology involving different biometric modes.
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ii) Expertise: the method must be designed and carried out by people who have
a good knowledge of the technology in question.

iii) Fairness : the method used and the evaluation indices must be fairly de-
signed.

iv) Reliability : the results of the evaluation must be reliable.

The proposed framework used for the uniqueness evaluation of twins and
families’ fingerprints consists of seven elements, as shown in Fig. 1, viz. the
evaluation target, evaluation type, evaluation criteria, evaluation method, eval-
uation environments and construction of the database, test, and reporting of the
results. In our framework, the evaluation target is the uniqueness of the twins
and families’ fingerprints. A fingerprint is a biometric piece of information used
in personal authentication, however its properties are inherited by the chromo-
some. The purpose of this work is to analyze the uniqueness of the fingerprint
from the viewpoint of the genetic relationship, using the fingerprints of twins
and families as the evaluation target.

(a) Evaluation Procedure (b) Evaluation framework

Fig. 1. Procedure and Framework used for uniqueness evaluation

The evaluation type is established using a technological evaluation and of-
fline test. It is difficult to perform an operational or scenario test, because a
suitable group of volunteers is not always available for such an evaluation. In
technological evaluations, the test data should be collected in the environment
that is to be tested, and it should be neither too difficult nor too easy for this
data to match the enrollment templates. Also, the time interval between the
enrollment templates and the test data should be considered. Long time inter-
vals generally make it more difficult to match the search and file templates, due
to template aging. Presentation and channel effects are either uniform or vary
randomly across volunteers. Systematic variations caused by presentation and
channel effects between the enrollment and test data will inevitably lead to the
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results being distorted by these factors. The advantage of using a technological
evaluation is that the database that is compiled can be used to evaluate the
algorithm being developed and to tune it through the process of feedback.

For the evaluation criteria, three points of view are considered, viz. the class
correlation, the similarity of the fingerprints and the system performance. For
the class correlation, six fingerprints classes are used, viz. the whorl (W), double
loop (DL), left loop (LL), right loop (RL), arch (A) and tented arch (TA). The
class correlation is a comparison of the frequency of occurrence of an identical
fingerprint class between two sets of fingerprints. The score distribution is pro-
duced by a proprietary minutiae-based fingerprint algorithm, which outputs the
similarity score between the enrollment and test data. Systematically speaking,
the False Match rate(FMR) and False Non-match rate(FNMR) are considered
by this algorithm.

In the evaluation method, the class correlation step first involves the clas-
sification of the entire fingerprint database. This procedure was performed by
expert, who is well versed in this particular issue. Then, various analyses were
carried out, such as the probability of the same type occurring for two finger-
prints obtained from a pair of corresponding fingers of a child and one of parents,
the probability of the two fingerprints having the same type when both the father
and mother have the same type for each corresponding fingers, the hereditary
trend from father and mother, separately, to the children. The score distribution
is generated by a genuine and imposter matching process, using the FVC2000
protocol. In order to avoid the possible correlation among fingerprints of ten
fingers of each individual, within-individual comparisons are not included in the
set of imposter transactions.

The database was constructed by scanning the fingerprints in a normal office
environment using the fingerprints of 66 pairs of twins and 52 families, and then
tests and reports were carried out, in order to evaluate the uniqueness of the
fingerprints contained in the constructed database. To reduce the amount of
errors in the database, a checklist was established.

a) Use the system correctly
b) Use the correct PIN(Personal Identification Number)
c) Collect good quality images
d) Use the correct body parts
e) Check for blank and corrupted images
f) Minimize the amount of data requiring keyboard entry
g) Allow the volunteers to visualize the input image instantly
h) In case of need, the volunteers should be able to obtain help from a supervisor
i) The supervisor must be fully aware of how to use the data collection software
j) Perform three impressions of each finger for all ten fingers

3 Minutiae Based Fingerprint Recognition Algorithm

An automatic fingerprint recognition algorithm consists of two basic steps,
namely feature extraction and matching. Feature extraction produces a set of



A Study on Evaluating the Uniqueness of Fingerprints 471

Fig. 2. Definition of fingerprint minutiae types

local ridge characteristics or minutiae, as shown in Fig 2., which together con-
stitute the so called feature template. A feature template T = {m1,m2, ...,m3}
consists of multiple feature vectors whose components are its type, position and
orientation.

A minutiae-based fingerprint matching algorithm is generally decomposed
into three stages:

i) The alignment stage: the parameters used for the transformation between
the two fingerprint images are estimated, and the input minutiae are aligned
with the enrolled minutiae according to the estimated parameters.

ii) The matching stage: the corresponding minutiae are determined and the
difference in the angle and position of each pair of corresponding minutiae
are computed.

iii) The scoring stage: a similarity measure between the two fingerprints is cal-
culated using a decision strategy.

The overall matching process for the algorithm used in this study is depicted
in Fig. 3. This algorithm produces triangular minutiae structures named cliques
from the minutiae of the search and file fingerprints, where the file fingerprint is
the fingerprint registered in the enrollment process and the search fingerprint is
the fingerprint being authenticated. The geometry of a clique is shown in Fig.
4. A pair of cliques from the file and search fingerprints is said to be identical
if all the elements of the cliques are within an allowable range of similarity. The
amounts of translation and rotation are calculated for all pairs of cliques [9-10].

Two cliques are said to be identical if the following conditions are satisfied.
Note that, in equations (1) through (4), the superscript F denotes the file fin-
gerprint, while the superscript S denotes the search fingerprint.
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Fig. 3. Overview of the proposed algorithm Fig. 4. Geometry of cliques over

thinned fingerprint image

a) The radius of the cliques r must be similar.

min(rF , rS)
max(rF , rS)

≥ rth (1)

b) The angles α and β must be similar.

|αF − αS | ≤ αth, |βF − βS | ≤ βth (2)

c) The minutiae angles θa, θb, θc must be similar.

|θF
a − θS

a | ≤ θth, |θF
b − θS

b | ≤ θth, |θF
c − θS

c | ≤ θth (3)

d) The minutiae types ζa, ζb, ζc must be the same.

T (ζF
a , ζS

a ) =
{

1 if ζF
a ≡ ζS

a

0 otherwise
T (ζF

a , ζS
a ) = T (ζF

b , ζS
b ) = T (ζF

c , ζS
c ) = 1

(4)

4 Experimental Results

For this study, we constructed a live-scan fingerprint database consisting of the
fingerprints obtained from 66 pairs of twins and 52 families(comprising 4 mem-
bers : the father, mother and two children). Each fingerprint was scanned three
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times using an optical sensor in 256 level grayscale mode at a resolution of 500
dpi in a normal office environment. In each case, this process was repeated for
all ten fingers. The resulting twins database contained 3,960 (66 pairs × 3 times
× 2 members × 10 fingers) images with a size of 248 × 292, while the family
database contained 6,240 (52 families × 3 times × 4 members × 10 fingers)
images.

Next, we will discuss the uniqueness of the twins and family members’ finger-
prints from the following points of view: class correlation, fingerprint similarity
and system performance.

We begin by examining how much correlation exists between the fingerprints.
Firstly, all of the fingerprints were manually classified by an expert in the field of
fingerprint recognition area into six classes, viz. the left loop(LL), right loop(RL),
double loop(DL), whorl(W), arch(A) and tented arch(TA).

Table 1. Mirror effects of the fingerprint database

Index Little Middle Ring Thumb Total Extra #of Comp.
Mir. Mir. Mir. Mir. Mir. Mir. Mir. Mir.

Twin-Gen. 54 32 32 70 46 234 3726 3960
Ratio divide by Finger 1.4 0.8 0.8 1.8 1.2 5.9 94.1 100.0

Twin-Impo. 43 27 23 65 40 198 3762 3960
Ratio divide by Finger 1.1 0.7 0.6 1.6 1.0 5.0 95.0 100.0

Family-Gen. 80 48 64 126 78 396 5844 6240
Ratio divide by Finger 1.3 0.8 1.0 2.0 1.3 6.3 93.7 100.0

Family-Imp.-Parent-Child 104 64 79 198 82 527 11935 12480
Ratio divide by Finger 0.8 0.5 0.6 1.6 0.7 4.2 95.8 100.0

Family-Impo.-Father-Mother 23 15 19 46 16 119 3001 3120
Ratio divide by Finger 0.7 0.5 0.6 1.5 0.5 3.8 96.2 100.0

We investigated the mirror effect, which is used to indicate whether a partic-
ular finger in one hand has the same pattern type as the corresponding finger in
the other hand [6]. Table 1 summarizes the results of the analysis of the mirror
effect. In the comparison of the 3,960 images, index mirroring occurred 54 times
in the case of twin-genuine mirroring, representing a 1.4% ratio, while total mir-
roring occurred 234 times, representing a 5.9% ratio. The result shown in Table
1 led us to the conclusion that the frequency of genuine mirroring is higher than
that of imposter mirroring and that the frequency of twin imposter mirroring
is higher than that of parent-child or father-mother imposter mirroring. From
this, we can formulate a contingency table of twin class correlations, as shown
in Table 2. Table 2 shows that class correlations are not independent between
twins. We can see from Table 3 that in the case of the RL class, the child’s class
is not independent of the parent’s class. That is, the child tends to belong to the
RL class when both the father and mother belong to the same class.

Secondly, we evaluated the similarity between the fingerprints using a propri-
etary minutiae-based fingerprint recognition algorithm based on the FVC2000
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protocol [7]. In the imposter matching as shown in Fig. 5(a) and (b), a higher
score distribution was observed for the matching of twin siblings in the twin

Table 2. Contingency Table for twin-twin imposter

Frequency
Expected

Percentage A DL LL RL TA W Total
Row%

Colume%

6 0 1 1 0 0 8
0.1939 1.0667 1.6848 1.9273 0.1576 2.9697

A 0.91 0 0.15 0.15 0 0 1.21
75 0 12.5 12.5 0 0

37.5 0 0.72 0.63 0 0

0 39 7 6 0 23 75
1.8182 10 15.795 18.068 1.4773 27.841

DL 0 5.91 1.06 0.91 0 3.48 11.36
0 52 9.33 8 0 30.67
0 44.32 5.04 3.77 0 9.39

2 19 108 14 5 19 167
4.0485 22.267 35.171 40.232 3.2894 61.992

LL 0.3 2.88 16.36 2.12 0.76 2.88 25.3
1.2 11.38 64.67 8.38 2.99 11.38
12.5 21.59 77.7 8.81 38.46 7.76

7 4 2 122 6 25 166
4.0242 22.133 34.961 39.991 3.2697 61.621

RL 1.06 0.61 0.3 18.48 0.91 3.79 25.15
4.22 2.41 1.2 73.49 3.61 15.06
43.75 4.55 1.44 76.73 46.15 10.2

1 0 4 3 2 0 10
0.2424 1.3333 2.1061 2.4091 0.197 3.7121

TA 0.15 0 0.61 0.45 0.3 0 1.52
10 0 40 30 20 0

6.25 0 2.88 1.89 15.38 0

0 26 17 13 0 178 234
5.6727 31.2 49.282 56.373 4.6091 86.864

W 0 3.94 2.58 1.97 0 26.97 35.45
0 11.11 7.26 5.56 0 76.07
0 29.55 12.23 8.18 0 72.65

Total 16 88 139 159 13 245 660
Total 2.42 13.33 21.06 24.09 1.97 37.12 100

database and the matching of non-twin siblings in the family database, respec-
tively. The twin-twin imposter score distribution had the highest score distribu-
tion, followed by that between the non-twin siblings, that between the parents
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and children, and finally the father-mother imposter score distribution, in that
order.

Finally, we examined the matching algorithm from a system performance
point of view. The experimental results show that the Equal Error rate (EER) is
generally 1−2% higher than that of the twin-nontwin or father-mother imposter
matching (Fig. 6).

Table 3. Contingency Table for family imposter(Parent-Child)

Frequency
Expected

Percentage A DL LL RL TA W Total
Row%

Colume%

0 2 0 2 0 4 8
0.5211 0.7356 0.1533 4.7203 0.0613 1.8084

A 0 0.77 0 0.77 0 1.53 3.07
0 25 0 25 0 50
0 8.33 0 1.3 0 6.78

0 3 0 7 0 7 17
1.1073 1.5632 0.3257 10.031 0.1303 3.8429

DL 0 1.15 0 2.68 0 2.68 6.51
0 17.65 0 41.18 0 41.18
0 12.5 0 4.55 0 11.86

0 4 2 2 0 3 11
0.7165 1.0115 0.2107 6.4904 0.0843 2.4866

LL 0 1.53 0.77 0.77 0 1.15 4.21
0 36.36 18.18 18.18 0 27.27
0 16.67 40 1.3 0 5.08

8 10 2 103 2 24 149
9.705 13.701 2.8544 87.916 1.1418 33.682

RL 3.07 3.83 0.77 39.46 0.77 9.2 57.09
5.37 6.71 1.34 69.13 1.34 16.11
47.06 41.67 40 66.88 100 40.68

0 0 0 0 0 2 2
0.1303 0.1839 0.0383 1.1801 0.0153 0.4521

TA 0 0 0 0 0 0.77 0.77
0 0 0 0 0 100
0 0 0 0 0 3.39

9 5 1 40 0 19 74
4.8199 6.8046 1.4176 43.663 0.567 16.728

W 3.45 1.92 0.38 15.33 0 7.28 28.35
12.16 6.76 1.35 54.05 0 25.68
52.94 20.83 20 25.97 0 32.2

Total 17 24 5 154 2 59 261
Total 6.51 9.2 1.92 59 0.77 22.61 100
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(a) Twin database (b) Family database

Fig. 5. Similarity score distribution using minutiae−based algorithm

(a) Twin database (b) Family database

Fig. 6. Graph of the FMR and FNMR

5 Conclusion

In this work, we proposed a framework for the evaluation of the uniqueness of
human fingerprints and implemented this in the form of an algorithm based on
the FVC2000 protocol. This algorithm was tested on an experimental database,
and the experimental results were analyzed from the point of view of several
evaluation criteria.

The results of the experiments show that there is some correlation between
both the class and minutiae-based similarity between the fingerprints of parents
and their children, and the same pattern was also observed for identical twins.
The similarity between the fingerprints of siblings was found to be higher than
that between those of parents and their children.
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In conclusion, we attempted to establish the impact of similarity on the per-
formance of the minutiae based fingerprint algorithm, particularly in the case
of twins and sets of parents and children. Even though the fingerprints of twins
exhibit a high class correlation, they can still be distinguished using the minutiae-
based fingerprint recognition algorithm due to the uniqueness of the fingerprints,
although with a slightly higher error rate than those of non-twins.

More research is necessary to develop a class independent matching algo-
rithm. We also intend to statistically analyze the genetic relations and inherited
pattern conditions based on twin and family fingerprints. This will form the
foundation for the development of a fingerprint algorithm for the analysis of a
database containing genetically intimate relations, namely relations having high
class similarity.
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Abstract. With the rapid development of 3D imaging technology, face
recognition using 3D range data has become another alternative in the
field of biometrics. Unlike face recognition using 2D intensity images,
which has been studied intensively by many researchers since the 1960’s,
3D range data records the exact geometry of a person and it is invariant
with respect to illumination changes of the environment and orientation
changes of the person. This paper proposes a new algorithm to register
and identify 3D range faces. Profiles and contours are extracted for the
matching of a probe face with available gallery faces. Different combina-
tions of profiles are tried for the purpose of face recognition using a set
of 27 subjects. Our results show that the central vertical profile is one of
the most powerful profiles to characterize individual faces and that the
contour is also a potentially useful feature for face recognition.

Keywords: 2D, 3D, biometrics, contour, face, intensity, moment, profile,
range, recognition, registration.

1 Introduction

Face recognition has been widely studied during the last two decades. It is a
branch of biometrics, which studies the process of automatically associating an
identity with an individual by means of some inherent personal characteristics
[1]. Biometric characteristics include something that a person is or produces. Ex-
amples of the former are fingerprints, the iris, the face, the hand/finger geometry
or the palm print, etc. The latter include voice, handwriting, signature, etc. [2].
Compared with other biometric characteristics, the face is considered to be the
most immediate and transparent biometric modality for physical authentication
applications. Despite its intrinsic complexity, face- based authentication still re-
mains of particular interest because it is perceived psychologically and physically
as noninvasive. Significant motivations for its use include the following [2]:

– Face recognition is a modality that humans largely depend on to authenticate
other humans.

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 478–488, 2005.
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– Face recognition is a modality that requires no or only weak cooperation to
be useful.

– Face authentication can be advantageously included in multimodal systems,
not only for authentication purposes but also to confirm the aliveness of the
signal source of fingerprints, voice, etc.

The definition of face recognition was formulated in [3] as: “Given an image
of a scene, identify one or more persons in the scene using a stored database
of faces.” This is called the ‘one to many’ problem or identification problem in
face recognition. Another kind of problem is ‘one to one’, i.e., the authentication
problem. This kind of problem is to determine whether the input face of a person
is really the person he or she claims to be or not. In this paper, we deal with
face recognition in the first scenario. The potential field of the application of
face recognition is very wide, mostly in areas such as authentication, security
and access control, which include the physical access control and logical access
control. Especially in recent years, anti-terrorism has been a big issue throughout
the world. Face recognition will play a more and more important role in its efforts.

In the last ten years, most of the research work in the area of face recogni-
tion used two-dimensional images, that is, gray level images taken by a camera.
Many new techniques emerged in this field and achieved good recognition rates.
A number of these techniques are outlined in survey publications, such as [5].
However, most of the 2D face recognition systems are sensitive to the illumina-
tion changes or orientation changes of the subjects. All these problems result
from the incomplete information contained in a 2D image about a face. On the
other hand, a 3D scan of a subject’s face has complete geometric information
about the face, even including texture information, in the case of some scanners.
It is believed that, on average, 3D face recognition methods will achieve higher
recognition rates than their 2D counterparts. With the rapid development of 3D
imaging technology, 3D face recognition will attract more and more attention.

In [6], Bowyer provides a survey of 3D face recognition technology. Some of
the techniques are derived from 2D face recognition, such as Principal Com-
ponent Analysis(PCA) used in [7, 8] to extract features from faces. Some of
the techniques are unique to 3D face recognition, such as the geometry match-
ing method in [9], the profile matching proposed in [10, 11] and the isometric
transformation method presented in [4].

This paper outlines a new algorithm used to register 3D face images auto-
matically. Specific profiles are defined in the registered faces and these are used
for matching against the faces on a database including 27 subjects. The impact
of using different types of profiles for matching is studied. Also the possibility of
using the contour of a face as a feature for face recognition is explored.

The structure of the paper is as follows: Section 2 describes the database
used for this research. Section 3 presents the registration algorithm and Section
4 outlines the matching procedure using different profiles and contours and gives
the results of the experiments. Section 5 is the conclusion.
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2 3D Face Database

Unlike 2D face recognition research, for which there are numerous databases
available in the Internet, there are only a few 3D face databases available to
researchers. Examples are the Biometrics Database from the University of Notre
Dame [12] and the University of South Florida(USF) face database[13]. In our
experiment, the USF database is used.

The USF database of human 3D face images is maintained by researchers
in the department of Computer Science at the University of South Florida, and
sponsored by the Defense Advanced Research Projects Agency (DARPA). The
USF database has a total number of 111 subjects (74 male; 37 female). All
subjects have a neutral facial expression. Some of the subjects were scanned
multiple times. In our experiment, the 3D faces of the subjects who were scanned
multiple times are considered, so that one scan can be used as a gallery image,
i.e., one of the faces that are assumed to be prerecorded, and the remaining scans
from the same subject can be used as probe images, i.e., faces to be identified.
A subset of 27 subjects is used in this research, with 27 faces in the gallery and
27 scans to be identified (probe faces).

Fig. 1. Rendered 3D face image(Left) and triangulated mesh 3D face image(Right)

The 3D scans in the USF database were acquired using a Cyberware 3030
scanner. This scanner incorporates a rugged, self-contained optical range-finding
system, whose dynamic range accommodates varying lighting conditions and
surface properties [14] .

The faces in the database were converted into Stereolitography (STL) format.
Each face has an average of 18,000 vertices and 36,000 triangles. Figure 1 shows
a face from the database in its rendered and triangulated mesh forms.
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3 Registration and Preprocessing

In 3D face recognition, registration is a key pre-processing step. Registering may
be crucial to the efficiency of some matching methods. Earlier work used Princi-
pal Curvature and Gaussian Curvature to segment the face surface and register
it, such as the methods in [9, 10, 15]. The disadvantage of using curvatures to
register faces is that this process is very computationally intensive and requires
very accurate range data [16].

Another method often used involves choosing several user-selected landmark
locations on the face, such as the tip of the nose, the inner and outer corners of
the eyes,etc., and then using the affine transformation to register the face to a
standard position[7, 8, 11].

A third method performs registration by using moments. The matrix( Equa-
tion 1) constituted by the six second moments of the face surface: m200,m020,
m002, m110,m101,m011,contains the rotational information of the face[17].

M =

⎡⎣m200 m110 m101
m110 m020 m011
m101 m011 m002

⎤⎦ (1)

UΔU ′ = SV D(M) (2)

By applying the Singular Value Decomposition (Equation 2), the unitary
matrix U represents the rotation and the diagonal matrix Δ represents the scale,
for the three axes. U can be used as an affine transformation matrix on the
original face surface. The problem with this method is that during repeated scans
for the same subject, besides the changes in the face area, there are also some
changes outside the face area, such as the different caps worn by the subjects
during the scanning process (Fig. 1). These additional changes will also impact
the registration of the face surface, causing the registration for different instances
of the same subject not to be the same. This limitation constrains this approach
to only the early stages of registration.

Figure 2 is an example of a scanned face rendered in a Cartesian coordinate
system, with the X axis corresponding to the depth direction of the face, the Y
axis corresponding to the length direction of the face and the Z axis correspond-
ing to the width direction of the face. In the registration process, we assume that
each subject kept his head upright during scanning, so that the face orientation
around the X axis does not need to be corrected, but the orientation changes in
the Y and Z axes need to be compensated for.

The registration algorithm proposed does not require user-defined landmark
locations and can be done automatically.

First, the tip of the nose is found by looking for the point with the maximum
value in the X direction. Then a ‘cutting plane’, parallel to the XZ plane is set
to contain the tip of the nose (Fig. 3). The intersection of this cutting plane with
the face defines the horizontal profile curve. In effect, the result is a discretized
curve with a spacing of 1.8 mm between samples (Fig. 4).
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Fig. 2. Face surface in a Cartesian co-

ordinate system( the units in the three

axes are mm)

Fig. 3. Illustration of the extraction of

the horizontal profile

Fig. 4. Discrete horizontal profile before registration

A trilinear interpolation method is used to find the value of each point in this
profile. (Fig 5). The point P is in the YZ plane. P’ is the intersection between
the triangle ABC and the straight line PP’, which is normal to the YZ plane.
The length of PP’ is the profile value corresponding to point P.

Next, the following cost function is minimized with respect to α, where I is
the index of the maximum point of X.
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Fig. 5. Trilinear interpolation to get exact values of profile elevations

Fig. 6. Horizontal profile after registration around Y axis

E =
15∑

i=1

[(X(I + i)−X(I − i)]2 (3)

For every α, the affine transformation is applied to the face surface using the
following transformation matrix, and the horizontal profile is found, as illustrated
before.

T =

⎡⎣ cosα 0 − sinα
0 1 0
sinα 0 cosα

⎤⎦ (4)
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α = arg{min[
15∑

i=1

[(X(I + i)−X(I − i)]2]} (5)

The final value of α represents the orientation change around the Y axis
required for the registration.

Figure 6 shows the horizontal profile seen in Figure 4, after the Y axis ad-
justment has been performed:

Typically, a rotational adjustment around the Z axis will also be required.
Analogous to Figure 3, Figure 7 shows the intersection of the face surface with
a cutting plane, which is parallel to the XY plane and passes through the tip
of the nose. This intersection is the central vertical profile. Similar to Figure 4,
Figure 8 shows the discretized central vertical profile, before adjustment.

Fig. 7. Illustration of extraction of central vertical profile

The cost function to be minimized in this case is the following,

E = abs(X(I − 50)−X(I + 40)) (6)

Minimization is with respect to α. I is the index of profile point with the
largest value of X.

α = arg{[min(abs(X(I − 50)−X(I + 40))]} (7)

For every α, the affine transformation is applied, using the following trans-
formation matrix.



Profile-Based 3D Face Registration and Recognition 485

Fig. 8. Discretized central profile before

registration

Fig. 9. Central vertical profile after

registration

Fig. 10. Mesh plot of the range image(left) and gray level image plot of range

data(right)

T =

⎡⎣ sinα 0 cosα
cosα 0 − sinα
0 1 0

⎤⎦ (8)

The aim is to equalize the X coordinates of two critical points contained in
the central vertical profile: the end point on the forehead side and the end point
on the chin side. Figure 9 is the central vertical profile after adjustment around
the Z axis.

To complete the registration process, a grid of 91 by 81 points is prepared
that corresponds to pairs of (y, z) coordinates. The point (51, 41) of the grid is
made to coincide with the tip of the nose in the adjusted face surface. This grid
assumes a spacing of 1.8 mm in both the Y and Z directions, with 91 points in
the length direction and 81 points in the width direction. The value associated
to each point in the grid is the distance between the point in the face surface and
the corresponding location on the YZ plane, calculated by trilinear interpolation
(Fig. 5). The values are offset so that the value corresponding to the tip of
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the nose is normalized to 100 mm. Values below 20 mm in the grid area are
thresholded to 20 mm.

Figure 10 is a Matlab mesh plot of the resulting grid, and a gray level plot
of the same range image.

4 Recognition Experiments and Results

For the experiments described here, a gallery database of 27 range images of
27 subjects (one for each subject) and a probe database of 27 different scans
of the same 27 subject were used. The time interval between the acquisition of
the gallery image and the corresponding probe image for a given subject ranges
from several months to one year.

The use of profile matching as a means for face recognition is a very intuitive
idea that has been proposed in the past. In [10, 11, 18, 19], different researchers
explored the profile matching method in different ways. In our research, because
the range image has already been obtained, profile extraction is simple. We
have, in fact, tested the efficiency of several potential profile combinations used
for identification. Besides profiles, the contour of a face was also tested for its
potential applicability for face recognition. In our experiment, a frontal contour
defined 30 mm behind the tip of the nose was extracted for each scan. Although
in computing the distance or dissimilarity between profiles, some researchers [19]
used the Hausdoff distance, we found that the Euclidean distance is suitable for
the context of our experiment.

The following six different feature combinations and direct range image match-
ing variations were tested with the experimental data described above:

(a) Central vertical profile alone.
(b) Central horizontal profile alone.
(c) Contour, which is 30 mm behind the tip of the nose.
(d) Central vertical profile and two horizontal profiles. The two horizontal

profiles are defined at 18 mm and 36 mm above the tip of the nose. The distance
between central profiles is given the weight of 0.7; the two horizontal profile
distances are given the weight of 0.15 each, towards the overall matching score
for identification.

(e) Central vertical profile and two more vertical profiles, one passing 18 mm
to the left of the central profile, the other passing 18mm to the right of the
central profile. The distance between central profiles is given the weight of 0.7;
the other two vertical profile distances are given a weight of 0.15 each.

(f) Using the entire range image.

From the results in Figure 11, we can see that scheme (a), i.e., matching
the central vertical profile alone, has the highest recognition rate. On the other
hand, using the whole range image for matching yields the lowest recognition
rate. Because the probe image was taken several months to one year after the
gallery image was taken, we have sufficient reason to assume there were changes
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in the face for every subject. The high recognition rate using the central vertical
profile suggests that this profile has the most distinctive properties between
different subjects and is the most consistent through time for the same subject.
These observations concur with a similar analysis, presented in [11]. Besides the
central vertical profile, the contour of a face also shows its potential as a feature
to be used in face recognition.

5 Conclusion

In this paper, a new registration algorithm for 3D face range data was proposed.
This algorithm is valid under some constrains; i.e., only orientation changes along
the width direction and length direction of the face need to be compensated. But
this algorithm can also be extended to register arbitrarily oriented face surfaces
in 3D space, combined with simple registration algorithms that use the six second
moments of the face surface.

Also in this paper, face identification based on profile matching was explored.
Different combinations of profiles for matching were compared. It was found
that the central vertical profile is the feature that best represented the intrinsic
characteristics of each face and had the highest identification value among all
the profile combinations tested. The contour of a face also has the potential to
be used as one of the features in face recognition.
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Möller, Bodo 137
Moon, J. 467
Moon, SangJae 33, 154
Morikawa, Yoshitaka 249

Nadjm-Tehrani, Simin 407
Nogami, Yasuyuki 249



490 Author Index

Park, Sehyun 394
Peng, Kun 51

Reiter, Mike 1
Ryu, C. 467

Sakurai, Kouichi 313
Sarkar, Palash 168
Saxena, Nitesh 362
Shao, Weizhong 455
Simpson, Leonie 33
Song, Jung Hwan 21
Song, Ohyoung 394
Stajano, Frank 2
Stamatiou, Yannis C. 261
Steinwandt, Rainer 182
Sung, Jaechul 343
Sung, Soo Hak 21

Takagi, Tsuyoshi 296
Takashima, Katsuyuki 279
Tsudik, Gene 362

Wang, Shuhong 455
Won, Dongho 195
Wong, Duncan S. 204

Yang, Bo-Yin 67
Yen, Sung-Ming 154
Yi, Jeong Hyun 362
Yiu, S.M. 218
Yoo, Eun Sun 87
Yoon, HyoJin 233
Yum, Dae Hyun 121

Zaroliagis, Christos 261


	Frontmatter
	Invited Talks
	Security by, and for, Converged Mobile Devices
	Security for Ubiquitous Computing

	Block Cipher and Stream Cipher
	Algebraic Attacks on Combiners with Memory and Several Outputs
	New Method for Bounding the Maximum Differential Probability for SPNs and ARIA
	Dragon: A Fast Word Based Stream Cipher

	Public Key Cryptosystem
	An Efficient and Verifiable Solution to the Millionaire Problem
	All in the XL Family: Theory and Practice
	Efficient Broadcast Encryption Using Multiple Interpolation Methods
	On Private Scalar Product Computation for Privacy-Preserving Data Mining

	PKI and Related Implementation
	Separable Implicit Certificate Revocation
	Fractional Windows Revisited:Improved Signed-Digit Representations for Efficient Exponentiation
	Improvement on Ha-Moon Randomized Exponentiation Algorithm
	Efficient Computation of Tate Pairing in Projective Coordinate over General Characteristic Fields

	Digital Signature
	On Subliminal Channels in Deterministic Signature Schemes
	Threshold Entrusted Undeniable Signature
	On the Security Models of (Threshold) Ring Signature Schemes
	Identity Based Threshold Ring Signature
	Batch Verifications with ID-Based Signatures

	Elliptic Curve Cryptosystem
	A Method for Distinguishing the Two Candidate Elliptic Curves in CM Method
	Generating Prime Order Elliptic Curves: Difficulties and Efficiency Considerations
	New Families of Hyperelliptic Curves with Efficient Gallant-Lambert-Vanstone Method
	Some Improved Algorithms for Hyperelliptic Curve Cryptosystems Using Degenerate Divisors

	Provable Security and Primitives
	On the Pseudorandomness of a Modification of KASUMI Type Permutations
	Provably Secure Double-Block-Length Hash Functions in a Black-Box Model
	Padding Oracle Attacks on Multiple Modes of Operation
	An Evolutionary Algorithm to Improve the Nonlinearity of Self-inverse S-Boxes

	Network Security
	Identity-Based Access Control for Ad Hoc Groups
	Mobile Mixing
	A Location-Aware Secure Interworking Architecture Between 3GPP and WLAN Systems
	ADWICE -- Anomaly Detection with Real-Time Incremental Clustering

	Steganography
	Steganography for Executables and Code Transformation Signatures
	On Security Notions for Steganalysis
	A Block Oriented Fingerprinting Scheme in Relational Database

	Biometrics
	A Study on Evaluating the Uniqueness of Fingerprints Using Statistical Analysis
	Profile-Based 3D Face Registration and Recognition

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




